
WAN HDLC/4 USER MANUAL
For Windows NT/2000/XP

INTELLIGENT COM PORTS WITH MULTIPROTOCOL SUPPORT

ACKSYS
COMMUNICATIONS & SYSTEMS

10, rue des Entrepreneurs
ZA Val Joyeux

78450 VILLEPREUX
FRANCE

Tel : +33 (0)1 30 56 46 46
Fax : +33 (0)1 30 56 12 95

Web : www.acksys.fr
Hotline : support@acksys.fr
Sales : sales@acksys.fr

Important : The ACKSYS Windows Device Driver is common to all Windows
Operation systems NT, 2000 and XP.

http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr
http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr
http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr
http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr
http://www.acksys.fr/
mailto:support@acksys.fr
mailto:sales@acksys.fr

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

TABLE OF CONTENTS

I PRESENTATION .. 4

II OPERATIONAL RESTRICTIONS... 5

III SUPPORTED PROTOCOLS : AN OVERVIEW ... 5
III.1 Asynchronous mode ... 5
III.2 Synchronised asynchronous mode.. 5
III.3 MONOSYNC and BISYNC modes.. 5
III.4 Raw HDLC mode ... 6
III.5 HDLC ABM or LAPB mode.. 6

IV PHYSICAL BOARD INSTALLATION ... 7
IV.1 SW1, SW2 and SW3 switch settings ... 7
IV.2 Starting the board... 8
IV.3 Diagnostic LEDs on the main board .. 8
IV.4 LEDs installed on the mezzanine board... 10

V WIRING.. 11
V.1 SUBD62 connector pin assignment.. 11
V.2 Pin assignment for the 4P570M25 cable .. 12
V.3 The electrical interfaces.. 14

VI NT/2K DRIVER .. 15
VI.1 Reboot ... 16
VI.2 Installation and configuration .. 17
VI.3 Configuring installed boards.. 19
VI.4 Board properties .. 20

VII CHECKING THE INSTALLATION ... 22

VIII DÉVELOPPEMENT TOOLS AND EXAMPLES ... 23

COM COMPATIBILITY MODES .. 24

I APPLICATION PROGRAMMING INTERFACE (API) .. 24
I.1 Programming asynchronous communications... 25
I.2 Programming synchronous communications .. 27
I.3 Programming the LAPB (or HDLC-ABM) protocol. ... 29
I.4 Programming driver-specific services. ... 31
I.5 Standard Windows NT utilities. ... 32
I.6 Other utilities. ... 33

II DÉTAILÉD RÉFÉRENCE MANUAL... 34
II.1 Extract from the mcc_mcx.h file .. 34
II.2 SET/GET SYNC STATE functions ... 37
II.3 Example of SET_SYNC_STATE .. 40
II.4 CMD and CMD_AUTO functions ... 41
II.5 Samples of CMD and CMD_AUTO .. 44

III APPENDIX : SPECIFIC ERROR CODES... 47

IV APPENDIX : LIMITATIONS AND DIFFÉRENCES WITH THE COM PORTS. 48

ANNEXES

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

CONTACT ACKSYS ... 50

I PRESENTATION
This manual describes the technical characteristics of the boards in the ACKSYS WANHDLC
range and explains how they are integrated and used with the Windows NT and Windows
2000 operating systems.

The boards in the WAN HDLC range extend the communication capabilities of a PC (PCI or
CPCI 6U) by adding serial communication interfaces that are multiprotocol (asynchronous,
synchronised asynchronous, Monosync, Bisync, Raw HDLC & HDLC ABM) and multi-
interface (RS232/V28, RS422/V11, RS485 & V35).
Each board has 4 fully independent channels of this type.
A typical configuration might be :

- Channel 1 : Raw HDLC RS422
- Channel 2 : ASYNC synchronised RS232
- Channel 3 : HDLC ABM V35
- Channel 4 : MONOSYNC RS485

These boards offload communication line management tasks such as acquisition, transmission
and protocol from the PC, releasing the bandwidth of the PCI bus for the exchange of useful
information between the PC and the board.

Running on Windows NT 4.0 and Windows 2000 systems, an ACKSYS driver can make use
of the board’s 4 intelligent serial ports in compliance with the specifications of the Windows
Win32 API (Files, COMM & Ioctl), the market standard for traditional PC serial ports.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

5

II OPERATIONAL RESTRICTIONS
Number of boardslimited to the number of available slots
Operating system......................................Windows NT 4.0 from SP3 upwards, and

Windows 2000. Monoprocessor only.
Firmware MCX Multiprotocol.................Version 3.1 or later
Buses supportedPCI & CPCI 5V
Max. bitrate in ASYNC mode250 Kbps
Max. bitrate in ASYNC sync mode250 Kbps
Max. bitrate in MONOSYNC mode4 Mbps
Max. bitrate in BISYNC mode4 Mbps
Max. bitrate in raw HDLC mode4 Mbps
Max. bitrate in HDLC ABM mode4 Mbps

III SUPPORTED PROTOCOLS : AN OVERVIEW
This is a quick overview of the protocols supported by the board. For full information on these
protocols, consult the documentation on the MCX Multiprotocol firmware.
The synchronous protocols support the FM0, FM1, NRZi & NRZ encoding modes (see the
VINIT command in the MCX MULTIPROTOCOL firmware).
The transmit/receive clocks can be configured (internally, externally or in data).

III.1 Asynchronous mode
This is the mode used by traditional PC COM ports.

III.2 Synchronised asynchronous mode
This mode is identical to asynchronous mode (above) except that the transmit or receive clock
can be external to the board.

III.3 MONOSYNC and BISYNC modes
xSYNC is a mode in which the board only manages a frame envelope.
In transmission mode, the board encapsulates the data for transmission (buffer used by the
WriteFile function) in a synchronous frame which looks like this :

“S1/S2” “OUTGOING DATA” where S1 is the synchronisation byte in MONOSYNC
mode or the first synchronisation byte in BISYNC mode, and S2 is the second synchronisation
byte in BISYNC mode.
The PC sends only the outgoing data block to the board, which handles frame transmission.

In reception mode, if the board receives a frame of the following type :
“S1/S2” “FIXED LENGTH INCOMING DATA”.

The board handles the acquisition of the frame and stops data reception after n bytes (n is
customisable) and sends only the incoming data block to the PC (buffer used by the ReadFile
function).
In Monosync mode, the board uses an 8-bit synchronisation called S1.
In Bisync mode, the board uses a 16-bit synchronisation called S1/S2.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

6

III.4 Raw HDLC mode
RAW HDLC is a mode in which the board only manages the envelope of the HDLC frame.
In transmission mode, the board encapsulates the outgoing data (buffer used by the WriteFile
function) in an HDLC frame :

“Flag 0x7E” “OUTGOING DATA” “CRC CCITT PRESET1” “Flag 0x7E”
The PC sends only the outgoing data block to the board which handles the calculation and
generation of the CRC, the management of the stuffing1 bit and the generation of the frame
start and end flags.

In reception mode, if the board receives a frame of the following type :
“Flag 0x7E” “INCOMING DATA” “CRC CCITT PRESET1” “Flag 0x7E”

The board takes full control of the frame (CRC, ABORT, OVERRUN, FRAMING ERROR),
handles the stuffing bit and only sends the incoming data block to the PC (buffer used by the
ReadFile function).

