

DRIVER for WINDOWS

USER’S MANUAL

MCX & WAN-HDLC products ranges

www.acksys.fr
support@acksys.fr

sales@acksys.fr

March 2016 (revision A.5)
DDDTTTUUUSSS000555999

http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr

DTUS059, MARCH 14, 2016. REVISION A.5.

MCX and WAN-HDLC products ranges

Windows drivers

COPYRIGHT (©) ACKSYS 2016

This document contains information protected by Copyright.
The present document may not be wholly or partially reproduced, transcribed, stored in any
computer or other system whatsoever, or translated into any language or computer language
whatsoever without prior written consent from ACKSYS Communications & Systems - ZA Val
Joyeux – 10, rue des Entrepreneurs - 78450 VILLEPREUX - FRANCE.

REGISTERED TRADEMARKS ®

• ACKSYS is a registered trademark of ACKSYS.
• Windows 7, Windows Vista, Windows XP, Windows NT, Windows 2000, Windows 2003

Server, MS-DOS, Windows 95 are registered trademarks of MICROSOFT.

NOTICE

ACKSYS ® gives no guarantee as to the content of the present document and takes no
responsibility for the profitability or the suitability of the equipment for the requirements of
the user.

ACKSYS ® will in no case be held responsible for any errors that may be contained in this
document, nor for any damage, no matter how substantial, occasioned by the provision,
operation or use of the equipment.

ACKSYS ® reserves the right to revise this document periodically or change its contents
without notice.

ZA Val Joyeux

10, rue des Entrepreneurs
78450 VILLEPREUX

FRANCE

 Telephone: +33 (0)1 30 56 46 46
 Fax: +33 (0)1 30 56 12 95
 Web: www.acksys.fr
 Hotline: support@acksys.fr
 Sales: sales@acksys.fr

http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr

DTUS059, MARCH 14, 2016. REVISION A.5.

TABLES OF CONTENTS

PRESENTATION .. 1

I TECHNICAL SPECIFICATIONS .. 2
I.1 General characteristics ... 2
I.2 Integration in Windows environment ... 3

II DOCUMENTATION .. 4

INSTALLATION ... 5

I BOARD OPERATING MODES .. 5

II PLUG & PLAY DRIVER INSTALLATION .. 7
II.1 Operating mode selection. ... 7
II.2 Physical board Installation .. 7
II.3 Reboot ... 7
II.4 Installed card setup.. 8

III WINDOWS NT DRIVER INSTALLATION. .. 14
III.1 Check the system configuration .. 14
III.2 Operating mode selection. ... 14
III.3 Board resources selection. ... 14
III.4 Physical board Installation .. 14
III.5 Reboot ... 14
III.6 “MCXSETUP” installation program ... 15

IV CHECKING THE INSTALLATION ... 24

V DEVELOPMENT TOOLS AND EXAMPLES .. 24

COM PORT COMPATIBILITY MODE .. 25

I APPLICATION PROGRAMMING INTERFACE (API) .. 25
I.1 Programming asynchronous communications .. 26
I.2 Programming synchronized asynchronous communications. ... 28
I.3 Programming synchronous HDLC/SDLC/BISYNC communications ... 29
I.4 Programming the LAPB (or HDLC-ABM) protocol ... 31
I.5 Programming driver-specific services. ... 33
I.6 Standard Windows utilities .. 34
I.7 Acksys extra utilities .. 35

II DETAILED REFERENCE MANUAL .. 36
II.1 Excerpt from the mcc_mcx.h file .. 36
II.2 SET/GET SYNC STATE functions .. 39
II.3 Example for SET_SYNC_STATE .. 42
II.4 CMD and CMD_AUTO functions .. 43
II.5 Examples for CMD and CMD_AUTO ... 46
II.6 ACCESS_AREA function ... 48
II.7 MCX_OPTIONS function .. 49
II.8 Examples for ACCESS_AREA and MCX_OPTIONS ... 51
II.9 Appendix : flow control. ... 53

DTUS059, MARCH 14, 2016. REVISION A.5.

III APPENDIX : SPECIFIC ERROR CODES. .. 54

IV APPENDIX : LIMITATION AND DIFFERENCES WITH THE COM PORTS 55

V COM PORTS FAQ ... 55

MCXDOS/AUTOMCX MODE .. 56

I DEVELOPMENT OF THE APPLICATION TO BE DOWNLOADED .. 56

II PROVIDED UTILITIES .. 56

III BOARD LOADING ... 56

IV LOW LEVEL PROGRAMMING INTERFACE ... 57

V KNOWN DEFECTS ... 58

VI USING MCXDEBUG.EXE ... 59

ANNEXES ... 63

GLOSSARY .. 63

DTUS059, MARCH 14, 2016. REVISION A.5.

1

 PRESENTATION

This driver allows to use all functionalities of the boards in the MCX range (ISA, PCI 3V3, PCI 5V,
cPCI buses).

Four versions of this driver exist :

- The version for Windows Seven 64 bits.

- The version for recent 32 bits Windows systems, from Windows XP to Windows 7, including
Windows 2003.

- A separate version provided for Windows 2000. Its development was stopped at version 3.2.4
and it does not handle multicore processors.

- The older, « non Plug & Play » version for Windows NT 4.0.

It allows, either to download an application on the board, or to use the board through the Windows
WIN32 COMM API. As such it is compatible with most applications written for this operating system
and his successors (for example HyperTerminal).

This manual describes the version 3.4.6 of the Plug & Play driver, and the version 2.2.14 of the
Windows NT driver, when used with the latest versions of the board firmwares. We try to maintain
ascending compatibility between versions. If you are using an earlier version of the board, firmware
or driver, some characteristics may depart from this documentation.

MCX range:

A board consists of a mother board (according to the
bus type) and a daughter/extension board.

Bus Mother
board Daughter board

3.3V & 5V PCI MCXUNI

MCXBP
MCXBPMR

PCB/S
PCB/U

PCB/570
PCB/570-F2

5V PCI MCXPCI

MCXBP
MCXBPMR

PCB/S
PCB/U

PCB/570
PCB/570-F2

cCPI 6U MCXcPCI

MCXBP
MCXBPMR

PCB/S
PCB/U

PCB/570
PCB/570-F2

ISA MCX MCXBP ou MCXBPMR

ISA MCX-Lite

Lite/U
Lite/S

Lite/570
Lite/104
Lite/485

DTUS059, MARCH 14, 2016. REVISION A.5.

2

In all this manual, the generic name MCX stands for any of these cards.

I TECHNICAL SPECIFICATIONS

I.1 General characteristics

Concerning supported baud rates, refer to GetCommProperties description (chapter « COM
PORT COMPATIBILITY MODE ») and to the relevant firmware documentation (Basic
software [DTUS014] or Multiprotocol software [DTUS016]).

Concerning available signals on the connectors, refer to the board hardware manual.

Plug & Play Driver for Windows

Operating systems 64-bits Windows 7
All 32-bits Windows from W2000 to Windows 7

Board type .. All except ISA boards
Number of boards limited by the number of available slots
Basic software .. version 2.7 or later
Multiprotocol Option version 3.1 or later
Supported bus .. PCI 3V, PCI 5V, CompactPCI 6U

Windows NT 4.0 driver

Attention, this driver also runs for the Windows Plug & Play operating systems, however it
is not advised to use it because of the following reasons: In the device manager, it appears
in the hidden and not Plug & Play device drivers and the COM ports are not listed and it
shows a conflict the PCI device detected by Windows.

Operating systems Windows NT 4 since SP3, single processor only.
Lmitations .. Hyperthreading and multiprocessor not supported
Board type .. All, ISA board included
Number of PCI/cPCI boards limited by the number of available slots
Number of ISA boards limited by available ISA bus resources (usually, 1

to 4 boards)
Basic software PCI/cPCI boards version 2.7 or later
Basic software ISA board version 2.0 or later
Basic software (MCC) version 3.8 or later
Multiprotocol Option version 3.1 or later
Supported bus .. PCI 3V, PCI 5V, CompactPCI 6U, ISA

DTUS059, MARCH 14, 2016. REVISION A.5.

3

I.2 Integration in Windows environment
The driver allows:
♦ to access directly to board’s resources (dual ported memory, FIFO, input output registers)

in the case of specific applications embedded in the board.
♦ to use intelligent serial ports (asynchronous transmissions, synchronized asynchronous,

synchronous bit oriented, synchronous character oriented), following interfaces defined in
Win32 (COMM API) for traditional serial ports. Used in asynchronous mode, the driver
tries to imitate as completely as possible the COM1 port driver provided by Microsoft.
However, some differences remain, because so much processing takes place in the board.

The following diagram shows how the driver takes place in the Windows architecture :

Windows

MCX driver(ACKSYS)

Win32 Communications

DeviceIoControl

All, except boards with
Lite/U, Lite/104, Lite/485 &

PCB/U daughter board
COMM compatible Mode

Serial channel

Applications

standard
DeviceIoControl

ACKSYS
specific

DeviceIoControl

Win32
communications

API

Files API
(CreateFile,

ReadFile, etc.)

COM driver
(Microsoft)

All boards

Embedded application
Mode

Serial channel

COMM COMPATIBILITY
MODE

MCXDOS/AUTOMCX
MODE

The diagram shows that the driver uses the same API as the COM ports. If a specific
application needs to use board features without accessing them via the Win32 API, it can
access the driver or even the board directly via the DeviceIoControl commands described in
the section entitled COM PORT COMPATIBILITY MODE and MCXDOS/AUTOMCX.

Typical examples of this kind of use are switching to RS422 or to synchronous mode.

DTUS059, MARCH 14, 2016. REVISION A.5.

4

II DOCUMENTATION
Various technical documentations come with the board, according to the options that you had
chosen and how you will use you board. This manual sometimes refers to them.

Hardware descriptions :

These manuals describe, for each main board and extension board :
♦ physical and electrical characteristics
♦ connectors
♦ switches and jumpers
♦ internal peripherals programming.

EPROM firmware descriptions :

[DTUS014] Basic software user’s manual
[DTUS016] Multiprotocol firmware user’s manual

These manuals aimed to the system programmer, describe parameters and procedures
used to manipulate onboard communication channels.

Drivers and development tools description :

[DTUS015] MCX range device drivers user manual (ISA bus, except Windows NT)
[DTUS004] MCXDOS user manual

These manuals describe how to use the board from an application on the host
computer.

DTUS059, MARCH 14, 2016. REVISION A.5.

5

 INSTALLATION

I BOARD OPERATING MODES

IMPORTANT : before using the board, you must chose
the mode that you will use, according to your needs of your

application.

Boards can be used in four differents modes.

 BASIC SOFTWARE Mode
This mode allows an ascending compatibility with older boards (MCC-8, MCC-16 and
MCC/II). It can drive up to 64 asynchronous serial channels with sensible performances.

 MULTIPROTOCOL Mode (optional)
This mode offer a light compatibility with Basic software. It allows to drive from 2 to 64
asynchronous serial channels; moreover it allows to define synchronous protocols with an
application interface similar to that of COM1/2. It takes in charge, not only boards
supported by Basic software, but also board with Lite/570 or PCB/570 extension.

 MCXDOS/AUTOMCX Mode
This mode allows, once an on-board DOS environment application has been developped,
to download DOS and the board application from Windows. The development of the
application, must be led on a DOS or compatible workstation (Windows 9x, etc.).

 BIOS Mode
In this mode the board shall execute its BIOS extensions, which implies to execute either a
specific application which must be fixed beforehand in its FLASH EPROM, or an
operating system which is setup in its embedded hard disk.

DTUS059, MARCH 14, 2016. REVISION A.5.

6

Configuration.

The choice of operating mode is done on two levels : on-board switches and jumpers set the
board’s behaviour at power on or after a reboot (hence before any driver is started) ; “run
mode” in the driver itself define how the board will interact with the application.

The hardware manual explains the settings of the switches and jumpers of the board.

On the PCI & cPCI boards, the jumpers and switches settings are shown on the transparent
plastic sheet which protects the mezzanine card.

Mode Bus Mezzanine card Switches and jumpers Functionalities

Basic software

ISA
MCXBP

MCXBPMR
Lite/S

ST2/ST3 set to 1-2

COM1/2 Compatibility
MCC Compatibility PCI

MCXBP
MCXBPMR

PCB/S

SW1 set to built-in.
firmware

cCPI
MCXBP

MCXBPMR
PCB/S

JP2 set to built-in
firmware

Multiprotocol
sotfware

ISA
MCXBP

Lite/S
Lite/570

ST2/ST3 pos. 1-2

COM1/2 Compatibility
Synchronous protocols

PCI

MCXBP
MCXBPMR

PCB/S
PCB/570

SW1 set to built-in
firmware

cPCI

MCXBP
MCXBPMR

PCB/S
PCB/570

JP2 set to built-in.
firmware

Mcxdos/automcx

ISA All ST2/ST3 set to. 2-3 No COM1/2 compatibility
Onboard execution of MS-
DOS and specific
application
PC side interface to be
specified by the application

PCI All SW1 set to Mcxdos

cPCI All JP2 set to Mcxdos

BIOS Extension

ISA All ST2/ST3 set to. 2-3
No COM1/2 compatibility
Loads any operating system
on board from its embedded
disk
Board boots at PC-side
application software
command.