III.5 HDLC ABM or LAPB mode
HDLC ABM is a mode in which the board manages level 2 of the HDLC procedure in ABM
mode. The distinctive characteristics of this protocol are :
- The general frame format is that described above for RAW HDLC mode.
- Unnumbered frames SABM UA DM
- Supervision frames RR, REJ, RNR
- Information frame I
- T1 timeout
- N2 retry count
- Max. frame length : N1
- Width of the K sliding window : modulo 8
- P/F bit

The PC only manages the buffers for data carried in the I information frames and the
connection/disconnection of the communication link.

1 The stuffing bit is a mechanism that is specific to the HDLC protocol that prevents the possible occurrence of a
flag between a frame’s start and end flags.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

7

IV PHYSICAL BOARD INSTALLATION

IV.1 SW1, SW2 and SW3 switch settings
SW1-1 and SW1-2 are set to OFF (Mode Built in firmware)
SW1-3 set to ON (Watchdog enable)
SW1-4 set to ON (Reserved)
SW2-1 set to ON (Battery Enable)
SW2-2 set to OFF (Reserved)
SW3-1 and SW3-2 set to OFF (Reserved)

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

8

IV.2 Starting the board
Each time the board is reinitialised (powered up or reset), all the channels are reset and
initialised in high impedance mode. An on-board self-test program is run automatically and
displays a code identifying the current test on a group of 8 diagnostic LEDs (numbered DL0,
DL1 ...to DL7). If a test returns an error, the program stops, leaving the code of the current test
displayed on the LEDs.
When all the tests have been successfully executed (this takes around 15 seconds), the self-test
program lights up and switches off each of the LEDs in rotation indicating that the board is
now awaiting an instruction from the PC driver before continuing initialisation.
This provides a visual indication that there is no major operational defect on the board.
When the PC driver has been successfully loaded, the board stops the rotating LED display
and flashes the DL0 diagnostic LED on and off once per second.

IV.3 Diagnostic LEDs on the main board
This group of eight LEDs is numbered from DL0, DL1 ... thru DL7. Generally DL0 thru DL6
are yellow and DL7 is red. The purpose of these LEDs is to check that the board is operating
correctly and to monitor reception/transmission operations on the serial ports.

To interpret the status of these LEDs, 3 distinct phases should be identified:
Phase 1 : while the self-test program is being run, i.e. immediately after the board has been
powered up or reset.

The board will display a code on the LEDs in the event of an error :

LED DL0 DL1 DL2 DL3 DL4 DL5 DL6 DL7
Error code bit C0 C1 C2 C3 C4 C5 C6 C7

(C0 refers to the low-order bit, DL0 which you can see printed on the circuitry)

The codes are as follows :
Code 01h .. CPU flag register error.
Code 02h .. CPU register error.
Code 03h .. BIOS memory checksum error.
Code 04h .. DMA controllers error.
Code 05h .. System TIMERS error.
Code 06h .. Error in the address test of the first 64 K or

 bad memory configuration.
Code 07h .. Error in the address test of the first 64 K of
.. RAM.
Code 08h .. Error on the INT controller.
Code 09h .. Unexpected INT detection.
Code 0Ah.. No TIMER interrupt.
Code 0Bh ... CPU already in protected mode.
Code 0Ch ... Error in DMA page register.
Code 0Dh ... No memory refresh.
Code 0Eh ... Error on keyboard controller.
Code 0Fh .. Cannot enter protected mode.
Code 10h .. Error on GDT or IDT registers.
Code 11h .. Error on LDT register.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

9

Code 12h .. Error in task register.
Code 13h .. Error on LSL instruction.
Code 14h .. Error on LAR instruction.
Code 15h .. Error on VERR / VERW.
Code 16h .. Error on A20 address line.
Code 17h .. Unexpected exception.
Code 18h .. Shutdown during memory test.
Code 19h .. Copyright checksum error.
Code 1Ah ... Parameter checksum error.
Code C0h ... Error in memory test.
Code C1h ... Error on IO/CHECK signal.
Code C2h ... “Watchdog time out”.
Code C4h ... “Bus time out”.

Code 81h .. Error on UART, SCC or SCA.
Code 82h .. Dual access memory error.
Code 83h .. Unexpected TRAP error.
Code 84h .. Buffer error.
Code 85h .. Firmware checksum error.
Code 86h .. Lithium battery error.
Code 87h .. MCXPCI to PC interrupt error.
Code 88h .. “Watchdog” error.
Code 89h .. FIFO, flags or Int error at MCXPCI end.

 Or MCXPCI error when reading FIFO.
Code 8Bh ... SCC error during high-speed DMA test.
Code 8Ch ... General protection fault.
Code 8Dh ... Memory size error.
Code 8Eh ... NMI interrupt received.
Code 8Fh .. Error on 100 us counter.

Phase N°2 : before the PC driver is loaded
When the self-test phase has been successfully executed, the DL0 thru DL7 LEDs are lit up in
rotation.

Phase N°3: after the PC driver has loaded
DL0 : flashes once per second and indicates that the board is active
DL1 : the board executes a command
DL2 : the board has sent an interrupt to the PC that has not been acknowledged
DL3 : Reception in asynchronous mode on one or more of the 4 channels
DL4 : Transmission in asynchronous mode on one or more of the 4 channels
DL5 : Reception in synchronous mode on one or more of the 4 channels
DL6 : Transmission in synchronous mode on one or more of the 4 channels
DL7 : Reception error on one or more of the 4 channels

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

10

IV.4 LEDs installed on the mezzanine board
Each channel has a group of 8 LEDs that indicate whether the interface has been programmed
for RS232, V35, RS422, RS485 or High impedance (also called HiZ).

Led0 Led1 Led2 Led3 Led4 Led5 Led6 Led7

HiZ 0 0 0 0 0 0 0 0
RS-232 0 1 0 0 0 1 0 0

V35 0 1 1 1 0 1 1 1
RS-422 0 0 1 0 0 0 1 0
RS-485 1 0 1 0 0 0 0 0

For value 1, the LED is on, and for value 0 the LED is off.

Note: the channels stay in the HiZ position (LEDs off) until the ACKSYS driver has started.

Channel 1 LEDs

Channel 4 LEDsChannel 3 LEDs

Channel 2 LEDs

J4 connector
reserved for
ACKSYS

SUDB62
for 4P570M25
cable

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

11

V WIRING

V.1 SUBD62 connector pin assignment

Signal Mnemonic Direction Pin N°
Channel 1

Pin N°
Channel 2

Pin N°
Channel 3

Pin N°
Channel 4

TxD Transmit Data Output (A) 37 21 27 32
TxD Transmit Data Output (B) 57 42 5 52
RxD Receive Data Input (A) 15 62 26 10
RxD Receive Data Input (B) 36 20 46 31
TxClkOut Transmit Clock Output (A) 56 41 4 51
TxClkOut Transmit Clock Output (B) 14 61 25 9
TxClkIn Transmit Clock Input (A) 35 19 45 30
TxClkIn Transmit Clock Input (B) 55 40 3 50
RxClkIn Receive Clock Input (A) 13 60 24 8
RxClkIn Receive Clock Input (B) 34 18 44 29
RTS Request To Send Output (A) 54 39 2 49
RTS Request To Send Output (B) 12 17 23 7
CTS Clear To Send Input (A) 33 38 22 28
CTS Clear To Send Input (B) 11 16 1 6
GND 47, 58
+5V (useful in RS485 mode for specifying the
polarisation)

43, 48, 53, 59

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

12

V.2 Pin assignment for the 4P570M25 cable

Important before connecting the 4P570M25 cable to the WAN-HDLC/4 board
 Switch off the PC.