PCI All SW1 set to standalone

cPCI All JP2 set to standalone

DTUS059, MARCH 14, 2016. REVISION A.5.

7

II PLUG & PLAY DRIVER INSTALLATION
Note that the dialogs shown are from Windows XP. Equivalent dialogs are used on Vista.

For Windows 2000 make sure you use the dedicated driver (newer versions won’t install).

II.1 Operating mode selection.
Refer to section Board operating modes. WARNING: the Plug&Play driver doesn’t handle
ISA boards ranges.

II.2 Physical board Installation
WARNING: With Windows 2000, you must install the board in the computer after you run
the installation program. With newer Windows versions, you must install the board in the
computer before starting the installation program. Otherwise the program will not be able to
recognize the board and allocate resources automatically.

II.3 Reboot
When restarting, Windows will detect a new device. The device installation wizard pops up:
please ignore it (cancel it or let it alone, it will disappear after installation).
Insert the ACKSYS CD, browse it to find the driver directory. Run the MCXINSTALL.EXE
program.
After installation, the board appears in the Device Manager in the “multiport serial” group.
This icon allows disabling or configuring the board.
If the switches of the board are set to “built-in firmware” (which is the usual case), its ports
will also appear in the “Ports (COM and LPT)” group.

DTUS059, MARCH 14, 2016. REVISION A.5.

8

II.4 Installed card setup
The properties dialog box has two specific tabs: “configuration” and “advanced”.

The configuration tab displays some information and allows basic setup.

Board basic properties

♦ Model

Autodetected board model.

♦ Run mode

Tells the driver the chosen operating mode (see section Board
operating modes). Only operating modes supported by the device
appear.
Usually this combo is preset depending on the board switches
position. You may however force another driver behavior for special
applications (for instance, for firmware upgrade).
If Multiprotocol mode is selected whereas the option is not setup in
the EPROM board, during the boot, the pilot will save an error in the
event viewer.

♦ 14,7456 MHz baud generator

On boards with MCXBP or MCXBPMR or PCB/S extension, each
channel bloc has two oscillators for generation of transmission clocks.
Only one of the two oscillators can be use at the same time. The
oscillator which will be use must be specified at setup, according to
precision wished onclocks calculation. It will be use by all channels on
the same block. This precision can become significant in synchronous
modes, or for high speed transfert (over 19200 bauds).

Boards with MCXBP or MCXBPMR extension have one to eight
blocks (A to H) of 8 channels each one. Boards with PCB/S extension
get only one block (A) of 2 channels. When a box is checked, all

DTUS059, MARCH 14, 2016. REVISION A.5.

9

channels of corresponding block use the oscillator at 14,7456 MHz.
Else, they use the oscillator at 16 MHz

For compatibility reasons the boards with PCB/570 extension handle
these checkboxes though they have only one oscillator. They
recompute the correct baud rates as if they where equipped with both
oscillators.

♦ Initial electrical interface
On some boards, the electrical interface can be preset at startup time.
On these boards, when Multiprotocol option is enable, it is possible to
indicate here which electrical interface the pilot must use on startup on
all channels (before the user has an opportunity to set the electrical
interface).

WARNING: For PCB/570 mezzanines the default electrical interface
is « high impedance » to avoid electrical hazard with connected
devices. You must change the electrical interface before using the
ports, using either this selection box or the provided API (described
later).

WARNING : this box has no effect with the MCX-BPMR extension.

♦ Usage name

In MCXDOS/Automcx mode, this name will be used by application
programs to access the board. In COM ports compatibility mode, the
names are defined by Windows (warning, they are not necessarily in
sequence).

♦ Force consecutive COM names
In COM ports compatibility mode, the port names will be reassigned
with consecutive numbers starting from the one displayed. An error
message shows when the provided name is invalid or when the span of
numbers overlays an existing port (defined for another card).

♦ Suggest
In COM ports compatibility mode, computes the first available COM
port name. If "Force consecutive COM names" is checked, the
corresponding constraint will be enforced while computing the name.

DTUS059, MARCH 14, 2016. REVISION A.5.

10

The connector tab describes the pinout and type of the DB connectors.

DTUS059, MARCH 14, 2016. REVISION A.5.

11

The Avanced tab allows to manage options and compatibility with earlier versions.

These options act on all board’s channel.

Warning : for performances reasons, compatibility modes will not be supported
indefinitely; hence it is strongly advised to upgrade existing software consequently.

Note : From the version 3.1.4 of the driver support for options related to compatibility
with versions of the driver older than 1.8 are dropped; options related to ISA bus cards
are dropped as well.

♦ RTS/DTR stay low after the first CreateFile

Why : on startup, this driver, by compatibility with Microsoft™ serial port piote,
assign RTS_CONTROL_ENABLE and DTR_CONTROL_ENABLE values
to fRtsControl and fDtrControl fields of DCB structure. Consequently, first
opening of a channel after driver startup, will automatically rise RTS and
DTR signals. This behaviour can be annoying in some applications.

Box checked: on startup, pilot assign to champs fRtsControl and fDtrControl fields of
DCB structure values by default RTS_CONTROL_DISABLE and
DTR_CONTROL_DISABLE. RTS and DTR signals will stay inactive until
a voluntary change by the application.

DTUS059, MARCH 14, 2016. REVISION A.5.

12

♦ Use RING signal as DSR

Why : some boards do not have the DSR pin on RS232 connector. Some
applications use this signal.

Box checked: the pilot inverts DSR and RING pins significance. The signal detected on
the RING pin is provided to the application as DSR signal (and reciprocally
for boards which have a DSR pin). Application’s actions supposed to act on
DSR act on RING signal instead (for example fDsrSensitivity modification).

Notice : It is possible to chose this inversion separately for each channel (see section
« Reference manual »).

♦ Request the firmware to filter out receive errors

Why : some applications disable receive data errors signalling by clearing bit IT5
in the MINTR command. However in several occasions the driver
automatically reinstates data error signalling.

Box checked: the driver always clears bit IT5 in the MINTR command, thus effectively
disabling receive data errors signalling in all operations.

♦ Enforce SCC-compatible baudrate divisors computation

Why : Recent versions of the firmware compute baudrate generators parameters by
themselves from the requested baud rate. This computation was previously
done by the driver, using a less sophisticated, but less precise, command.
Hence baud rate computations done on cards equipped with differing
firmware versions can incur lightly different results.

Box checked: the driver always uses the oldest method (VINIT baud rate code 17).

♦ Command timeout

To detect possible breakdowns, the driver checks the duration of certain
command groups sent to the board. An error is signalled to the application,
and a message is put in the System event viewer, if this duration exceed that
the one indicated here. This error case is rare and the default value (30
seconds) should normally not be changed. Allowed values go from 5 to
3600 seconds.

DTUS059, MARCH 14, 2016. REVISION A.5.

13

The Test tab allows to test each channel.

DTUS059, MARCH 14, 2016. REVISION A.5.

14

III WINDOWS NT DRIVER INSTALLATION.

III.1 Check the system configuration

The driver must be installed on at least Windows NT 4 Service Pack 3. Check which service
pack is installed. On previsous service packs, a kernel bug forbids the driver to start properly.

The driver does not work on multiprocessors, dual-core or Hyperthreading computers. Disable
these modes in the computer BIOS if required.

III.2 Operating mode selection.
refer to section Board operating modes.

III.3 Board resources selection.

Needed resources for PCI or cPCI boards are automatically reserved. However you must
check that switch SW1 matches the selected operating mode. For that defer to the board’s user
manual.

III.4 Physical board Installation

You must install the board in the computer before starting the installation program. Otherwise
the program will not be able to recognize the board and allocate resources automatically.

III.5 Reboot
Windows NT 4.0 is not Plug & Play, hence it doesn’t detect the board by itself. However
some BIOSes quickly display the list of installed PCI boards, before starting th operating
system. The board appears as a communication card, its VENDORID is 1528 and its
DEVICEID is 0800.

DTUS059, MARCH 14, 2016. REVISION A.5.

15

III.6 “MCXSETUP” installation program

Driver installation

When you have installed the board in the computer and restarted the operating system, place
the browse the driver distribution medium to find the MCX Windows driver, and run the
following command:

SETUP.BAT

This script starts the installation and configuration program called “MCXSETUP”. The first time you
execute the program, it will detect that the MCX.SYS driver has not yet been installed and ask you to
confirm the installation :

If a previous version of the program is already installed on the disk, MCXSETUP checks that the
version you want to install is more recent and that updating is possible, before proceeding with
installation.

It then installs the “MCX.SYS” device driver and a number of utilities on the hard disk. You will then
be able to run these utilities directly from the command line prompt, or from the menu bar (start 
execute  mcxsetup  OK).

The first window displayed by MCXSETUP is split into two groups. The upper part lets you manage
the driver installation process and the bottom part manages the installation and initialisation of the
boards :

DTUS059, MARCH 14, 2016. REVISION A.5.

16

MCXSETUP main window

♦ Version indicates the version of the MCX.SYS driver file that is installed on your
hard disk.

♦ Uninstall lets you delete MCX.SYS, MCXSETUP and the disk utilities, and deletes
the driver information from the Registry.

DTUS059, MARCH 14, 2016. REVISION A.5.

17

Configuring installed boards

The list in the lower half of the window indicates the boards that have already been detected or
installed and their main characteristics.

A red icon indicates that boards have been detected but that they are not yet configured and cannot be
used. You must configure them before they can be used.

A yellow icon indicates that boards are inhibited, as a result of deliberate action (you have checked
the “inhibit” box in the board properties). You can re-enable this boardin order to use it.

A green icon indicates useable boards have been recognized. Boards with this status can be used
(provided that ISA resources are correct, in the case of ISA boards).

You can access a board by selecting it then using either of the buttons at the bottom of the window or
clicking with the right-hand mouse button. Double-clicking opens the properties window (see below).

The Add… and Remove buttons let you define and delete an ISA board. The Configure… button
opens the selected board’s properties pages. The Test button lets you run some basic checks on the
operation of a selected board, and displays a report after a few seconds. The Quit button checks that,
after a board has been modified, the same resources are not being used by several boards, offers some
installation advice, then ends the program.

The Print all button, accessible if no board has been selected, prints a summary of the configuration
of each board. This button changes to Print when a board has been selected.

The overall configuration procedure is consequently as follows :

♦ for PCI/cPCI board:
1) Find the line that corresponds to the board you want to configure. If several PCI boards have been

installed, they can be identified by their bus and slot numbers.
2) Double-click on the board to open the properties window.
3) Select the model from the list of boards.
4) Select operating mode according to the on-board switch position.
5) Select the other parameters according to your needs, and click on OK to close the properties

window.
6) If operating mode is “Basic software” or “Multiprotocol”, reselect the board in the list and click

on Test.

♦ For a ISA board:
1) Click on Add… button.
2) Select the model from the list of boards.
3) Select operating mode according to jumpers position on the board.
4) In « Resources » tab, indicate resources choose according to jumper’s position on the board.

ISA boards resources allocation

For each ISA board, you must select an interrupt line, an I/O port and a memory address area of
32 kilobytes. These resources must not be used by any other peripherals. Defer to [DTUS013] to
set the board switches and jumpers according to your choices.

5) Select other parameters according to your needs, click on OK to close property window.
6) If operating mode is “Basic software” or “Multiprotocol”, reselect the board in the list and click

on Test.
7) Click on Quit. carefully read information messages which appear, and follow the instructions.

DTUS059, MARCH 14, 2016. REVISION A.5.

18

Notice on Plug-and-Play BIOS:

Recent micro-computers are equipped with “Plug-and-Play” capable BIOS. By default this kind of
BIOS keeps for itself, all resources (Interruptions, memory address, Input/Output address) to allot to
other boards respecting “Plug-and-Play” specifications.On SETUP BIOS screen, control that
necessary resources are allotted to ISA bus. Control also the conflicts with other boards or integrated
peripherals, like some mouse ports. Maybe you will need to defer to additional board’s manual or
BIOS user’s guide.

Installation and configuration of the driver
See section III.6. When the “MCXSETUP” installation program is started after installing a new ISA
board, the board doesn’t appear on boards list, until you have configure it with Add… button.

DTUS059, MARCH 14, 2016. REVISION A.5.

19

Board properties
These parameters modify the operation of the device driver. They are analyzed at driver
startup only. The driver can be restarted either when the system is rebooted, or manually from
the “Devices” icon in the Windows Control Panel, or at the command line prompt by entering
the “net stop mcx” command followed by “net start mcx”, or by MCXSETUP with user
confirmation.