The signals associated with the serial channels 1, 2, 3 and 4 are assigned respectively to the
connectors numbered 1, 2, 3 and 4 on the 4P570M25 cable.

SUBD 25 MALE

SUBD HD62 MALE

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

13

PIN ASSIGNMENT OF THE 4 25-PIN MALE CONNECTORS(DB25 FORMAT SIZE C)
ON THE 4P570M25 CABLE

Pin N° Signal Mnemonic Direction
1 P.G Protective Ground
2 TxD Transmit Data Output (A)
14 TxD Transmit Data Output (B)
3 RxD Receive Data Input (A)
16 RxD Receive Data Input (B)
24 TxClkOut Transmit Clock Output (A)
11 TxClkOut Transmit Clock Output (B)
15 TxClkIn Transmit Clock Input (A)
12 TxClkIn Transmit Clock Input (B)
17 RxClkIn Receive Clock Input (A)
9 RxClkIn Receive Clock Input (B)
20 N.C. Not Connected
23 N.C. Not Connected
4 RTS Request To Send Output (A)
19 RTS Request To Send Output (B)
5 CTS Clear To Send Input (A)
13 CTS Clear To Send Input (B)
8 N.C. Not Connected
10 N.C. Not Connected
6 N.C. Not Connected
18 N.C. Not Connected
22 N.C. Not Connected
21 N.C. Not Connected
7 GND
25 +5V (useful in RS485 mode for specifying the polarisation)

The +5V output (pin n° 25) on each connector is protected by a resettable thermal fuse. If an
accidental short-circuit occurs on the output connectors, it is advisable to stop the system and
identify the cause of the short-circuit. The system can only be powered up again after 20
seconds have elapsed.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

14

V.3 The electrical interfaces

RS232 V35 RS422 RS485
TxD(A) V28 V35 V11 RS485
TxD(B) HiZ V35 V11 RS485
RTS(A) V28 V28 V11 RS485
RTS(B) HiZ HiZ V11 RS485
TxClkOut(A) V28 V35 V11 RS485
TxClkOut(B) HiZ V35 V11 RS485
RxD(A) V28 V35 V11 RS485
RxD(B) >12KΩ V35 V11 RS485
RxClkIn(A) V28 V35 V11 RS485
RxClkIn(B) >12KΩ V35 V11 RS485
CTS(A) V28 V28 V11 RS485
CTS(B) >12KΩ >12KΩ V11 RS485
TxClkIn(A) V28 V35 V11 RS485
TxClkIn(B) >12KΩ V35 V11 RS485

HiZ : High impedance
>12KΩ : relative to the ground

The signal pairs RxD(A,B), RxCLKIn(A,B) and TxClkIn(A,B) programmed in differential
mode (V11 or RS485) are arranged so that the A and B signals are connected to a 120 Ohm
terminal resistor.
The polarisation resistors should be built into the connection cable.
To polarise a pair (A,B), connect a 470(to a 1K((1/4W 5%) resistor
between signal A and the signal ground (GND pin 7 or 26)
and between signal B and the +5V power supply (pin n° 25)

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

15

VI NT/2K DRIVER
The following diagram shows how the driver is installed in the Windows architecture :

Windows NT

Driver ACKSYS

Win32 Communications

DeviceIoControl

WANHDLC board

COMM compatible modes

Serial channels

Applications

Standard
DeviceIoControl

ACKSYS specific
DeviceIoControl

API
communications

Win32

API files
(CreateFile,

ReadFile, etc.)

COM driver
(Microsoft)

The diagram shows that the driver uses the same API as the COM ports. If a specific
application needs to use board features without accessing them via the Win32 API, it can
access the driver or even the board directly via the DeviceIoControl commands described in
the section entitled COM COMPATIBILITY MODES.

Typical examples of this are switching to RS422 or HDLC mode.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

16

VI.1 Reboot

You must install the board in the computer before starting the installation program. Otherwise
the program will not be able to recognise the board and allocate resources automatically.

Users of Windows NT 4 need simply to check that the Service Pack installed on the system is
later than or identical to the SP3 and then go on to the next section.

When Windows 2000 users install the board and then reboot their computer, a new, unknown
device is detected automatically :

Board installation is not integrated in the Plug-and-play environment. This means that before
using the installation program supplied by ACKSYS (see next section) you will have to
disable the plug-and-play capability for this device.

To do this, here is the dialogue that you should follow with Windows 2000 :

Add new hardware Wizard Install hardware device drivers

Select “Next>” Select “Next>”

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

17

Looking for driver files Driver files found

Select “Next>” Select “End”

Next time you reboot the computer, Windows will no longer ask these questions if you have
selected “Disable device” in the last step.

When you have completed this dialogue, proceed with driver installation.

VI.2 Installation and configuration

When you have installed the board in the computer and restarted the operating system, place
the “MCC, MCX, MCX-Lite Windows NT Driver & utilities” diskette in drive A: and execute
the command :

A:\SETUP

This script starts the installation and configuration program called “MCXSETUP”. The first time you
execute the program, it will detect that the MCX.SYS driver has not yet been installed and ask you to
confirm the installation :

If a previous version of the program is already installed on the disk, MCXSETUP checks that the
version you want to install is more recent and that updating is possible, before proceeding with
installation.

It then installs the “MCX.SYS” device driver and a number of utilities on the hard disk. You will then
be able to run these utilities directly from the command line prompt, or from the menu bar (start !
execute ! mcxsetup ! OK).

The first window displayed by MCXSETUP is split into two halves. The first half lets you manage the
driver installation process and the bottom half manages the installation and initialisation of the
boards :

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

18

This is what the MCXSETUP v2.1 main window looks like

♦ Version indicates the version of the MCX.SYS driver file that is installed on your
hard disk.

♦ Deinstall lets you delete MCX.SYS, MCXSETUP and the disk utilities, and deletes
the driver information from the Register.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

19

VI.3 Configuring installed boards
The list in the lower half of the window indicates the boards that have already been detected
or installed and their main characteristics.
A red icon indicates that boards have been detected but that they are not yet configured and
cannot be used. You must configure them before they can be used.
A yellow icon indicates that boards are inhibited. In other words these have been deliberately
placed “out of bounds” (you have checked the “inhibit” box in the board properties). You can
re-enable this board before it can be used.
A green icon indicates that enabled PCI boards have been recognised. Boards with this status
can be used.
You can access a board by selecting it then using either of the buttons at the bottom of the
window or clicking with the right-hand mouse button. Double-clicking opens the properties
window (see below).
The Add... button lets you define an ISA board and is therefore not discussed in this manual.
The Test button lets you run some basic checks on the operation of a selected board, and
displays a report after a few seconds. The Quit button checks that, after a board has been
modified, the same resources are not being used by several boards, offers some installation
advice, then ends the program.
The Print all button, accessible if no board has been selected, prints a summary of the
configuration of each board. This button changes to Print when a board has been selected.

The overall configuration procedure is consequently as follows :
1) Find the line that corresponds to the board you want to configure. If several boards have

been installed, they can be identified by their bus and slot numbers.
2) Double-click on the board to open the properties window.
3) Select the model from the list of boards.
4) Select “multiprotocol” mode
5) Select the other parameters according to your needs, and click on OK to close the

properties window.
6) Reselect the board in the list and click on Test.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

20

VI.4 Board properties
These parameters modify the operation of the device driver. They are only analysed each time
the driver is restarted. The driver can be restarted either when the system is rebooted, or
manually from the “Devices” icon in the Windows Control Panel, or at the command line
prompt by entering the “net stop mcx” command followed by “net start mcx”, or by
MCXSETUP with user confirmation.