Use the General tab to specify the characteristics of the board you want to install.

General properties of a board

♦ Disable

Checking this box will prevent the driver from accessing the current
board. You can use this to temporarily inhibit an installed board, or
temporarily delete a board from the computer without generating
messages in the Event Viewer.

♦ Model

Selects the board model. Only models that correspond to the bus being
used will be displayed in this list. The model must be specified
accurately, as other options depend on your choice.

♦ Run mode

Tells the driver the chosen operating mode (see section Board
operating modes). Only operating modes supported by the device
appear. If Multiprotocol mode is selected whereas the option is not
setup in the EPROM board, during the boot, the pilot will save an
error in the event viewer.

DTUS059, MARCH 14, 2016. REVISION A.5.

20

♦ 14,7456 MHz baud generator

On boards with MCXBP or MCXBPMR or PCB/S or Lite/S
extension, each channel bloc has two oscillators for generation of
transmission clocks. Only one of the two oscillators can be use at the
same time. The oscillator which will be use must be specified at setup,
according to precision wished onclocks calculation. It will be use by
all channels on the same block. This precision can become significant
in synchronous modes, or for high speed transfert (over 19200 bauds).

Boards with MCXBP or MCXBPMR extension have one to eight
blocks (A to H) of 8 channels each one. Boards with Lite/S or PCB/S
get only one block (A) of 2 channels. When a box is notch, all
channels of corresponding block use the oscillator at 14,7456 MHz.
Else, they use the oscillator at 16 MHz

For compatibility reasons the boards with PCB/570 or Lite/570
extension handle these checkboxes though they have only one
oscillator. They recompute the correct baud rates as if they where
equipped with both oscillators.

♦ Initial electrical interface
On some boards, electrical interface is programmable. On these
boards, when Multiprotocol option is enable, it is possible to indicate
here which electrical interface the pilot must use on startup on all
channels (before the user has an opportunity to set the electrical
interface).

♦ Name prefix

Name’s prefixes which will be use to identify channels of this board.
The string « COM » allows to use standard tools like HyperTerminal.
Using an other name allow to get channel’s name with a fixed format
(see “CreateFile” description).

♦ First port number

This number will be assigned to the name of the board’s first channel.
The other channels will be numbered sequentially starting with this
number.

♦ Example
This displays the name of the board’s first channel as it will be
recognized by the driver. The channel names are formed by
concatenating the fixed character string “\\.\”, the name prefix and the
number in the sequence starting with “first port number”.

DTUS059, MARCH 14, 2016. REVISION A.5.

21

The Resources tab allows addresses and interruptions setup.

This tab is present only for board to ISA bus format. PCI board ressouces are allocated
automatically.

resources tab for ISA board

♦ I/O base address

Input-Output port of the board, used to reserve I/O resources in
Windows, and to use boards which mailbox can be disabled.

♦ Interrupt
interrupt request line chosen for the board. This interrupt must be
affected to an ISA bus (by the PNP BIOS SETUP) and must be free
(not used by an other peripheral). SW2 switches must reflect the
chosen value.

♦ Mailbox memory address

Address chosen for board’s mailbox. A 32 Kb area is used starting
from this address.

♦ IMPORTANT :...
this note, in the bottom of the properties page, recalls you the correct
board jumper position to allow proper communication with the driver.

DTUS059, MARCH 14, 2016. REVISION A.5.

22

Avanced tab allows to manage options and compatibility with earlier versions.

These options act on all board’s channel.

Warning : for performances reasons, compatibility modes will not be supported
indefinitely; hence it is strongly advised to upgrade existing software consequently.

♦ RTS/DTR stay low after the first CreateFile

Why : on startup, this driver, by compatibility with Microsoft™ serial port piote,
assign RTS_CONTROL_ENABLE and DTR_CONTROL_ENABLE values
to fRtsControl and fDtrControl fields of DCB structure. Consequently, first
opening of a channel after driver startup, will automatically rise RTS and
DTR signals. This behaviour can be annoying in some applications.

Box checked: on startup, pilot assign to champs fRtsControl and fDtrControl fields of
DCB structure values by default RTS_CONTROL_DISABLE and
DTR_CONTROL_DISABLE. RTS and DTR signals will stay inactive until
a voluntary change by the application.

DTUS059, MARCH 14, 2016. REVISION A.5.

23

♦ Invert DSR and RING signals

Why : some boards do not have the DSR pin on RS232 connector. Some
applications use this signal.

Box checked: the pilot inverts DSR and RING pins significance. The signal detected on
the RING pin is provided to the application as DSR signal (and reciprocally
for boards which have a DSR pin). Application’s actions supposed to act on
DSR act on RING signal instead (for example fDsrSensitivity modification).

Notice : It is possible to chose this inversion separately for each channel (see section
« Reference manual »).

♦ Command timeout

To detect possible breakdowns, the driver checks the duration of certain
command groups sent to the board. An error is signalled to the application,
and a message is put in the System event viewer, if this duration exceed that
the one indicated here. This error case is rare and the default value (30
seconds) should normally not be changed. Allowed values go from 5 to
3600 seconds.

DTUS059, MARCH 14, 2016. REVISION A.5.

24

IV CHECKING THE INSTALLATION
You can check that the driver has been properly started by consulting the Event Viewer, which
displays two messages about the driver :

a) a message indicating that the driver has been loaded and its version,

b) for each board installed, a message indicates the version of the EPROM, the
number of channels recognised by the board and other items of useful information.

In Windows 2000, Windows 2003 server, Windows Vista or Windows XP

You can check that the driver has been started correctly by consulting the Device Manager,
accessible notably by right-clicking on the Workstation icon.

The options in the “Driver” tab let you stop, restart or inhibit the driver.

In Windows NT 4.0

You can check that the driver has been started by consulting the “Devices” icon in the Control
Panel.

V DEVELOPMENT TOOLS AND EXAMPLES

You can communicate with the driver via your C language source programs, either through
the standard functions of Win32 (e.g. CreateFile, etc.) or with the commands and structures
that are specific to your driver.

The following files will be useful for developing your own applications :
Operating mode Files

Basic software
Multiprotocol

SDK\INCLUDE\MCC_MCX.H,
SDK\INCLUDE\MCXPROTO.H

Mcxdos/Automcx
BIOS Extension

SDK\AUTOMCX\INCLUDE\AUTONT.H,
SDK\AUTOMCX\LIB\AUTOMCX.LIB

If necessary, copy these files on to your hard disk so that they can be accessed by your C
language source programs.

You will find sample programs in the SDK\MULTIPROTOCOL subdirectory of the
distribution medium for “Basic software” and “Multiprotocol” modes. More specifically, the
SDK\MULTIPROTOCOL\LIB directory contains a library of functions that are useful for
getting to know the driver; these functions use the “header” SDK\MULTIPROTOCOL
\INCLUDE\ACK_W32.H and are compiled with the MultiThread option in the SDK\
MULTIPROTOCOL\LIB\MCC_MCX.LIB. library.

DTUS059, MARCH 14, 2016. REVISION A.5.

25

 COM PORT COMPATIBILITY MODE

The following sections describe how the driver operates with the MCX MULTIPROTOCOL
on-board firmware.

I APPLICATION PROGRAMMING INTERFACE (API)
Each serial channel can be programmed independently, whether as regards the electrical
interface, the signal format, the frame format, the protocol or the flow control, etc. Each
channel can be driven by a different application if necessary.

The file name used to access the channels is defined when the board is configured. The “usage
name” is “COM” followed by a number which is defined in the general configuration tab of
the card.

NOTICE: The Windows driver can also handle “usage names” other than “COM”. In this case
the channels will be numbered 01, 02, etc. up to the number of channels installed on the
board.

Examples

Usual name First port number Channel identification
COM 3 \\.\COM3, \\.\COM4, etc.
COM 9 \\.\COM9, \\.\COM10, etc.

Mcx1 (allowed in NT4 only) Ignored \\.\Mcx101, \\.\Mcx102, etc.
McxB (allowed in NT4 only) Ignored \\.\McxB01, etc.

The available APIs are based on the Win32 documentation and fall into three groups : file
services (CreateFile, ReadFile, etc.), communication services (SetCommState, etc.) and the
DeviceIoControl file service which is used by all the driver-specific functions that are not
provided in Win32 (change of protocol or electrical interface, etc.).

In the following pages, the APIs are presented according to whether they are used in :
 asynchronous communications,
 synchronous communications,
 LAPB communications,
 driver-specific services,
 utilities.

DTUS059, MARCH 14, 2016. REVISION A.5.

26

I.1 Programming asynchronous communications

For general information, consult Microsoft’s Win32 documentation. The details below simply
concern :
 cases in which the driver differs from Win32 serial communications specifications,
 cases in which the Win32 documentation is vague,
 cases where the specification is not easily understood.

File services

Service Comments

CreateFile after CreateFile, the transmit and receive buffers are empty.

WriteFile the number of outgoing characters must be less than or equal to
8,192 bytes.
WriteFile ends when the outgoing characters are in the board buffer,
and not when they are actually transmitted.

CloseHandle CloseHandle ends by deleting the transmit buffer and opening
circuits 105 and 108 (RTS and DTR). It is advisable to use
FlushFileBuffers before CloseHandle to ensure that all the data in
the buffer has been transmitted.

Serial communication services

Service Comments

BuildCommDCB unrestricted.

BuildCommDCBAndTimeouts Same comments as for SetCommTimeout.

ClearCommBreak No effect, the BREAK ends automatically after one second.

ClearCommError Only the CE_BREAK, CE_FRAME, CE_OVERRUN,
CE_RXPARITY bits in lpdwErrors are supported. In the COMSTAT
structure, only the cbInQue and cbOutQue fields are supported.

EscapeCommFunction CLRDTR, CLRRTS, SETDTR, SETRTS, SETBREAK are
supported. CLRBREAK : see ClearCommBreak. SETXON,
SETXOFF are not supported.

GetCommMask unrestricted.

GetCommModemStatus see “Appendix : limitations and differences with the COM ports.”,
page 55.

DTUS059, MARCH 14, 2016. REVISION A.5.

27

GetCommProperties dwMaxBaud : BAUD_USER, because any speed supported to within
1% is accepted.

dwProvSubType : RS232, even though these boards also support the
RS422, RS485, current loop types if they have the necessary options.

dwMaxTxQueue, dwMaxRxQueue : total number of bytes effectively
allocated to the channel buffers.

Support for the other fields is standard.

GetCommState Returns the values specified for SetCommState (except fParity).

SetCommState The value RTS_CONTROL_TOGGLE for fRtsControl, and the
fBinary and EofChar fields are not supported. With the
Multiprotocol options, the other fields are supported normally. With
the basic software, the driver also ignores the fields below and uses
the fixed value indicated :

fDsrSensitivity FALSE
fTXContinuesOnXoff TRUE
fErrorChar FALSE
fNull FALSE
XonLim, XoffLim 128, 20
fInX, fOutX, fOutxDsrFlow,
fOutxCtsFlow, fDtrControl,
fRtsControl

limited support : see
“Appendix : flow control.”,
page 53.

GetCommTimeouts unrestricted.

PurgeComm unrestricted.

SetCommBreak The duration of the BREAK is predefined (set to 1 second).

SetCommMask For EV_RING and EV_DSR, see “Appendix : limitations and
differences with the COM”, page 55. EV_RX80FULL does not
produce the expected results and EV_RXCHAR can be 100 ms late
relative to the event.

SetCommTimeouts ReadIntervalTimeout is supported with an error of 25% + 100 ms.

SetupComm Non-standard buffer sizes are ignored. An error may be indicated in
some cases (see the section on the configuration of advanced
properties, page 15). The standard sizes are 8,192 characters per
channel for transmit buffers, and 512 characters per channel for
receive buffers.

TransmitCommChar Not supported.

WaitCommEvent unrestricted.

DTUS059, MARCH 14, 2016. REVISION A.5.

28

I.2 Programming synchronized asynchronous communications.

For general information, consult Microsoft™’s Win32 communications documentation. The
main difference with an asynchronous port, comes from the required clock handling, with can
be set with the following API call :

DeviceIoControl(...,IOCTL_SERIAL_SET_SYNC_STATE,...)

 Sets the protocol (synchronous, asynchronous, synchronized
asynchronous) and the associated options. For a full description, see
page 39.

DTUS059, MARCH 14, 2016. REVISION A.5.

29

I.3 Programming synchronous HDLC/SDLC/BISYNC communications

For general information, consult Microsoft™’s Win32 communications documentation. The
information below simply discusses :

 cases where the Win32 serial communication API is inappropriate,
 cases where the driver differs from the Win32 specifications,
 cases in which the Win32 documentation is vague.

File services

Service Comments

CreateFile after CreateFile, the transmit and receive buffers are empty.
ReadFile ReadFile always returns a maximum of one frame. If the frame

exceeds the requested length, only the first part will be returned and
the rest lost. If the frame is shorter than the requested length it is
returned in full and the requested buffer is not completely filled
(even if another frame is already present in the board buffer : it will
be provided with the next ReadFile).
If the frame contains an error (ABORT, CRC, etc.) ReadFile returns
an error (see also the compatibility options in the section on
installation).

WriteFile each WriteFile creates a frame whose size is limited to the value
specified by the IOCTL_SERIAL_SET_SYNC_STATE command.
WriteFile ends as soon as the outgoing characters are no longer in
the board’s buffer and not when they are effectively transmitted.

CloseHandle CloseHandle ends by deleting the transmit buffer and opening
circuits 105 and 108 (RTS and DTR). It is advisable to use
FlushFileBuffers before CloseHandle to ensure that all the data in
the buffer has been transmitted.

FlushFileBuffers FlushFileBuffers ends with the transmission of the flag of the last
transmitted frame (by the immediately preceding WriteFile). This
guarantees that the board’s buffers are empty.

Serial communication services

Service Comments

BuildCommDCB unrestricted.

BuildCommDCBAndTimeouts See the comments for SetCommTimeout.

ClearCommBreak No effect. The BREAK ends automatically after one second.

ClearCommError Only the CE_BREAK, CE_FRAME, CE_OVERRUN, and
RXPARITY bits in lpdwErrors are supported. In the COMSTAT
structure, only the cbInQue and cbOutQue fields are supported; they
specify a number of frames and not a number of characters.

DTUS059, MARCH 14, 2016. REVISION A.5.

30

EscapeCommFunction CLRDTR, CLRRTS, SETDTR, SETRTS, SETBREAK are
supported. CLRBREAK : see ClearCommBreak(). SETXON and
SETXOFF are not supported.

GetCommMask unrestricted.

GetCommModemStatus see “Appendix : limitations and differences with the COM ports.”,
page 55.

GetCommProperties dwMaxBaud : BAUD_USER, because any speed supported to within
1% is accepted.

 DwProvSubType : RS232, even though these boards also support the
RS422, RS485, current loop types if they have the necessary options.

dwMaxTxQueue, dwMaxRxQueue : total number of frames
effectively allocated to the channel buffers.

Support for the other fields is standard.

GetCommState Returns the values specified for SetCommState (except fParity).

SetCommState The only fields supported are BaudRate, fOutxCtsFlow,
fOutxDsrFlow, fDsrSensitivity, fDtrControl, fRtsControl, ByteSize
and Parity (the last two only in some protocols).

GetCommTimeouts unrestricted.

PurgeComm unrestricted.

SetCommBreak The duration of the BREAK is predefined (set to 1 second).

SetCommMask The EV_RXFLAG event is not supported. For EV_RING and
EV_DSR, see “Appendix : limitations and differences with the COM
ports. ”, page 55.

SetCommTimeouts ReadIntervalTimeout is ignored, except the value MAXDWORD.
Otherwise, it should be initialised to zero to prevent any future
incompatibility.

SetupComm No effect.

TransmitCommChar Not supported.

WaitCommEvent unrestricted. EV_RXCHAR signals the arrival a complete incoming
frame.

Driver-specific services

Service Comments
DeviceIoControl(...,IOCTL_SERIAL_SET_SYNC_STATE,...)

 Sets the protocol (synchronous, asynchronous, synchronized
asynchronous) and the associated options. For a full description, see
page 39.

DTUS059, MARCH 14, 2016. REVISION A.5.

31

I.4 Programming the LAPB (or HDLC-ABM) protocol

In addition to the specific details provided below on the programming of a LAPB connection,
see the previous section, describing synchronous connections in general.

The informations below are necessary to program a LAPB link. Note that the MCXMODE
utility has some limited capabilities for managing the Data Link layer. These can be used, in
particular, in the test phase. See the directory sdk\multiprotocol\LIB\src for programming
samples.

Primitives linked to the use of LAPB

Service Comments

CreateFile Keeps the current protocol, the electrical interface and the
transmission speed. Reactivates the signal management mode.
Purges the receive buffer. CreateFile does not attempt to create the
connection.

CloseHandle Purges the transmit buffer. In LAPB mode, the receiver is not
inhibited. Protocol frames can thus be received and answered.
CloseHandle does not attempt to break the connection.

ReadFile Reads a frame in the board buffer or awaits the arrival of an
information frame. Returns ERROR_HANDLE_EOF if the link is
disconnected or broken during the wait. ReadFile is subject to the
timeouts set by SetCommTimeouts.

WriteFile Places a frame in the transmit buffer and waits if the buffer is full.
Returns ERROR_NOT_READY if the link is disconnected or
broken during the wait. WriteFile is subject to the timeouts set by
SetCommTimeouts.

SetCommMask/GetCommMask/WaitCommEvent
 The EV_MCXLAPB event (the equivalent of EV_EVENT1 in

Win32) can be processed. It is triggered each time an interrupt of the
LAPB state is received (see list of states below).

DeviceIoControl(...,IOCTL_SERIAL_SET_SYNC_STATE,...)
 Sets the protocol and the associated options. See the “Reference

Manual” section.

DeviceIoControl(...,IOCTL_SERIAL_CMD_AUTO,...)
 Sends a command not directly supported by the Win32 interface. . In

particular, the PRCTL command enables the state of the protocol to
be checked with the ABMLINKUP, ABMLINKDN, and
ABMSTATE options. See the sample files and the detailed reference
in section “CMD and CMD_AUTO functions”.

DTUS059, MARCH 14, 2016. REVISION A.5.

32

Driver states
A LAPB channel can be in one of the four states shown in the diagram below :

OFF
128

GO-UP
132

ON
129

GO_DN
134

UP

DOWN

DOWN

Software generated transitions
Board generated transitions

UP FAIL

REMOTE
DISC

UP SUCCESS

DOWN
COMPLETE

LINK
ERROR

New state Triggered by
MCX_LINK_OFF

(down,
disconnected)

• DeviceIoControl(SET_SYNC_STATE) switching to LAPB protocol
• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKDN command

(if the disconnection occurs after the command has finished)
• State interrupt, failure of an attempted connection by PRCTL

ABMLINKUP
• State interrupt, disconnection following a fatal transmission error
• State interrupt, successful disconnection request by PRCTL

ABMLINKDN

MCX_LINK_GO_UP
(connection in

progress)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKUP command
• State interrupt, temporary disruption following a recoverable error

MCX_LINK_ON
(up, connected)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKUP command
(if the connection occurs before the end of the command)

• State interrupt, reception of a request or acknowledgement of a
connection

MCX_LINK_GO_DN
(break in progress)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKDN command

DTUS059, MARCH 14, 2016. REVISION A.5.

33

Effect of state changes

No action is taken when the state change is caused by the application. The table below
summarises the action taken when a state change is interrupted.

New state Action
MCX_LINK_OFF EV_MCXLAPB signalled if specified by an earlier SetCommMask

Any ReadFile will return 0 characters and the ERROR_HANDLE_EOF
error
Any WriteFile will return the ERROR_NOT_READY error.

MCX_LINK_ON EV_MCXLAPB signalled if specified by an earlier SetCommMask

Current status information

There are three ways to obtain information on the state of the connection.

 The first, imprecise, consists of assuming that the PRCTL/ABMLINKUP command always
switches to the MCX_LINK_ON state, that PRCTL/ABMLINKDN always switches to the
MCX_LINK_OFF state, and detecting any disconnections that may occur by analysing the
errors returned by ReadFile and WriteFile. With this method a LAPB channel can be used
as a filter with the system’s standard commands, by establishing and breaking the
connection with the MCXMODE utility.

 The second method consists of using the PRCTL/ABMSTATE to query the channel.

 The third method consists of using WaitCommEvent to instantly detect state changes that
have been caused by the board or by the other end of the connection. As a rapid sequence
of events can result in just one wake-up of WaitCommEvent, it is advisable to
systematically query the channel state after a wake-up, and to consider that some steps in
the sequence of states can be ignored. Note that the events are memorised as soon as they
are selected by SetCommMask, and that, subsequently, one or more events occurring
between two consecutive WaitCommEvent services cannot be lost (but may be combined
into one event).

All three sources of information should be used in a complete process.

I.5 Programming driver-specific services.

The Win32 DeviceIoControl() function has been extended to dialogue directly with the
software installed on the board. This makes it possible to send the commands manually, i.e.
bypassing the driver. For details of these commands, see the “MCX board basic software user
manual” and the “MCX board multiprotocol software user manual”. For a full description, see
page 41, and for an example of how to use the command, see the program sources in
"sdk\multiprotocol\examples".

DTUS059, MARCH 14, 2016. REVISION A.5.

34

I.6 Standard Windows utilities
If you just want to use the standard Windows utilities with your boards, it isadvisable to select
the name “COM” in the installation procedure.

Control panel
Do not use the “ports” icon to create the COM channels for boards because the driver creates
these names automatically. However, you can use this dialogue to change the transmission
parameters (this is useful if a channel is used by the Print Manager). Moreover, you should not
try to use this dialogue to define addresses or interrupts.

HyperTerminal.exe
This Windows NT 4 accessory works normally with this driver.

Mode.exe
This DOS utility only supports the names that begin with COM. It can only be used to modify
asynchronous transmission modes. Our mcxmode.exe utility can be used to work around
these restrictions (see the description of mcxmode.exe).

Remote Access Services
The Windows NT 4.0 dialling interface does not work with this driver.

Serial printers
Because of a defect in the Windows NT 3.51 Print Manager, you should proceed as follows to
create a printer :

- Use the “Ports” icon in the “Control Panel” to modify or at least display the parameters for
the particular port. You must use the <OK> button to validate.

- Use the “Services” icon in the “Control Panel”: stop the service called “Spooler” and
restart it immediately. This will recognise the new ports and its parameters.

- “Printers” icon in the “Control Panel”: in the Print Manager, go to the “Printer” menu and
select <Create a printer...>. Fill in the form; the port should appear in the <Print to:> list.
The installation procedure ends here.

Command.exe (command line prompt in the DOS window)
The names COM1 thru COM9 can be used directly here. Otherwise, use the standard names
\\.\name-assigned-on-installation, for example, to redirect console output :

C:> DIR > COM9 } Either format may
C:> DIR > \\.\COM9 } be used
C:> DIR > \\.\COM10 This is the only format authorised if the installed

name is COM
C:> DIR > \\.\MCX101 This is the only format authorised if the name is

MCX1

DTUS059, MARCH 14, 2016. REVISION A.5.

35

I.7 Acksys extra utilities

MCXSTARTER, available in the start menu, allows you to get an overview of the card
capabilities, to test the appropriate configuration for your system and to generate initialization
code.

The MCXMODE utility can be used to customise the transmission characteristics in
synchronous or asynchronous mode. The MCXMODE command, used without parameters,
displays on-line help.

The MCCIOCTL utility can be used to send the command as an argument directly to the
board. The MCCIOCTL command, entered without parameters, displays on-line help.

The DOSDEV utility manages the links between the names of Windows NT objects and DOS
peripherals. It remains effective until the system is shut down. The syntax is as follows :

dosdev lists the aliases.
dosdev -l COMn \Device\McxCNN creates the COMn alias for the McxCNN device.
dosdev -r COMn deletes the COMn alias.

(where n is the number of the COM port, C is the number of the MCX board and NN is the
number of the channel on the board).

The SETMCX utility can be used to display or modify a board’s parameters from the
command line or in a “batch” process :

SETMCX on-line help
SETMCX n displays all the parameters of board n
SETMCX n param displays the value of the param parameter for board n
SETMCX n param val assigns the value val to the param parameter for board n
SETMCX n Compatibility +code –code...
 adds/removes the code bit to/from the configuration options

DTUS059, MARCH 14, 2016. REVISION A.5.

36

II DETAILED REFERENCE MANUAL
The driver-specific functions can be accessed via DeviceIoControl(). They use definitions
and structures described in “mcc_mcx.h” or in “mcxproto.h” for functions that are specific to
Multiprotocol mode.

These files are provided on the distribution medium in the directory
“SDK\MULTIPROTOCOL\INCLUDE”.