Use the General tab to specify the characteristics of the board you want to install.

General properties of an MCX, MCXPCI or MCX-Lite board

♦ Inhibit driver for this board
Checking this box will prevent the driver from accessing the board
described. You can use the box to temporarily inhibit an installed
board, or temporarily delete a board from the computer without
generating messages in the Event Viewer.

♦ Model
Selects the board model. Only models that correspond to the bus being
used will be displayed in this list. The model must be specified
accurately, as other options depend on your choice.

♦ Operating mode
This mode corresponds to the settings of the SW1-1 and SW1-2
switches. For the WANHDLC board, select “multiprotocol”.

♦ 14,7456 MHz baud generator
Does not apply to WAN HDLC boards.

♦ Initial electrical interface
Specifies the electrical interface that the driver will use to initialise on

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

21

all the channels. If you want to program the channels with different
interfaces, leave the HiZ setting here, and assign the interfaces at
application program level.

♦ Usal name
Prefixes the name that will be used to identify the board’s channels.
“COM” can be specified to use standard tools like HyperTerminal. By
specifying another name, you can use channel names with a fixed
format (see later the description of the CreateFile).

♦ First port number
This number will be assigned to the name of the board’s first channel.
The other channels will be numbered sequentially starting with this
number.

♦ Example
This displays the name of the board’s fist channel as it will be
recognised by the driver. The channel names are formed by
concatenating the fixed character string “\\.\”, the usual name and
the number in the sequence starting with “first port number”.

The Resources tab is only available for an ISA bus.

The Advanced tab gives access to the options and compatibility with earlier versions of the
driver (1.6.4 thru 1.8.3).
This does not apply to WAN HDLC boards that are only fully supported as from version 2.1.0
of the MCX driver.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

22

VII CHECKING THE INSTALLATION

You can check that the driver has been properly started by consulting the Event Viewer, which
displays two messages about the driver :

a) a message indicating that the driver has been loaded and its version,

b) for each board installed, a message indicates the version of the EPROM, the
number of channels recognised by the board and other items of useful information.

In Windows 2000
You can check that the driver has been started correctly by consulting the Device Manager,
accessible notably by clicking with the right-hand mouse button on the Workstation icon.
WARNING : when you have installed a new driver, the “General” tab will tell you that there
is a problem with a device. Ignore this message which should disappear the next time you
reboot the system. This message has no impact on operation: the driver will function correctly
as soon as it has been installed.

The options in the “Driver” tab let you stop, restart or inhibit the driver.

In Windows NT 4
You can check that the driver has been started by consulting the “Devices” icon in the Control
Panel.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

23

VIII DEVELOPPEMENT TOOLS AND EXAMPLES

You can communicate with the driver via your C language source programs, either through
the standard functions of Win32 (e.g. CreateFile, etc.) or with the commands and structures
that are specific to your driver.

The following files will be useful for developing your own applications :
A:\WINNT\SDK\INCLUDE\MCC_MCX.H
A:\WINNT\SDK\INCLUDE\MCXPROTO.H

If necessary, copy these files on to your hard disk so that they can be accessed by your C
language source programs.

You will find sample programs in A:\WINNT\SDK. More specifically, the SDK\MSVC\LIB
directory contains a library of functions that are useful for getting to know the driver; these
functions use the “header” SDK\INCLUDE\ACK_W32.H and are compiled with the
MultiThread option in the SDK\LIB\MCC_MCX.LIB. library.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

24

 COM COMPATIBILITY MODES

The following sections describe how the driver operates with the MCX MULTIPROTOCOL
on-board firmware.

I APPLICATION PROGRAMMING INTERFACE (API)
Each serial channel can be programmed independently, whether as regards the electrical
interface, the signal format, the frame format, the protocol or the flow control, etc. Each
channel can be driven by a different application if necessary.

The file name used to access the channels is defined when the board is configured. If the
“usual name” is not “COM”, the channels will be numbered 01, 02, etc. up to the number of
channels installed on the board. If the “usual name” is “COM”, the channels will be numbered
without the leading zero, as from “first port number”. For example :

Usual name First port number Channel identification
COM 3 \\.\COM3, \\.\COM4, etc.
COM 9 \\.\COM9, \\.\COM10, etc.
Mcx1 ignored \\.\Mcx101, \\.\Mcx102, etc.
McxB ignored \\.\McxB01, etc.

The available APIs are based on the Win32 documentation and fall into three groups : file
services (CreateFile, ReadFile, etc.), communication services (SetCommState, etc.) and the
DeviceIoControl file service which is used by all the driver-specific functions that are not
provided in Win32 (change of protocol or electrical interface, etc.).

In the following pages, the APIs are presented according to whether they are used in :

" asynchronous communications,
" synchronous communications,
" LAPB communications,
" driver-specific services,
" utilities.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

25

I.1 Programming asynchronous communications

For general information, consult Microsoft’s Win32 documentation. The details below simply
concern :

" cases in which the driver differs from Win32 serial communications specifications,
" cases in which the Win32 documentation is vague,
" cases where the specification is not easily understood.

File services

Service Comments

CreateFile after CreateFile, the transmit and receive buffers are empty.

WriteFile the number of outgoing characters must be less than or equal to
8,192 bytes.

WriteFile ends when the outgoing characters are in the board buffer,
and not when they are actually transmitted.

CloseHandle CloseHandle ends by deleting the transmit buffer and opening
circuits 105 and 108 (RTS and DTR). It is advisable to use
FlushFileBuffers before CloseHandle to ensure that all the data in
the buffer has been transmitted.

Serial communication services.

Service Comments
BuildCommDCB unrestricted.

BuildCommDCBAndTimeouts Same comments as for SetCommTimeout.

ClearCommBreak No effect, the BREAK ends automatically after one second.

ClearCommError Only the CE_BREAK, CE_FRAME, CE_OVERRUN,
CE_RXPARITY bits in lpdwErrors are supported. In the
COMSTAT structure, only the cbInQue and cbOutQue fields are
supported.

EscapeCommFunction CLRDTR, CLRRTS, SETDTR, SETRTS, SETBREAK are
supported. CLRBREAK : see ClearCommBreak. SETXON,
SETXOFF are not supported.

GetCommMask unrestricted.
GetCommModemStatus see “Appendix : limitations and différences with the COM
ports.”, page 48.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

26

GetCommProperties dwMaxBaud : BAUD_USER, because any speed supported to within
1% is accepted.

dwProvSubType : RS232, even though these boards also support the
RS422, RS485, current loop types if they have the necessary options.

dwMaxTxQueue, dwMaxRxQueue : total number of bytes effectively
allocated to the channel buffers.

Support for the other fields is standard.

GetCommState Returns the values specified for SetCommState (except fParity).

SetCommState The value RTS_CONTROL_TOGGLE for fRtsControl, and the
fBinary and EofChar fields are not supported. With the
Multiprotocol options, the other fields are supported normally. With
the basic software, the driver also ignores the fields below and uses
the fixed value indicated :

fDsrSensitivity FALSE
fTXContinuesOnXoff TRUE
fErrorChar FALSE
fNull FALSE
XonLim, XoffLim 128, 20
fInX, fOutX, fOutxDsrFlow,
fOutxCtsFlow, fDtrControl,
fRtsControl

limited support : see
“Appendix : flow control.”,
page 46

GetCommTimeouts unrestricted.