II.1 Excerpt from the mcc_mcx.h file
#include "mcc_mcx.h"

/* serial IOCTL codes for Windows NT */
#if defined(CTL_CODE) && defined(FILE_DEVICE_SERIAL_PORT)

#define MCX_IOCTL(code) \
 CTL_CODE(FILE_DEVICE_SERIAL_PORT,code,\
 METHOD_BUFFERED,FILE_ANY_ACCESS)
#define IOCTL_SERIAL_GET_SYNC_STATE MCX_IOCTL(0x901)
#define IOCTL_SERIAL_SET_SYNC_STATE MCX_IOCTL(0x902)
#define IOCTL_SERIAL_CMD MCX_IOCTL(0x903)
#define IOCTL_SERIAL_CMD_AUTO MCX_IOCTL(0x904)
#define IOCTL_SERIAL_ACCESS_AREA MCX_IOCTL(0x90A)
#define IOCTL_SERIAL_MCX_OPTIONS MCX_IOCTL(0x90B)

#endif /* Windows NT */

/* macros and structs for CMD & CMD_AUTO */
typedef struct mcc_cmd {
 unsigned char opcode;
 unsigned char status;
 unsigned char par[76];
 unsigned char ichan;
 unsigned char icond;
 unsigned char ipar1;
 unsigned char ipar2;
 unsigned char ipar3;
 unsigned char padding1;
 unsigned char *data;
 unsigned char *kdata;
 unsigned short length;
 unsigned short padding2;
}mcc_cmd;

typedef struct _MCC_CMD { /* buffer for ioctls CMD... */
 mcc_cmd Cb;
 unchar Data[1];
} MCC_CMD, *PMCC_CMD;

/* size assigned to contain the struct _MCC_CMD */
#define MCX_DIRECT_IO_BUFFER_SIZE(datalen)
 ((datalen)+sizeof(mcc_cmd))

DTUS059, MARCH 14, 2016. REVISION A.5.

37

typedef struct _MCX_SYNCHRONIZATION_PARAMETERS {
 unchar SynchronousMode; /* protocol */
#define MCX_SYNC_CHAR 0 /* NOT synchronous */
#define MCX_SYNC_BISYNC 2
#define MCX_SYNC_HDLC 4
#define MCX_SYNC_LAPB 5 /* LAPB, HDLC/ABM */
 unchar Duplex; /* flag version+2 bits duplex */
#define MCX_WAY_VERSION 0x80 /* validity bit Version field */
#define MCX_WAY_FULLDUPLEX 0x80 /* full duplex + version */
#define MCX_WAY_HALFDUPLEX 0x81 /* low RTS in each frame */
 /*--------- horloges --------- */
 /* ETTD ETCD NULL-MODEM */
 unchar TransmitClockSource; /* TXCI BRG BRG */
 unchar ReceiveClockSource; /* RXC BRG RXC */
 unchar TxClockPinSource; /* TRXC_HIGH BRG BRG */
#define MCX_CLOCK_RXC 0 /* modes pour TransmitClockSource... */
#define MCX_CLOCK_TXCI 1 /* ... et ReceiveClockSource */
#define MCX_CLOCK_TRXC_HIGH 0 /* TxClockPinSource = always high */
#define MCX_CLOCK_TXCLOCK 1 /* = copy of TransmitClockSource */
#define MCX_CLOCK_BRG 2 /* common modes */
#define MCX_CLOCK_DPLL 3
 unchar MonosyncChar;
 unchar BisyncChar;
 unchar Version; /* valid if Duplex = MCX_WAY... */
 McxUnshort Options; /* default: 0 */
#define MCX_HDLC_USERDTR 1 /* slow HDLC but enable DTR */
#define MCX_HDLC_SPECS 2 /* Use the Protocol .Hdlc struct below */
#define MCX_BISYNC_SPECS 2 /* Use the Protocol . Bisync struct below */
 McxUnshort DataLength; /* max. frame size (LAPB N1) */
#define MCX_FRAMELEN_DEFAULT 0 /* default for above field */
union{
 struct{
 unchar RxFrames; /* default: 14 */
 unchar TxFrames; /* default: 4 */
 McxUnshort Spare1; /* reserved, set to zero */
 McxUnshort Spare2; /* reserved, set to zero */
 McxUnshort Spare3; /* reserved, set to zero */
 McxUnshort Spare4; /* reserved, set to zero */
 McxUnshort Spare5; /* reserved, set to zero */
 }Hdlc, Bisync;
#define MCX_HDLC_DEFAULT 0 /* default for this fields */
 struct{
 unchar Role; /* default: CLIENT */
#define MCX_ROLE_CLIENT 1
#define MCX_ROLE_NETWORK 3
 unchar K; /* default: 7 */
 McxUnshort N2; /* default: 10 essais */
 McxUnshort T1; /* default: 2550 ms */
 McxUnshort T2; /* default: 0 */
 McxUnshort T3; /* default: infini */
 McxUnshort Spare; /* reserved, set to zero */
#define MCX_LAPB_DEFAULT 0 /* default for theses fields */
 }Lapb;
 }Protocol;
} MCX_SYNCHRONIZATION_PARAMETERS, *PMCX_SYNCHRONIZATION_PARAMETERS;

DTUS059, MARCH 14, 2016. REVISION A.5.

38

/* structure pour IOCTL_SERIAL_ACCESS_AREA */
typedef struct _MCX_AREA_DESCRIPTOR {
 long Operation; /* combin.of the following flags */
#define MCX_AREA_GET 0 /* board to application */
#define MCX_AREA_SET 1 /* application to board */
#define MCX_AREA_MEMORY 0 /* acces to mailbox */
 long StartAddress; /* starting address of access */
 /* relative to the base port or */
 /* the start of the mailbox */
 long Length; /* lenght to transfer */
 unchar Buffer[1]; /* values to write if MCX_AREA_SET */
} MCX_AREA_DESCRIPTOR, *PMCX_AREA_DESCRIPTOR;
#define MCX_AREA_DESCRIPTOR_SIZE(dlen) \
 ((dlen)+sizeof(MCX_AREA_DESCRIPTOR)-1)

/* structure for IOCTL_SERIAL_SET_OPTIONS */
typedef struct _MCX_OPTION {
 long Option; /* option code */
#define MCX_OPTION_GET_CHANNEL 0x20002 /* get channel n° */
#define MCX_OPTION_SET_DSR_RI_INVERSION 0x30100 /* exchange DSR/RING */
#define MCX_OPTION_GET_DSR_RI_INVERSION 0x40001 /* get DSR/RING state */
#define MCX_OPTION_GET_COMPATIBILITY 0x50004 /* get current Compatibility */
 union{
 long Long[1];
 short Short[1];
 unchar Char[1];
 }Value; /* parameters used by option */
} MCX_OPTION, *PMCX_OPTION;
#define MCX_OPTION_SIZE(dlen) \
 ((dlen)+sizeof(MCX_OPTION)-sizeof(long))

DTUS059, MARCH 14, 2016. REVISION A.5.

39

II.2 SET/GET SYNC STATE functions

Two functions have been added to customise the format of synchronous frames.

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_SET_SYNC_STATE,
frameFormatBuffer, sizeof(MCX_SYNCHRONIZATION_PARAMETERS),
NULL, 0, lpcbBytesReturned, lpoOverlapped)

DeviceIoControl(hDevice, IOCTL_SERIAL_GET_SYNC_STATE, NULL, 0,
frameFormatBuffer, sizeof(MCX_SYNCHRONIZATION_PARAMETERS),
lpcbBytesReturned, lpoOverlapped)

HANDLE hDevice; /* Handle of the device */
PMCX_SYNCHRONIZATION_PARAMETERS frameFormatBuffer; /* pointer to parameters */
LPDWORD lpcbBytesReturned; /* size of returned params */
LPOVERLAPPED lpoOverlapped; /* overlapped struct. addr */

The SET function can be used to select the frame format : HDLC, etc. The integer pointed to
by lpcbBytesReturned always takes the value 0. WARNING : in driver versions earlier than
1.8.3, this function returns an error if the state of the port set previously by SetCommState
contains options not supported by the board (e.g. ByteSize=7 in HDLC mode). In the later
versions, the port is forced to a “reasonable” state.

The GET function consults the current frame parameters. The integer designated by
lpcbBytesReturned always takes the value
sizeof(MCX_SYNCHRONIZATION_PARAMETERS).

The MCX_SYNCHRONIZATION_PARAMETERS structure is made up of the following
items :

UCHAR SynchronousMode; Protocol: MCX_SYNC_HDLC, MCX_SYNC_BISYNC,
MCX_SYNC_LAPB or MCX_SYNC_CHAR. The
MCX_SYNC_CHAR mode corresponds to asynchronous
transmissions. LAPB is also known as HDLC/ABM.

UCHAR Duplex; Simultaneous transmission : MCX_WAY_FULLDUPLEX
(simultaneous transmission and reception), or
MCX_WAY_HALFDUPLEX (alternating transmission and
reception ; see the details of this mode in the Multiprotocol
Manual [DTUS016]).

 Important : most of the functionalities used in half-duplex mode
can be activated by correctly configuring the full-duplex mode.
Half-duplex mode should only be used when it is really
necessary (it is the only way to prevent transmission when
reception is in progress).

Half-duplex mode forces fOutxCtsFlow = TRUE, fRtsControl =
RTS_CONTROL_TOGGLE, and ignores data received without
DCD. It prohibits transmission when DCD is active and also
when DSR is active with fDsrSensitivity = TRUE.

DTUS059, MARCH 14, 2016. REVISION A.5.

40

UCHAR TransmitClockSource; Transmit clock source (see below).

UCHAR ReceiveClockSource; Receive clock source (see below).

Constant clock source
MCX_CLOCK_RXC pin 17 (RxClock)
MCX_CLOCK_TXCI pin 15 (TxClock)
MCX_CLOCK_BRG internal bauds generator
MCX_CLOCK_DPLL decoded in data (only with FM or

Manchester coding)

UCHAR TxClockPinSource; Clock source available on pin 24 (pin 15 on MCXBP rev
A). Warning : this pin is disabled if MCX_CLOCK_TXCI
is used (by TransmitClockSource or ReceiveClockSource).

Constant clock source
MCX_CLOCK_TRXC_HIGH none (pin set to MARK state)
MCX_CLOCK_TXCLOCK like TransmitClockSource
MCX_CLOCK_BRG internal bauds generator
MCX_CLOCK_DPLL decoded in data (only with FM

or Manchester coding)

UCHAR MonosyncChar; First sync character in BISYNC mode. The only sync
character in MONOSYNC mode. Ignored in the other
modes.

UCHAR BisyncChar; Second sync character in BISYNC mode. Ignored in the
other modes.

UCHAR Version; Version of the structure. Should always = 1.

USHORT Options; Protocol options. Each option is a bit that must be added if
the option is to be used.
• MCX_HDLC_USERDTR enables the use of the CCITT

108 (DTR) circuit in HDLC, LAPB, and X25 modes on
channels 1, 2, and 3 of the boards with MCXBP(MR) or
Lite/S or PCB/S extension. However, this will limit the
performance levels1.

• MCX_HDLC_SPECS forces the use of the elements of
the Protocol.Hdlc structure, which are ignored otherwise.

• MCX_BISYNC_SPECS forces the use of the elements of
the Protocol.Bisync structure, which are ignored
otherwise.

USHORT DataLength; Maximum frame length. If the value is set to 0, the default
length will be used (see the PROTO command in the
Multiprotocol documentation [DTUS016]).

union {...} Protocol; The sub-structures specified here can be used to specify the
parameters for a specific protocol.

1 See the PROTO documentation in the “Multiprotocol Software User Manual” [DT003]

DTUS059, MARCH 14, 2016. REVISION A.5.

41

The following should be specified for LAPB only :

UCHAR Protocol.Lapb.Role; MCX_ROLE_CLIENT if the application acts as a client
(ETTD), MCX_ROLE_NETWORK if the application
serves the network.

UCHAR Protocol.Lapb.K,N2,T1,T2,T3
 Standardised LAPB parameters. MCX_LAPB_DEFAULT

will invoke the default value 2.

USHORT Protocol.Lapb.Spare; Zone reserved for LAPB.

The following elements should be specified for HDLC only :

UCHAR Protocol.Hdlc.RxFrames;
 Number of frames acceptable in reception mode without

risk of loss if the PC does not read them immediately from
the board (number of frame receive buffers on the board).
The value 0 resolves to the default value 2.

UCHAR Protocol.Hdlc.TxFrames;
 Number of frames that the board can memorise as awaiting

transmission (number of frame transmit buffers on the
board). The WriteFile() function will never halt processing
if a frame buffer is available on the board at the time of the
call. The value 0 resolves to the default value 2.

USHORT Protocol.Hdlc.Spare1; à Spare5;
 Zones reserved for HDLC.

The following elements should be specified for BISYNC only :

UCHAR Protocol.Bisync.RxFrames;
 Number of frames acceptable in reception mode without

risk of loss if the PC does not read them immediately from
the board (number of frame receive buffers on the board).
The value 0 resolves to the default value 2.

UCHAR Protocol.Bisync.TxFrames;
 Number of frames that the board can memorise as awaiting

transmission (number of frame transmit buffers on the
board). The WriteFile() function will never halt processing
if a frame buffer is available on the board at the time of the
call. The value 0 resolves to the default value 2.

USHORT Protocol.Bisync.Spare1 à Spare5 ;
 Zones reserved for BISYNC.