PurgeComm unrestricted.

SetCommBreak The duration of the BREAK is predefined (set to 1 second).
SetCommMask For EV_RING and EV_DSR, see “Appendix : limitations and

différences with the COM”, page 48. EV_RX80FULL does not produce
the expected results and EV_RXCHAR can be 100 ms late relative to
the event.

SetCommTimeouts ReadIntervalTimeout is supported with an error of 25% + 100 ms.

SetupComm Non-standard buffer sizes are ignored. An error may be indicated in
some cases (see the section on the configuration of advanced
properties, page 15). The standard sizes are 8,192 characters per
channel for transmit buffers, and 512 characters per channel for
receive buffers.

TransmitCommChar Not supported.

WaitCommEvent unrestricted.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

27

I.2 Programming synchronous communications

For general information, consult Microsoft™’s Win32 communications documentation. . The
information below simply discusses :

" cases where the Win32 serial communication API is inappropriate,
" cases where the driver differs from the Win32 specifications,
" cases in which the Win32 documentation is vague.

File services

Service Comments

CreateFile after CreateFile, the transmit and receive buffers are empty.

ReadFile ReadFile always returns a maximum of one frame. If the frame
exceeds the requested length, only the first part will be returned and
the rest lost. If the frame is shorter than the requested length it is
returned in full and the requested buffer is not completely filled
(even if another frame is already present in the board buffer : it will
be provided with the next ReadFile).
If the frame contains an error (ABORT, CRC, etc.) ReadFile returns
an error (see also the compatibility options in the section on
installation).

WriteFile each WriteFile creates a frame whose size is limited to the value
specified by the IOCTL_SERIAL_SET_SYNC_STATE command.
WriteFile ends as soon as the outgoing characters are no longer in
the board’s buffer and not when they are effectively transmitted.

CloseHandle CloseHandle ends by deleting the transmit buffer and opening
circuits 105 and 108 (RTS and DTR). It is advisable to use
FlushFileBuffers before CloseHandle to ensure that all the data in
the buffer has been transmitted.

FlushFileBuffers FlushFileBuffers ends with the transmission of the flag of the last
transmitted frame (by the immediately preceding WriteFile). This
guarantees that the board’s buffers are empty.

Serial communication services.

Service Comments
BuildCommDCB unrestricted.

BuildCommDCBAndTimeouts See the comments for SetCommTimeout.

ClearCommBreak No effect. The BREAK ends automatically after one second.

ClearCommError Only the CE_BREAK, CE_FRAME, CE_OVERRUN, and
RXPARITY bits in lpdwErrors are supported. In the COMSTAT
structure, only the cbInQue and cbOutQue fields are supported; they
specify a number of frames and not a number of characters.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

28

EscapeCommFunction CLRDTR, CLRRTS, SETDTR, SETRTS, SETBREAK are
supported. CLRBREAK : see ClearCommBreak(). SETXON and
SETXOFF are not supported.

GetCommMask unrestricted.

GetCommModemStatus see “Appendix : limitations and différences with the COM ports.”,
page 48.

GetCommProperties dwMaxBaud : BAUD_USER, because any speed supported to within
1% is accepted.

DwProvSubType : RS232, even though these boards also support the
RS422, RS485, current loop types if they have the necessary options.

dwMaxTxQueue, dwMaxRxQueue : total number of frames
effectively allocated to the channel buffers.

Support for the other fields is standard.

GetCommState Returns the values specified for SetCommState (except fParity).

SetCommState The only fields supported are BaudRate, fOutxCtsFlow,
fOutxDsrFlow, fDsrSensitivity, fDtrControl, fRtsControl, ByteSize
and Parity (the last two only in some protocols).

GetCommTimeouts unrestricted.

PurgeComm unrestricted.

SetCommBreak The duration of the BREAK is predefined (set to 1 second).

SetCommMask The EV_RXFLAG event is not supported. For EV_RING and
EV_DSR, see “Appendix : limitations and différences with the COM
ports. ”, page 48.

SetCommTimeouts ReadIntervalTimeout is ignored, except the value MAXDWORD.
Otherwise, it should be initialised to zero to prevent any future
incompatibility.

SetupComm No effect.

TransmitCommChar Not supported.

WaitCommEvent unrestricted. EV_RXCHAR signals the arrival a complete incoming
frame.

Driver-specific services.

Service Comments
DeviceIoControl(...,IOCTL_SERIAL_SET_SYNC_STATE,...)

Sets the protocol (synchronous, asynchronous, synchronised
asynchronous) and the associated options. For a full description, see
page 37, and for an example of how to use the command see the
program source "a:\winnt\sdk\msvc\utils\mcxmode.c".

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

29

I.3 Programming the LAPB (or HDLC-ABM) protocol.
In addition to the specific details provided below on the programming of a LAPB connection,
see the previous section, describing synchronous connections in general.

The informations below are necessary to program a LAPB link. Note that the MCXMODE
utility has some limited capabilities for managing the Data Link layer. These can be used, in
particular, in the test phase. See the directory WINNT\SDK\MSVC\LIB for programming
samples.

Primitives linked to the use of LAPB.

Service Comments
CreateFile Keeps the current protocol, the electrical interface and the

transmission speed. Reactivates the signal management mode.
Purges the receive buffer. CreateFile does not attempt to create the
connection.

CloseHandle Purges the transmit buffer. In LAPB mode, the receiver is not
inhibited. Protocol frames can thus be received and answered.
CloseHandle does not attempt to break the connection..

ReadFile Reads a frame in the board buffer or awaits the arrival of an
information frame. Returns ERROR_HANDLE_EOF if the link is
disconnected or broken during the wait. ReadFile is subject to the
timeouts set by SetCommTimeouts.

WriteFile Places a frame in the transmit buffer and waits if the buffer is full.
Returns ERROR_NOT_READY if the link is disconnected or
broken during the wait. WriteFile is subject to the timeouts set by
SetCommTimeouts.

SetCommMask/GetCommMask/WaitCommEvent
The EV_MCXLAPB event (the equivalent of EV_EVENT1 in
Win32) can be processed. It is triggered each time an interrupt of the
LAPB state is received (see list of states below).

DeviceIoControl(...,IOCTL_SERIAL_SET_SYNC_STATE,...)
Sets the protocol and the associated options. See the “Reference
Manual” section.

DeviceIoControl(...,IOCTL_SERIAL_CMD_AUTO,...)
Sends a command not directly supported by the Win32 interface. . In
particular, the PRCTL command enables the state of the protocol to
be checked with the ABMLINKUP, ABMLINKDN, and
ABMSTATE options. See the sample files and the detailed reference
in section 41.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

30

Driver states
A LAPB channel can be in one of the 4 states shown in the diagram below :

OFF
128

GO-UP
132

ON
129

GO_DN
134

UP

DOWN

DOWN

Software generated transitions
Board generated transitions

UP FAIL

REMOTE
DISC

UP SUCCESS

DOWN
COMPLETE

LINK
ERROR

New state Triggered by
MCX_LINK_OFF

(down,
disconnected)

• DeviceIoControl(SET_SYNC_STATE) switching to LAPB protocol
• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKDN command

(if the disconnection occurs after the command has finished)
• State interrupt, failure of an attempted connection by PRCTL

ABMLINKUP
• State interrupt, disconnection following a fatal transmission error
• State interrupt, successful disconnection request by PRCTL

ABMLINKDN

MCX_LINK_GO_UP
(connection in

progress)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKUP command
• State interrupt, temporary disruption following a recoverable error

MCX_LINK_ON
(up, connected)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKUP command
(if the connection occurs before the end of the command)

• State interrupt, reception of a request or acknowledgement of a
connection

MCX_LINK_GO_DN
(break in progress)

• DeviceIoControl(CMD_AUTO) with PRCTL ABMLINKDN command

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

31

Effect of state changes
No action is taken when the state change is caused by the application. The table below
summarises the action taken when a state change is interrupted.

New state Action
MCX_LINK_OFF EV_MCXLAPB signalled if specified by an earlier SetCommMask

Any ReadFile will return 0 characters and the ERROR_HANDLE_EOF
error
Any WriteFile will return the ERROR_NOT_READY error.

MCX_LINK_ON EV_MCXLAPB signalled if specified by an earlier SetCommMask

Current status information
There are three ways to obtain information on the state of the connection.

The first, imprecise, consists of assuming that the PRCTL/ABMLINKUP command always
switches to the MCX_LINK_ON state, that PRCTL/ABMLINKDN always switches to the
MCX_LINK_OFF state, and detecting any disconnections that may occur by analysing the
errors returned by ReadFile and WriteFile. With this method a LAPB channel can be used
as a filter with the system’s standard commands, by establishing and breaking the
connection with the MCXMODE utility.

The second method consists of using the PRCTL/ABMSTATE to query the channel.

The third method consists of using WaitCommEvent to instantly detect state changes that
have been caused by the board or by the other end of the connection. As a rapid sequence
of events can result in just one wake-up of WaitCommEvent, it is advisable to
systematically query the channel state after a wake-up, and to consider that some steps in
the sequence of states can be ignored. Note that the events are memorised as soon as they
are selected by SetCommMask, and that, subsequently, one or more events occurring
between two consecutive WaitCommEvent services cannot be lost (but may be combined
into one event).

All three sources of information should be used in a complete process.

I.4 Programming driver-specific services.

The Win32 DeviceIoControl() function has been extended to dialogue directly with the
software installed on the board. This makes it possible to send the commands manually, i.e.
bypassing the driver. For details of these commands, see the “MCX board basic software user
manual” and the “MCX board multiprotocol software user manual”. For a full description, see
page 41, and for an example of how to use the command, see the program sources
"a:\winnt\sdk\msvc\utils\mccioctl.c" and "a:\winnt\sdk\msvc\special\addfunc.c".

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

32

I.5 Standard Windows NT utilities.
If you just want to use the standard Windows NT utilities with your MCX boards, it is
advisable to select the name “COM” in the installation procedure.

Control panel
Do not use the “ports” icon to create the COM channels for MCX boards because the driver
creates these names automatically. However, you can use this dialogue to change the
transmission parameters (this is useful if a channel is used by the Print Manager). Moreover,
you should not try to use this dialogue to define addresses or interrupts.

HyperTerminal.exe
This Windows NT 4 accessory works normally with this driver.

Terminal.exe
This Windows NT 3.x accessory only supports the COM1 thru COM9 ports.

Mode.exe
This DOS utility only supports the names that begin with COM (and, in Windows NT 3.1,
only COM1 thru COM9). It can only be used to modify asynchronous transmission modes.
Our mcxmode.exe utility can be used to work around these restrictions (see the description of
mcxmode.exe).

Remote Access Services
This communication system has been successfully tested from version 1.6.3 of the driver
upwards, in single-channel server mode on Windows NT 3.51 Workstation. The Windows
NT 4.0 dialling interface does not work with this driver.

Serial printers
Because of a fault in the Windows NT 3.51 Print Manager, you should proceed as follows to
create a printer :

- Use the “Ports” icon in the “Control Panel” to modify or at least display the parameters for
the particular port. You must use the <OK> button to validate.

- Use the “Services” icon in the “Control Panel”: stop the service called “Spooler” and
restart it immediately. This will recognise the new ports and its parameters.

- “Printers” icon in the “Control Panel”: in the Print Manager, go to the “Printer” menu and
select <Create a printer...>. Fill in the form; the port should appear in the <Print to:> list.
The installation procedure ends here.

Command.exe (command line prompt in the DOS window)
The names COM1 thru COM9 can be used directly here. Otherwise, use the standard names
\\.\name-assigned-on-installation, for example, to redirect console output :

C:> DIR > COM9 } Either format may
C:> DIR > \\.\COM9 } be used
C:> DIR > \\.\COM10 This is the only format authorised if the installed

name is COM
C:> DIR > \\.\MCX101 This is the only format authorised if the name is

MCX1

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

33

I.6 Other utilities.

The MCXMODE utility can be used to customise the transmission characteristics in
synchronous or asynchronous mode. The MCXMODE command, used without parameters,
displays on-line help.

The MCCIOCTL utility can be used to send the command as an argument directly to the
board. The MCCIOCTL command, entered without parameters, displays on-line help.

The DOSDEV utility manages the links between the names of Windows NT objects and DOS
peripherals. It remains effective until the system is shut down. The syntax is as follows :

dosdev lists the aliases.
dosdev -l COMn \Device\McxCNN creates the COMn alias for the McxCNN device.
dosdev -r COMn deletes the COMn alias.

(where n is the number of the COM port, C is the number of the MCX board and NN is the
number of the channel on the board).

The SETMCX utility can be used to display or modify a board’s parameters from the
command line or in a “batch” process :

SETMCX on-line help
SETMCX n displays all the parameters of board n
SETMCX n param displays the value of the param parameter for board n
SETMCX n param val assigns the value val to the param parameter for board n
SETMCX n Compatibility +code –code...

adds/removes the code bit to/from the configuration options

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

34

II DETAILED REFERENCE MANUAL.
The driver-specific functions can be accessed via DeviceIoControl(). They use definitions
and structures described in “mcc_mcx.h” or in “mcxproto.h” for functions that are specific to
Multiprotocol mode.

II.1 Extract from the mcc_mcx.h file
#include "mcc_mcx.h"

/* serial IOCTL codes for Windows NT */
#if defined(CTL_CODE) && defined(FILE_DEVICE_SERIAL_PORT)

#define MCX_IOCTL(code) \
CTL_CODE(FILE_DEVICE_SERIAL_PORT,code,\

METHOD_BUFFERED,FILE_ANY_ACCESS)
#define IOCTL_SERIAL_GET_SYNC_STATE MCX_IOCTL(0x901)
#define IOCTL_SERIAL_SET_SYNC_STATE MCX_IOCTL(0x902)
#define IOCTL_SERIAL_CMD MCX_IOCTL(0x903)
#define IOCTL_SERIAL_CMD_AUTO MCX_IOCTL(0x904)
#define IOCTL_SERIAL_ACCESS_AREA MCX_IOCTL(0x90A)
#define IOCTL_SERIAL_MCX_OPTIONS MCX_IOCTL(0x90B)

#endif /* Windows NT */

/* macros and structs for CMD & CMD_AUTO */
typedef struct mcc_cmd {

unsigned char opcode;
unsigned char status;
unsigned char par[76];
unsigned char ichan;
unsigned char icond;
unsigned char ipar1;
unsigned char ipar2;
unsigned char ipar3;
unsigned char padding1;
unsigned char *data;
unsigned char *kdata;
unsigned short length;
unsigned short padding2;

}mcc_cmd;

typedef struct _MCC_CMD { /* buffer for ioctls CMD... */
mcc_cmd Cb;
unchar Data[1];