2 See the PROTO command documentation in the « Multiprotocol firmware user’s manual » [DTUS016]

DTUS059, MARCH 14, 2016. REVISION A.5.

42

II.3 Example for SET_SYNC_STATE

#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

Proto(HANDLE chan, int fonc)
{
 MCX_SYNCHRONIZATION_PARAMETERS sp;
 DWORD count;
 DWORD speed;

 //
 // switch to HDLC mode with the appropriate clocks for a
 // NULL-MODEM cable (internal clock for Tx, external for Rx)

// with 1024 Data bytes max. per frame
//

 sp.SynchronousMode = MCX_SYNC_HDLC;
 sp.Version = 1;
 sp.Duplex = MCX_WAY_FULLDUPLEX;
 sp.Options = 0;
 sp.DataLength = 0; /* default = 1,024 bytes */
 sp.TransmitClockSource = MCX_CLOCK_BRG;
 sp.ReceiveClockSource = MCX_CLOCK_RXC;
 sp.TxClockPinSource = MCX_CLOCK_BRG;

 if(!DeviceIoControl(
 chan,IOCTL_SERIAL_SET_SYNC_STATE,
 &sp,sizeof(sp),NULL,0,&count,NULL)) {
 printf("SET_SYNC_STATE Ioctl: error %d\n",

GetLastError());
 exit(1);
 }
}

DTUS059, MARCH 14, 2016. REVISION A.5.

43

II.4 CMD and CMD_AUTO functions
Two communication functions have been added to enable manual dialogue with the on-board
interpreter. For a description of the commands, their parameters and data zone, consult the
appropriate manual for the “firmware” you are using (basic software [DTUS014] or
multiprotocol software [DTUS016]).

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_CMD,
 paramsFromAppToBoard, paramsToSize,
 paramsFromBoardToApp, paramsFromSize, lpcbBytesReturned,
 lpoOverlapped
)

DeviceIoControl(hDevice, IOCTL_SERIAL_CMD_AUTO,
 paramsFromAppToBoard, paramsAppSize,
 paramsFromBoardToApp, paramsBoardSize, lpcbBytesReturned,
 lpoOverlapped
)

HANDLE hDevice; /* Handle of the device */
PMCC_CMD paramsFromAppToBoard; /* pointer to sent parameters */
DWORD paramsAppSize, /* size of sent params */
PMCC_CMD paramsFromBoardToApp; /* pointer to returned parameters */
DWORD paramsBoardSize, /* size of space for returned params */
LPDWORD lpcbBytesReturned; /* size of returned params */
LPOVERLAPPED lpoOverlapped; /* overlapped struct. addr */

The IOCTL_SERIAL_CMD function can make the board execute any command.

The IOCTL_SERIAL_CMD_AUTO function can make the board execute any command
with parameter 1 being initialised by the driver, and the channel number corresponding to
hDevice.

The MCC_CMD type is a structure that matches that of the board’s mailbox. This enables the
application to transmit and receive parameters and data.

When a command is sent to the board by these functions, the driver executes one of the
following actions :

1) If it exists, the paramsFromAppToBoard→Data table is copied into the DATA zone of the

board’s mailbox,
2) the paramsFromAppToBoard→Cb.par[]table is copied into the mailbox’s PARAMETERS

zone,
3) paramsFromAppToBoard→Cb.opcode is copied into the mailbox’s OPCODE zone,
4) the binary value 0000 0001 is written into the mailbox’s VALIDATION byte. This causes

the board to execute the command. The board then issues an end of command interrupt that
enables the driver to continue processing,

5) the mailbox’s STATUS zone is copied into paramsFromBoardToApp→Cb.status

DTUS059, MARCH 14, 2016. REVISION A.5.

44

6) the PARAMETERS zone in the mailbox is copied into ParamsFromBoardToApp→
Cb.par[],

7) if the paramsFromAppToBoard→Data existe, table exists, the mailbox’s DATA zone is
copied into paramsFromBoardToApp→Data,

8) the application is woken up or alerted depending on the lpoOverlapped value.

The length of the MCC_CMD Data field is variable. For example, the structure can be
created by dynamically allocating (sizeof(MCC_CMD)+data_length) bytes; the
MCX_DIRECT_IO_BUFFER_SIZE(datalen) macro can be used to calculate the required
number of bytes. The driver recognises the existence of the Data field if the Cb.length field is
non-null. Otherwise, it assumes that the command that is to be executed does not use the
mailbox’s DATA zone.

paramsAppSize must be equal to the sum of sizeof(MCC_CMD) and the length of the data
zone.

If the command has been executed correctly, the integer designated by lpcbBytesReturned will
still equal paramsBoardSize.

The _MCC_CMD structure contains the following elements :

unsigned char Cb.opcode; Code of the command that is to be executed. mcc_mcx.h
defines the symbolic names for these codes.

unsigned char Cb.status; The returned result supplied by the board in the STATUS
zone.

unsigned char Cb.par[76]; The command parameters; returned parameters for some
commands.

unsigned char Cb.ichan; }
unsigned char Cb.icond; } Returns a copy of the mailbox INTERRUPT
unsigned char Cb.ipar1; } zone. Theoretically, these five elements are not
unsigned char Cb.ipar2; } used3.
unsigned char Cb.ipar3; }
unsigned char *Cb.data; Unused in Windows NT4.
unsigned char *Cb.kdata; Field used temporarily by the driver during command

execution.
unsigned short Cb.length; Working length of the data zone in bytes.
unsigned char Data[0...]; Data zone that will be exchanged with the board’s mailbox;

because this zone must immediately follow the Cb structure,
the MCC_CMD variable length structure is used5.

3 except for the LDIAL command used by the MCC board.
4 In a UNIX environment, pointer to the data zone that will be exchanged with the board’s mailbox.
5 This zone is not used in the UNIX driver.

DTUS059, MARCH 14, 2016. REVISION A.5.

45

Notes

 To avoid errors, it is advisable to include the same pointer in paramsFromAppToBoard
and paramsFromBoardToApp, and the same length in paramsAppSize and
paramsBoardSize.

 To ensure compatibility with the UNIX driver, we suggest initialising
 paramsFromAppToBoard→Cb.data = paramsFromAppToBoard→Data.

 To avoid confusion between Cb.par[]which starts at Cb.par[0], and the command
description which starts at PARAMETER 1, it is advisable to reference PARAMETER N
by :

 paramsFromAppToBoard→Cb.par[N-1] to quote the PARAMETRE N.

Interactions between these functions and normal driver operation

The description below is up-to-date for version 1.8.3 of the driver. These interactions may
change in future versions.

ALLOC :

The driver detects this command and, if necessary, adjusts the buffer size information.
It can consequently replace SetupComm() which is ignored.

CHDEF :

A CHDEF is executed by the driver during SetCommState, if an attempt is made to
change DCB.EvtChar. In this case, only EvtChar is included in the CHDEF command.

MINTR :

- This command is executed during CreateFile, CloseHandle, DeviceIoControl
(IOCTL_SERIAL_SET_SYNC_STATE), SetCommMask (if the EV_RXFLAG is
activated or deactivated) and in some cases during ReadFile.
- The activated sources are: IT1, IT2 (bit Mde=1), IT3 (if EV_RXFLAG is active),
IT5, IT6, IT7.

PROTO :

- The driver detects this command and adjusts its own protocol information. It can
consequently replace DeviceIoControl SET_SYNC_STATE to enable the use of non-
standardised parameters ; this does not disrupt driver operation.
- The VINIT, RXENB, MINTR and, in some cases VMODE, EscapeCommFunction()
commands must then be executed to position RTS and DTR, and PurgeComm() to
purge the buffers.

RSMDE :

- No undesirable interaction.

DTUS059, MARCH 14, 2016. REVISION A.5.

46

II.5 Examples for CMD and CMD_AUTO

These examples can be adapted to send any command appearing in the firmwares manuals.

SetElectricalInterface() switches an MCX serial channel to RS232, RS422, EIA530… by
sending the RSMDE command to the board’s firmware.

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>
...
//
// For other available electrical interface codes, see the
// Multiprotocol firmware documentation (DTUS016), in the
// RSMDE command section.
//
#define RSMDE_RS232 0
#define RSMDE_RS422 1
#define RSMDE_EIA530 6

BOOLEAN SetElectricalInterface(HANDLE hfd)
{
 MCC_CMD cmd;
 long return_bytes;
 int lasterror;

 //

// init opcode and parameters, see RSMDE command in
 // basic software or multiprotocol documentation
 //
 cmd.Cb.opcode = RSMDE;
 cmd.Cb.par[1-1] = 0; // Will be replaced by channel n°
 cmd.Cb.par[2-1] = RSMDE_RS422; // Set RS422 interface
 // Change RSMDE_RS422 to the value adequate for
 // your application
 cmd.Cb.length = 0; // No data zone required
 // Adapt the RELRP example when a data zone must be used

 if (!DeviceIoControl(hfd, IOCTL_SERIAL_CMD_AUTO,
 &cmd,sizeof(cmd),
 &cmd,sizeof(cmd),
 &return_bytes,NULL)) {
 printf("SetElectricalInterface: error, code %d\n",
 GetLastError());
 return FALSE;
 }
 if (command->Cb.status != 0) {
 printf("RSMDE: failed, status %d\n",
 command->Cb.status);
 return FALSE;
 }
 return TRUE;
}

DTUS059, MARCH 14, 2016. REVISION A.5.

47

Relrp() runs the RELRP command on the board. This command is not linked to a particular
channel. The command sends information on the board type and capabilities.

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

BOOL Relrp()
{
 PMCC_CMD command; /* space for RELRP and its parameters */
 DWORD retLen; /* length returned by DeviceIoControl */
 int cmdLen; /* length of command structure */
 int dataLen; /* Length of the RELRP Data area */
 HANDLE hDevice;

 // one of the channels must be used (any one will do)
 hDevice = CreateFile("\\\\.\\COM3",
 GENERIC_WRITE|GENERIC_READ, 0, NULL,
 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 //
 // init opcode and data, see RELRP command in
 // basic software or multiprotocol documentation
 //
 dataLen = 18;
 cmdLen = MCX_DIRECT_IO_BUFFER_SIZE(dataLen);
 command = malloc(cmdLen);
 command->Cb.opcode = RELRP;
 command->Cb.length = dataLen;
 // the following assignment distinguishes the MCC boards
 // which do not modify data item 18.
 command->Data[18-1] = MCX_TYPE_MCC;

 if (!DeviceIoControl(hDevice,IOCTL_SERIAL_CMD,
 command, cmdLen, command, cmdLen, &retLen, NULL)) {
 printf("RELRP: Win32 error %d\n", GetLastError());
 return FALSE;
 }
 if (command->Cb.status != 0) {
 printf("RELRP: failed, status %d\n", command->Cb.status);
 return FALSE;
 }
 printf("RELRP: carte type %d à %d MHz, %d ports\n",
 command->Data[18-1], command->Data[11-1],
 command->Data[9-1]);

 free(command);
 CloseHandle(hDevice);
 return TRUE;
}

DTUS059, MARCH 14, 2016. REVISION A.5.

48

II.6 ACCESS_AREA function
This function allow to read and write directly in the board mailbox.

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_ACCESS_AREA,
pAccessDescriptor, accessDescriptorLength,
pGetBuffer, getBufferLength, returnedLength,
lpoOverlapped)

HANDLE hDevice; /* Handle of the device */
PMCX_AREA_DESCRIPTOR pAccessDescriptor; /* pointer to operation and its

parameters */
DWORD accessDescriptorLength; /* size of operation and its parameters */
PVOID pGetBuffer; /* pointer to returned data, NULL if unused */
DWORD getBufferLength; /* size of buffer for return data, 0 if unused */
LPDWORD returnedLength; /* pointer to actual size of returned data */
LPOVERLAPPED lpoOverlapped; /* overlapped structure address */
This function allow to read or modify board mailbox content. The structure pointed to by
pAccessDescriptor, of length accessDescriptorLength, is transmitted to the driver. The driver
processes the operation. It can return data in the structure pointed to by pGetBuffer of length
getBufferLength, and it indicates the length of returned data in the word pointed to by
returnedLength. The informations returned are truncated to the shortest size indicated by
getBufferLength and *returnedLength.

The _MCX_AREA_DESCRIPTOR structure is composed of the following elements :

long Operation; Operation code (see below)
long StartAddress; Address, relative to the beginning of the mailbox board

selected by hDevice, where will take place writing or
reading.

long Length; Number of bytes to transfer
unsigned char Buffer[...]; Data to write in the mailbox (use by MCX_AREA_SET

operation).
Buffer[] contains only one byte. To write several characters, the following macro allows to
allocate a structure of the required size:

MCX_AREA_DESCRIPTOR_SIZE(datalen).