} MCC_CMD, *PMCC_CMD;

/* size assigned to contain the struct _MCC_CMD */
#define MCX_DIRECT_IO_BUFFER_SIZE(datalen)

((datalen)+sizeof(mcc_cmd))

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

35

typedef struct _MCX_SYNCHRONIZATION_PARAMETERS {
 unchar SynchronousMode; /* protocol */
#define MCX_SYNC_CHAR 0 /* NOT synchronous */
#define MCX_SYNC_BISYNC 2
#define MCX_SYNC_HDLC 4
#define MCX_SYNC_LAPB 5 /* LAPB, HDLC/ABM */
 unchar Duplex; /* flag version+2 bits duplex */
#define MCX_WAY_VERSION 0x80/* validity bit Version field */
#define MCX_WAY_FULLDUPLEX 0x80/* full duplex + version */
#define MCX_WAY_HALFDUPLEX 0x81/* low RTS in each frame */

/*--------- horloges --------- */
/* ETTD ETCD NULL-MODEM */

 unchar TransmitClockSource; /* TXCI BRG BRG */
 unchar ReceiveClockSource; /* RXC BRG RXC */
 unchar TxClockPinSource; /* TRXC_HIGH BRG BRG */
#define MCX_CLOCK_RXC 0 /* modes for TransmitClockSource... */
#define MCX_CLOCK_TXCI 1 /* ... and ReceiveClockSource

*/
#define MCX_CLOCK_TRXC_HIGH 0 /* TxClockPinSource = always high */
#define MCX_CLOCK_TXCLOCK 1 /* = copy of TransmitClockSource */
#define MCX_CLOCK_BRG 2 /* common modes */
#define MCX_CLOCK_DPLL 3
 unchar MonosyncChar;
 unchar BisyncChar;
 unchar Version; /* valid if Duplex = MCX_WAY... */
 McxUnshort Options; /* dfault: 0 */
#define MCX_HDLC_USERDTR 1 /* slows HDLC but enables DTR */
#define MCX_HDLC_SPECS 2 /* Use the Protocol.Hdlc struct below */
#define MCX_BISYNC_SPECS 2 /* Use the Protocol.Bisync struct below */
 McxUnshort DataLength; /* max. frame size (LAPB N1) */
union{
 struct{

unchar RxFrames; /* default: 14 */
unchar TxFrames; /* default: 4 */
McxUnshort Spare1; /* reserved, set to zero */
McxUnshort Spare2; /* reserved, set to zero */
McxUnshort Spare3; /* reserved, set to zero */
McxUnshort Spare4; /* reserved, set to zero */
McxUnshort Spare5; /* reserved, set to zero */

 }Hdlc, Bisync;
#define MCX_HDLC_DEFAULT 0 /* default for theses fields */
 struct{

unchar Role; /* default: CLIENT */
#define MCX_ROLE_CLIENT 1
#define MCX_ROLE_NETWORK 3

unchar K; /* default: 7 */
McxUnshort N2; /* default: 10 essais */
McxUnshort T1; /* default: 2550 ms */
McxUnshort T2; /* default: 0 */
McxUnshort T3; /* default: infinite */
McxUnshort Spare; /* reserved, set to zero */

#define MCX_LAPB_DEFAULT 0 /* default for theses fields */
 }Lapb;
 }Protocol;
} MCX_SYNCHRONIZATION_PARAMETERS, *PMCX_SYNCHRONIZATION_PARAMETERS;

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

36

/* structure for IOCTL_SERIAL_ACCESS_AREA */
typedef struct _MCX_AREA_DESCRIPTOR {
 long Operation; /* combin.of the following flags */
#define MCX_AREA_GET 0 /* board to application */
#define MCX_AREA_SET 1 /* application to board */
#define MCX_AREA_MEMORY 0 /* acces to mailbox */
 long StartAddress; /* starting address of access */

/* relative to the base port or */
/* the start of the mailbox */

 long Length; /* length to transfer */
 unchar Buffer[1]; /* values to write if MCX_AREA_SET */
} MCX_AREA_DESCRIPTOR, *PMCX_AREA_DESCRIPTOR;
#define MCX_AREA_DESCRIPTOR_SIZE(dlen) \

((dlen)+sizeof(MCX_AREA_DESCRIPTOR)-1)

/* structure for IOCTL_SERIAL_SET_OPTIONS */
typedef struct _MCX_OPTION {
 long Option; /* option code */
#define MCX_OPTION_GET_CHANNEL 0x20002 /* get channel n° */
#define MCX_OPTION_SET_DSR_RI_INVERSION 0x30100 /* exchange DSR/RING */
#define MCX_OPTION_GET_DSR_RI_INVERSION 0x40001 /* get DSR/RING state */
#define MCX_OPTION_GET_COMPATIBILITY 0x50004 /* get current Compatibility */
 union{

long Long[1];
short Short[1];
unchar Char[1];

 }Value; /* parameters used by option */
} MCX_OPTION, *PMCX_OPTION;
#define MCX_OPTION_SIZE(dlen) \

((dlen)+sizeof(MCX_OPTION)-sizeof(long))

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

37

II.2 SET/GET SYNC STATE functions

Two functions have been added to customise the format of synchronous frames.

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_SET_SYNC_STATE,
frameFormatBuffer, sizeof(MCX_SYNCHRONIZATION_PARAMETERS),
NULL, 0, lpcbBytesReturned, lpoOverlapped)

DeviceIoControl(hDevice, IOCTL_SERIAL_GET_SYNC_STATE, NULL, 0,
frameFormatBuffer, sizeof(MCX_SYNCHRONIZATION_PARAMETERS),
lpcbBytesReturned, lpoOverlapped)

HANDLE hDevice; /* Handle of the device */
PMCX_SYNCHRONIZATION_PARAMETERS frameFormatBuffer; /* pointer to parameters */
LPDWORD lpcbBytesReturned; /* size of returned params */
LPOVERLAPPED lpoOverlapped; /* overlapped struct. addr */

The SET function can be used to select the frame format : HDLC, etc. The integer pointed to
by lpcbBytesReturned always takes the value 0. WARNING : in driver versions earlier than
1.8.3, this function returns an error if the state of the port set previously by SetCommState
contains options not supported by the board (e.g. ByteSize=7 in HDLC mode). In the later
versions, the port is forced to a “reasonable” state.

The GET function consults the current frame parameters. The integer designated by
lpcbBytesReturned always takes the value
sizeof(MCX_SYNCHRONIZATION_PARAMETERS).

The MCX_SYNCHRONIZATION_PARAMETERS structure is made up of the following items :

UCHAR SynchronousMode; Protocol: MCX_SYNC_HDLC, MCX_SYNC_BISYNC,
MCX_SYNC_LAPB or MCX_SYNC_CHAR. The
MCX_SYNC_CHAR mode corresponds to asynchronous
transmissions. LAPB is also known as HDLC/ABM.

UCHAR Duplex; Simultaneous transmission : MCX_WAY_FULLDUPLEX
(simultaneous transmission and reception), or
MCX_WAY_HALFDUPLEX (alternating transmission and
reception ; see the details of this mode in the Multiprotocol
Manual [DT003]).

Important : most of the functionalities used in half-duplex mode
can be activated by correctly configuring the full-duplex mode.
Half-duplex mode should only be used when it is really
necessary (it is the only way to prevent transmission when
reception is in progress).