Recognized operations are ::

MCX_AREA_GET+MCX_AREA_MEMORY Mailbox contents starting at address
StartAddress for a length of Length are copied to the place
pointed to by pGetBuffer with a maximum length of
getBufferLength. *returnedLength is loaded with the length
actually copied.

MCX_AREA_SET+MCX_AREA_MEMORY Buffer contents are copied to address
StartAddressin the mailbox for a length of Length bytes.

DTUS059, MARCH 14, 2016. REVISION A.5.

49

II.7 MCX_OPTIONS function

A function was added to access miscellaneous parameters or to activate specific behaviours of the
boards.

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_MCX_OPTIONS,
pOptionDescriptor, optionDescriptorLength, pResultsBuffer,
resultsBufferLength, returnedResultsLength, lpoOverlapped)

HANDLE hDevice; /* Handle of the device */
PMCX_OPTION pOptionDescriptor; /* pointer to option code and parameters */
DWORD optionDescriptorLength; /* size of option code and parameters */
PMCX_OPTION pResultsBuffer; /* pointer to returned data, NULL if unused */
DWORD resultsBufferLength; /* size of buffer for return data, 0 if unused */
LPDWORD returnedResultsLength; /* pointer to actual size of returned data */
LPOVERLAPPED lpoOverlapped; /* overlapped structure address */

This function allows modification of some specific parameters of the driver and board. The structure
pointed by pOptionDescriptor, of length optionDescriptorLength, is transmitted to the driver. The
driver processes the option. It can return data in the structure pointed by pResultsBuffer of lentgh
resultsBufferLength, and it indicates returned information length in the word pointed to by
returnedResultsLength. The returned information may have been truncated to the size indicated by
resultsBufferLength.

The _MCX_OPTIONS structure is composed of the following elements.

long Option; Option code ; only useful in the transmitted structure.
union{long Long; ...} Value; Parameters/data returned by option. Their type (long, short or

unsigned char) depends on the requested option. Depending on
the expected type, the various union elements (Long, Short,
Char) will be used.

If an option requires several parameters, the macro MCX_OPTION_SIZE(paramslen) allows to
compute the required size in order to dynamically allocate the structure.

Options recognized in this version of the driver are :

MCX_OPTION_GET_CHANNEL
 Ask for the number of the channel associated to hDevice.

Returned structure contains a short (pOptionDescriptor→
Value.Short[0]) holding the channel number, relative to its
parent board. For example, if two MCX boards with sixteen
channels are setup with names COM3…COM34, the returned
number for the COM3 and COM19 handles will be 1, the
returned number by COM 18 and COM34 will be 16.

 Additional information will be returned in future versions, hence
*returnedResultsLength might be greater than
resultsBufferLength.

MCX_OPTION_GET_RSMODE
 The pOptionDescriptor→Value.Char[0] element of the returned

structure contains the code of the electrical interface currently set
for this port. The possible values are indicated in the relevant
firmware manual.

DTUS059, MARCH 14, 2016. REVISION A.5.

50

MCX_OPTION_SET_DSR_RI_INVERSION

 pOptionDescriptor→Value.Char[0] element of provided
structure must contain TRUE or FALSE. If it contains
TRUE, the processing of the DSR and RING signals is
inverted on the channel.

MCX_OPTION_GET_DSR_RI_INVERSION

 pOptionDescriptor→Value.Char[0] element of the returned
structure contains TRUE if DSR and RING signals
processing is inverted on the channel, else FALSE.

MCX_OPTION_GET_COMPATIBILITY

pOptionDescriptor→Value.Long[0] element of the returned
structure contains the Compatibility variable value as set for
the channel. This variable reflects driver configuration
options, may be modified by MCX_OPTIONS function.
returned bits values should be analyzed with the following
definitions available in "mcc_mcx.h" :

MCX_COMPAT_LOWSIGS – RTS/DTR down at 1st CreateFile
MCX_COMPAT_DSR_RI – DSR & RING inversion
MCX_COMPAT_DTRFLOW – compat.1.6.2(EPROM 1.8/3.8)
MCX_COMPAT_V164 – V1.6.4 compatibility
MCX_COMPAT_V171 – V1.7.1 compatibility
MCX_COMPAT_V181 – V1.8.1 compatibility
MCX_COMPAT_QSIZE – V1.8.2 compatibility

 Consult the installation section for more details.

MCX_OPTION_GET_PHYSICAL_PARMS
 Request physical board parameters. Returned structure contains

MCX_OPTION_PHYSICAL_PARMS, which is a substructure
aligned with pOptionDescriptor→Value.Long[0]. Defined
elements depend one the board and bus type. For PCI/cPCI
boards, the following physicals resources elements are returned :

 StructVersion 0
 BusType; 5 (DDK’s “PCIBus” macro)
 BusNumber; PCI bus number where board is.
 SlotNumber; Board place on bus
 MemoryAddressLow; Mailbox address
 MemoryAddressHigh; High bit address (64 bits bus)
 MemorySize; 32768
 IoAddressLow; Board I/O port address
 IoAddressHigh; High bit address (64 bits bus)
 IoSize; 8
 InterruptVector; Interruption
 DmaChannel; -1
 SpecificInformation; 0

 A programming example is on the distribution medium in the file
 “\sdk\multiprotocol\examples\common\special\getphys.c”

DTUS059, MARCH 14, 2016. REVISION A.5.

51

II.8 Examples for ACCESS_AREA and MCX_OPTIONS

#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

DemoOptions(HANDLE hDevice)
{

DWORD retLen; /* returned length in calls */
int canal; /* physical channel, GET_CHANNEL result */

{ /* get channel number */

PMCX_OPTION pOptionDesc; /* example with malloc */
MCX_OPTION optionResult; /* example without malloc */

pOptionDesc = malloc(MCX_OPTION_SIZE(0));
pOptionDesc->Option = MCX_OPTION_GET_CHANNEL;
DeviceIoControl(hDevice,IOCTL_SERIAL_MCX_OPTIONS,
 pOptionDesc, MCX_OPTION_SIZE(0),
 &optionResult, sizeof(optionResult),
 &retLen, NULL);
free(pOptionDesc);
canal = optionResult.Value.Short[0];

}

/* the following line loads the board buffer */
WriteFile(hDevice, “ABC”, 3, &retLen, NULL);
/* there is no Overlap struct, so BTRAN is */
/* over when WriteFile finishes */

{ /* obtain the emission counter with ACCESS_AREA */
 /* notice : equivalent result is more easily obtained */
 /* with ClearCommError(Win32) function */

MCX_AREA_DESCRIPTOR areaDesc;
USHORT txCount;

areaDesc.Operation = MCX_AREA_GET+MCX_AREA_MEMORY;
areaDesc.StartAddress = 0x7f80 + 2*(canal-1);
areaDesc.Length = sizeof(txCount);
DeviceIoControl(hDevice,IOCTL_SERIAL_ACCESS_AREA,
 &areaDesc, sizeof(areaDesc),
 &txCount, sizeof(txCount),
 &retLen, NULL);
printf("Place libre dans le tampon d’émission : ");
printf("%u\n",txCount);

}
}

DTUS059, MARCH 14, 2016. REVISION A.5.

52

#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

DemoPhysical(HANDLE hDevice)
{

DWORD retLen; /* returned length in calls */
PMCX_OPTION pOptionDesc;
PMCX_OPTION_PHYSICAL_PARMS pOptionResult;
int optionLen;

optionLen = MCX_OPTION_SIZE(sizeof(MCX_OPTION_PHYSICAL_PARMS));
pOptionDesc = malloc(optionLen);

pOptionDesc->Option = MCX_OPTION_GET_PHYSICAL_PARMS;
DeviceIoControl(hDevice,IOCTL_SERIAL_MCX_OPTIONS,
 pOptionDesc, optionLen, // provided parameters
 pOptionDesc, optionLen, // returned informations
 &retLen, NULL);

pOptionResult = (PMCX_OPTION_PHYSICAL_PARMS)
 pOptionDesc->Value.Long ;
printf("Adresse physique de la carte : %x%x / %x%x / %d\n",
 pOptionResult->MemoryAddressHigh,
 pOptionResult->MemoryAddressLow,
 pOptionResult->IoAddressHigh,
 pOptionResult->IoAddressLow,
 pOptionResult->InterruptVector);

free(pOptionDesc);

}

DTUS059, MARCH 14, 2016. REVISION A.5.

53

II.9 Appendix : flow control.

The boards in the MCX range, equipped with the MCX-MULTIPROTOCOL option, and used
with a version of the driver later than 1.7.0, support all the flow controls offered by the
Win32 API, and even some additional controls (accessible by executing the VMODE
command directly).

Les cartes équipées du logiciel de base, ou de l’option Multiprotocole utilisée avec un pilote
antérieur à la version 1.7.1, ne peuvent pas supporter tous les contrôles de flux proposés dans
l’API de Win32. The restrictions affecting the operation of flow control are described below :

Methods supported
The following flow control options are supported :

- none
- XON/XOFF configurable
- DTR/CTS
- RTS/CTS since «firmwares» rév. 2.0 (MCX) and 3.8 (MCC)

In all cases, both transmission directions are controlled. The two directions cannot be
configured independently.

Configuring the control method
The SetCommState service and the interpretation of the fields in the DCB structure (see page
27) have been adapted to address these constraints. The use of the Multiprotocol option and
the board configuration options (i.e. the Register Synchronous and Compatibility values) also
affect operation. Flow control is consequently supported as follows :
a) if the Synchronous indicator is set to 1 (with an old driver and/or old firmware), flow

control will not be supported because the board does not support the VMODE command,
b) otherwise, if fInX or fOutX is TRUE, flow control is XON/XOFF with the XonChar and

XoffChar characters,
c) otherwise, if fRtsControl is set to RTS_CONTROL_HANDSHAKE, flow control is

implemented by hardware with the RTS and CTS signals,
d) otherwise, if fOutxCtsFlow is TRUE or fOutxDsrFlow is TRUE or if fDtrControl is set to

DTR_CONTROL_HANDSHAKE, flow control is implemented by hardware with the
DTR and CTS signals,

e) otherwise there is no flow control.

Compatibility with earlier versions
Earlier versions of the boards and software did not support flow control by RTS/CTS. In any
of the following cases :

- the driver version is 1.6.2 or earlier,
- the “EPROM 1.8/3.8” configuration option has been validated,
- the version of the board firmware is earlier than 1.8,

Rules c) and d) must be combined into a single rule :
c+d) otherwise, if fOutxCtsFlow is TRUE or fOutxDsrFlow is TRUE or fDtrControl is set to

DTR_CONTROL_HANDSHAKE or fRtsControl is set to RTS_CONTROL_
HANDSHAKE, flow control is implemented by hardware with the DTR and CTS signals,

Note
To ensure compatibility with future versions, use the combination that matches the cable you
are actually using (e.g. if the incoming control signal is on CTS, use fOutxDsrFlow to manage
it instead of fOutxCtsFlow).

DTUS059, MARCH 14, 2016. REVISION A.5.

54

III APPENDIX : SPECIFIC ERROR CODES.
The error codes returned by the Win32 API are as described in the API documentation. Here,
however, is a selected list of error codes that are not easily understood :

2 ERROR_FILE_NOT_FOUND
 The driver has not started. Consult the Event Viewer and the Device Manager.

5 ERROR_ACCESS_DENIED
 The channel has already been opened by another process.

21 ERROR_NOT_READY
 In WriteFile, transmission is impossible because the Data Link layer (LAPB) is

not connected.

23 ERROR_CRC
 In a ReadFile, this error indicates that the received frame contains an error (all

types of error generate this error code, and not just CRC errors).

38 ERROR_HANDLE_EOF
 In LAPB protocol, indicates that the Data Link layer is disconnected before or

after the execution of a ReadFile, and that there is no outstanding frame in the
receive buffer.

57 ERROR_ADAP_HDW_ERR
 Unexpected error on the MINTR command. Probably a board malfunction.

87 ERROR_INVALID_PARAMETER
1) In DeviceIoControl, WaitCommEvent, ReadFile and WriteFile, this error

can, in particular, indicate that the lpoOverlapped parameter does not match the
options requested in the CreateFile; either that or the hEvent element in the
OVERLAP structure is incorrect.

2) In DeviceIoControl, either one of the parameters or one of the elements in the
structure supplied in the third parameter position is incorrect.

122 ERROR_INSUFFICIENT_BUFFER
1) The length specified in DeviceIoControl is wrong.
2) In DeviceIoControl, the value of the Cb.length element in the

IOCTL_SERIAL_CMD or CMD_AUTO function is too small.

995 ERROR_OPERATION_ABORTED
1) The board did not answer a command within the timeout. The most likely

causes are : the interrupt supplying the active IRQ is not pushed in or is the
wrong one ; the board is very busy, in which case the CommandTimeout
parameter value should be increased ; or there is a constant influx of parasites
on the channel.

2) In LAPB protocol, a WriteFile was attempted when the link was down.

997 ERROR_IO_PENDING
 The operation has not been completed. See GetOverlappedResult().

1450 ERROR_NO_SYSTEM_RESOURCES
 A DeviceIoControl sent to the driver has not been recognised. The likely causes

are : the application sends a DeviceIoControl with a bad code ; the version of
Windows NT is not supported.

1784 ERROR_INVALID_USER_BUFFER
 In WriteFile, the ‘count’ parameter is too high for the size of the buffer or the

frames, or exceeds the 31 Kbyte limit.

DTUS059, MARCH 14, 2016. REVISION A.5.

55

IV APPENDIX : LIMITATION AND DIFFERENCES WITH THE COM PORTS

Several restrictions are due to the interactions between the different capabilities of the Win32
API, the driver, the firmware, and the board itself.

The board’s basic software limits the available flow control types (see Appendix entitled
“Flow control” above). The Multiprotocol option, though less effective in synchronous mode,
is not affected by this restriction.

134.5 bauds transmission speed : the DCB does not support this speed because BaudRate is a
LONG variable. However, the driver does support this speed via the value (ULONG)(-134).

The DSR signal (circuit 107) does not exist on all boards (see the board connector
documentation). A configuration option and an API function can be used to swap the
processing of this signal with RING, which enables a pseudo-DSR implementation, if an
appropriate cable is used.

In synchronous mode, the RING signal (circuit 125) is only available as from release E of the
MCXBP connection box.

DTR in synchronous mode : see the Multiprotocol software manual [DTUS016] and the
MCX_HDLC_USERDTR indicator on page 40.

Supported speeds : see the appropriate firmware manual [DTUS014], [DTUS016].

V COM PORTS FAQ

Q : My program executes a WriteFile which does not return an error, but the data are
not completely sent out.

R : You can use one of the following functions to wait for the end of transmission :
PurgeComm(), FlushFileBuffers(), CloseHandle() or a program exit.

Q : My program executes a WriteFile which does not return an error, but no data is not
sent out.

R : see previous question. Also, check that the transmission clock exists and is
correctly programed (with the PROTO command or the DeviceIoControl
IOCTL_SERIAL_SET_SYNC_STATE).

Q : I cannot see the changes on the DSR pin.
R : DSR is not handled by the « Basic firmware » nor by the « Multiprotocol
firmware ».
You can use the advanced configuration tab of the board to overcome this problem.

DTUS059, MARCH 14, 2016. REVISION A.5.

56

 MCXDOS/AUTOMCX MODE

The following sections describes « Mcxdos/Automcx » and « BIOS extension » driver
operating modes.

Mcxdos/Automcx mode allow to load an application on board, in a DOS environment.

I DEVELOPMENT OF THE APPLICATION TO BE DOWNLOADED
Applications which will run on board in this mode, must be first created and tested on a
development computer using MS-DOS, Windows 9x or compatible. It can be created by any
native- or cross-development tool provided it generates compatible DOS executable code.
Thus, MSC 6 and 7, MSVC 1.52, Borland C, Pharlap environments were used successfully.

The development phase needs the MCXDOS tool which allows to share the host computer
peripherals with the MCX board, then the creation of a « BOOTFILE » which is a diskette
image contained in a disk file of corresponding size. This « BOOTFILE » contains the DOS
system and the application to download.

II PROVIDED UTILITIES
Four utilities appear on the distribution medium in the SDK\AUTOMCX\EXE directory :

AUTOMCX program loading « BOOTFILE » to board’s memory.
RESETMCX hot restart program for a PCI/cPCI board.
MCXIO utility to execute inputs-outputs on the board’s memory and IO ports board.
MCXDEBUG program allowing display and modification of the dual ported memory of the

board.

III BOARD LOADING
Run AUTOMCX in command line with two parameters : « name prefix » of the board typed
during setup, and BOOTFILE file name. For example :

 automcx mcx0403 MCXBOOT

DTUS059, MARCH 14, 2016. REVISION A.5.

57

IV LOW LEVEL PROGRAMMING INTERFACE

Win32 « CreateFile », « DeviceIoControl » « CloseHandle » functions allow access to a
configured card in automcx mode as follows:

#include <winioctl.h>
#include <mcc_mcx.h>

void *Mailbox; /* Replace ‘void’ with a structure appropriate

for the application.*/
char *nom_carte[] = « \\\\.\\mcx_exemple »;
DWORD cbReturned;
MCX_AREA_DESCRIPTOR Area; /* transfer parameters for I/O ports */

/* open and close board access*/
HANDLE Handle = CreateFile(nom_carte,
 GENERIC_READ | GENERIC_WRITE,
 0, NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);
CloseHandle(Handle) ;

/* obtain a pointer on shared memory window of the board */
BOOL ok = DeviceIoControl(Handle,
 IOCTL_AUTOMCX_MAP_MAILBOX, NULL, 0,
 &Mailbox, sizeof(PVOID), &cbReturned, 0);

/* free above pointer to free used resources */
BOOL ok = DeviceIoControl(Handle,
 IOCTL_AUTOMCX_UNMAP_MAILBOX, NULL, 0,
 NULL, 0, &cbReturned, 0);

/* write on board’s I/O port*/
Area.Operation = MCX_AREA_SET|MCX_AREA_IOPORT;
Area.StartAddress = 0 à 7; /* relative I/O port number */
Area.Length = 1;
Area.Buffer[0] = (UCHAR)cData; /* character to write*/
Ok = DeviceIoControl(Handle,
 IOCTL_AUTOMCX_WRITE_PORT, &Area, sizeof(Area),
 NULL, 0, & cbReturned, 0);

/* read board’s I/O port */
Area.Operation = MCX_AREA_GET|MCX_AREA_IOPORT;
Area.StartAddress = 0 à 7; /* relative I/O port number */
Area.Length = 1;
ok = DeviceIoControl(Handle,
 IOCTL_AUTOMCX_READ_PORT, &Area, sizeof(Area),
 &Area, sizeof(Area), &cbReturned, 0);
/* result is available in Area.Buffer[0] */

/* learn board’s physical resources */
It is possible to use MCX_OPTION_GET_PHYSICAL_PARMS option of MCX_OPTIONS
documented in section II.7. Refer to this section for more details.

DTUS059, MARCH 14, 2016. REVISION A.5.

58

Simplified C language interface (provided as an example)
This interface uses the low level interface to offer more convivial functions. You can include
the source in your application , or add the provided library « multiprotocol\lib\automcx.lib » in
your project.

Warning, this interface is provided as example : it doesn’t pretend provide an evolved tool, or
treat all error cases.

#include <autont.h>

/* open and close board access */
HANDLE Handle = OpenAutomcx(nom_de_carte) ; /* le préfixe \\.\ est facultatif */
CloseAutomcx(Handle) ;

/* obtain a pointer on window sharing memory of the board */
void *Mailbox = GetAutomcxPtr(Handle) ;

/* write on I/O port of the board */
McxOutPort(Handle, port, valeur) ;

/* read I/O port of the board */
/* return –1 on error, else (int)(unsignedchar)valeur */
int valeur = McxInPort(Handle, port) ;

/* return the 1st byte of fifo, or ‘\xff’ on error */
unsigned char McxReadFifo(Handle) ;

V KNOWN DEFECTS
Date synchronization is not implemented in AUTOMCX.EXE utility.

DTUS059, MARCH 14, 2016. REVISION A.5.

59

VI USING MCXDEBUG.EXE
MCXDEBUG is a program similar to the debug tool on DOS or Windows, except it is limited
to the 32Kb of the PCI/cPCI board’s mailbox.

 available functions are following :
- ? : help
- d : dump
- i : input
- o : output
- q : quit
- w : write

DUMP : list 128 Bytes of the mailbox

Two syntaxes are possible :
• d

If you typed ‘d’ for the first time , the program list the 128 first bytes of the mailbox.
If you retyped ‘d’, it will list the 128 next and so on until the end of the mailbox.

• d offset
Allows to reach directly requested offset.

Remarks :
 offset size cannot exceed 2 bytes

If you entre ‘d 555555’, the program will interpret the command as if you had enter ‘d
5555’ (see Figure 1).

 If you try to access to an offset out of the mailbox, you will display its 128 last bytes (see
Figure 2).

 If you enter for example ‘d 7f50’, you will list the 128 bytes from 0x7f50 to 0x7fcf.
Then, if you typed ‘d’, you will display the 48 bytes remaining from 0x7fd0 to 0x7fff, like
shown on Figure 3.

DTUS059, MARCH 14, 2016. REVISION A.5.

60

Figure 1 : a dummy dump example

Figure 2 : a dumpout of bounds

DTUS059, MARCH 14, 2016. REVISION A.5.

61

Figure 3 : a dump near the upper bound

INPUT : get a byte from I/O port
 Ex : -i [add io]

OUTPUT : send a value on I/O port
 Ex : -o [add io] [valeur]

WRITE : write in board’s mailbox

There are two ways to write in the mailbox :

• w + offset + text between quotation marks (Figure 4)

• w + offset + hexadecimal value (Figure 5)

DTUS059, MARCH 14, 2016. REVISION A.5.

62

Figure 4 : write a text

Figure 5 : write directly values in hexadecimal

DTUS059, MARCH 14, 2016. REVISION A.5.

63

GLOSSARY

API
Application Programming Interface. The whole of the specifications which allow to an
application program to use a subsystem , in our case, MCXDOS or a peripheral driver.

Built-in firmware
Installed in a EPROM on the board, it can be one of : « Logiciel de base », « logiciel
multiprotocole » or a custom application software.

Channel, port
Set of elements allowing the transfer of data on one of the connectors on a
multichannel board.

Driver, peripheral driver
software provided by ACKSYS, integrated to the operating system, which allows to
program and to use multichannel board, independently of materials details (physical
address, board driving algorithms ...).

Basic software :
Standard software installed in a EPROM on the board, it allow to use channel of board
with MCXBP(MR) or Lite/S or PCB/S extension only, in asynchronous transmition
mode only. It is compatible with basic software of MCC boards.

Multiprotocol software :
Installed in surplus of basic software if you had ordered MCX-MULTIPROTOCOLE
option, provided in standard on the board with Lite/570 or PCB/570 extension, it
allows to use channels in all a range of synchronous and asynchronous formats of
transmission. It is partially compatible with basic software.

MCC
The ancestor of the MCX board, supporting 8 or 16 asynchronous channels. To ensure
perenniality of applications development by its customers, ACKSYS provides on
MCX board range a dialog protocol compatible with that of the MCC : the basic
software.

UART
(Universal Asynchronous Receiver/Transmitter) asynchronous send/receive hardware
component. Most known are components 8250, 16550…

USART
(Universal Synchronous/Asynchronous Receiver/Transmitter) asynchronous and
synchronous send/receive hardware component. MCX boards use components SCC
85C30, or HD64570.

	PRESENTATION
	I Technical specifications
	I.1 General characteristics
	I.2 Integration in Windows environment

	II Documentation

	INSTALLATION
	I Board operating modes
	II Plug & Play driver Installation
	II.1 Operating mode selection.
	II.2 Physical board Installation
	II.3 Reboot
	II.4 Installed card setup

	III Windows NT driver installation.
	III.1 Check the system configuration
	III.2 Operating mode selection.
	III.3 Board resources selection.
	III.4 Physical board Installation
	III.5 Reboot
	III.6 “MCXSETUP” installation program
	Driver installation
	Configuring installed boards
	Board properties

	IV Checking the installation
	V Development tools and examples

	COM PORT COMPATIBILITY MODE
	I Application programming interface (API)
	I.1 Programming asynchronous communications
	I.2 Programming synchronized asynchronous communications.
	I.3 Programming synchronous HDLC/SDLC/BISYNC communications
	I.4 Programming the LAPB (or HDLC-ABM) protocol
	I.5 Programming driver-specific services.
	I.6 Standard Windows utilities
	I.7 Acksys extra utilities

	II Detailed reference manual
	II.1 Excerpt from the mcc_mcx.h file
	II.2 SET/GET SYNC STATE functions
	II.3 Example for SET_SYNC_STATE
	II.4 CMD and CMD_AUTO functions
	II.5 Examples for CMD and CMD_AUTO
	II.6 ACCESS_AREA function
	II.7 MCX_OPTIONS function
	II.8 Examples for ACCESS_AREA and MCX_OPTIONS
	II.9 Appendix : flow control.

	III Appendix : specific error codes.
	IV Appendix : limitation and differences with the COM ports
	V COM ports FAQ

	MCXDOS/AUTOMCX MODE
	I Development of the application to be downloaded
	II Provided utilities
	III Board loading
	IV Low level programming interface
	V Known defects
	VI Using Mcxdebug.exe
	DUMP : list 128 Bytes of the mailbox
	INPUT : get a byte from I/O port
	OUTPUT : send a value on I/O port
	WRITE : write in board’s mailbox