Half-duplex mode forces fOutxCtsFlow = TRUE, fRtsControl =
RTS_CONTROL_TOGGLE, and ignores data received without
DCD. It prohibits transmission when DCD is active and also
when DSR is active with fDsrSensitivity = TRUE.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

38

UCHAR TransmitClockSource; Transmit clock source (see below).

UCHAR ReceiveClockSource; Receive clock source (see below).

Constant clock source
MCX_CLOCK_RXC pin 17 (RxClock)
MCX_CLOCK_TXCI pin 15 (TxClock)
MCX_CLOCK_BRG internal bauds generator
MCX_CLOCK_DPLL decoded in data (only with FM or

Manchester coding)

UCHAR TxClockPinSource; Clock source available on pin 24. Warning : this pin is
disabled if MCX_CLOCK_TXCI is used (by
TransmitClockSource on ReceiveClockSource).

Constant clock source
MCX_CLOCK_TRXC_HIGH none (pin set to MARK state)
MCX_CLOCK_TXCLOCK like TransmitClockSource
MCX_CLOCK_BRG internal bauds generator
MCX_CLOCK_DPLL decoded in data (only with FM

or Manchester coding)

UCHAR MonosyncChar; First sync character in BISYNC mode. The only sync
character in MONOSYNC mode. Ignored in the other
modes.

UCHAR BisyncChar; Second sync character in BISYNC mode. Ignored in the
other modes.

UCHAR Version; Version of the structure. Should always = 1.

USHORT Options; Protocol options. Each option is a bit that must be added if
the option is to be used.
• MCX_HDLC_USERDTR enables the use of the CCITT

108 (DTR) circuit in HDLC, LAPB, and X25 modes on
channels 1, 2, and 3 of the MCX and MCX-Lite/S boards.
However, this will limit the performance levels2.

• MCX_HDLC_SPECS forces the use of the elements of
the Protocol.Hdlc structure, which are ignored otherwise.

• MCX_BISYNC_SPECS forces the use of the elements of
the Protocol.Bisync structure, which are ignored
otherwise.

USHORT DataLength; Maximum frame length. If the value is set to 0, the default
length will be used (see the PROTO command in the
Multiprotocol documentation [DT003]).

union {...} Protocol; The sub-structures specified here can be used to specify the
parameters for a specific protocol.

2 See the PROTO documentation in the “Multiprotocol Software User Manual” [DT003]

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

39

The following should be specified for LAPB only :

UCHAR Protocol.Lapb.Role; MCX_ROLE_CLIENT if the application acts as a client
(ETTD), MCX_ROLE_if the application serves the
network.

UCHAR Protocol.Lapb.K,N2,T1,T2,T3
Standardised LAPB parameters. MCX_LAPB_DEFAULT
will invoke the default value3.

USHORT Protocol.Lapb.Spare; Zone reserved for LAPB.

The following elements should be specified for HDLC only :

UCHAR Protocol.Hdlc.RxFrames;
Number of frames acceptable in reception mode without
risk of loss if the PC does not read them immediately from
the board (number of frame receive buffers on the board).
The value 0 resolves to the default value3.

UCHAR Protocol.Hdlc.TxFrames;
Number of frames that the board can memorise as awaiting
transmission (number of frame transmit buffers on the
board). The WriteFile() function will never halt processing
if a frame buffer is available on the board at the time of the
call. The value 0 resolves to the default value3.

USHORT Protocol.Hdlc.Spare1; à Spare5;
Zones reserved for HDLC.

The following elements should be specified for BISYNC only :

UCHAR Protocol.Bisync.RxFrames ;
Number of frames acceptable in reception mode without
risk of loss if the PC does not read them immediately from
the board (number of frame receive buffers on the board).
The value 0 resolves to the default value3.

UCHAR Protocol.Bisync.TxFrames ;
Number of frames that the board can memorise as awaiting
transmission (number of frame transmit buffers on the
board). The WriteFile() function will never halt processing
if a frame buffer is available on the board at the time of the
call. The value 0 resolves to the default value3.

USHORT Protocol.Bisync.Spare1 à Spare5 ;
Zones reserved for BISYNC.

3 See the PROTO documentation in the “Multiprotocol Software User Manual” [DT003]

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

40

II.3 Example of SET_SYNC_STATE

#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

Proto(HANDLE chan, int fonc)
{

MCX_SYNCHRONIZATION_PARAMETERS sp;
DWORD count;
DWORD speed;

//
// switch to HDLC mode with the appropriate clocks
// for a NULL-MODEM cable (internal clocking)
//
sp.SynchronousMode = MCX_SYNC_HDLC;
sp.Version = 1;
sp.Duplex = MCX_WAY_FULLDUPLEX;
sp.Options = 0;
sp.DataLength = 0; /* default = 1,024 bytes */
sp.TransmitClockSource = MCX_CLOCK_BRG;
sp.ReceiveClockSource = MCX_CLOCK_RXC;
sp.TxClockPinSource = MCX_CLOCK_BRG;

if(!DeviceIoControl(
chan,IOCTL_SERIAL_SET_SYNC_STATE,
&sp,sizeof(sp),NULL,0,&count,NULL)) {

printf("SET_SYNC_STATE Ioctl: error %d\n",
GetLastError());

exit(1);
}

}

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

41

II.4 CMD and CMD_AUTO functions

Two communication functions have been added to enable manual dialogue with the on-board
interpreter. For a description of the commands, their parameters and data zone, consult the
appropriate manual for the “firmware” you are using (basic software [DT002] or
multiprotocol software [DT003]).

#include "windows.h"
#include "winioctl.h"
#include "mcc_mcx.h"

DeviceIoControl(hDevice, IOCTL_SERIAL_CMD,
paramsFromAppToBoard, paramsToSize,
paramsFromBoardToApp, paramsFromSize, lpcbBytesReturned,
lpoOverlapped
)

DeviceIoControl(hDevice, IOCTL_SERIAL_CMD_AUTO,
paramsFromAppToBoard, paramsAppSize,
paramsFromBoardToApp, paramsBoardSize, lpcbBytesReturned,
lpoOverlapped
)

HANDLE hDevice; /* Handle of the device */
PMCC_CMD paramsFromAppToBoard; /* pointer to sent parameters */
DWORD paramsAppSize, /* size of sent params */
PMCC_CMD paramsFromBoardToApp; /* pointer to returned parameters */
DWORD paramsBoardSize, /* size of space for returned params */
LPDWORD lpcbBytesReturned; /* size of returned params */
LPOVERLAPPED lpoOverlapped; /* overlapped struct. addr */

The IOCTL_SERIAL_CMD function can make the board execute any command.

The IOCTL_SERIAL_CMD_AUTO function can make the board execute any command
with parameter 1 being initialised by the driver, and the channel number corresponding to
hDevice.
The MCC_CMD type is a structure that matches that of the board’s mailbox. This enables the
application to transmit and receive parameters and data.

When a command is sent to the board by these functions, the driver executes one of the
following actions :
1) If it exists, the paramsFromAppToBoard→Data table is copied into the DATA zone of the

board’s mailbox,
2) the paramsFromAppToBoard→Cb.par[]table is copied into the mailbox’s PARAMETERS

zone,
3) paramsFromAppToBoard→Cb.opcode is copied into the mailbox’s OPCODE zone,
4) the binary value 0000 0001 is written into the mailbox’s VALIDATION byte. This causes

the board to execute the command. The board then issues an end of command interrupt that
enables the driver to continue processing,

5) the mailbox’s STATUS zone is copied into paramsFromBoardToApp→Cb.status

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

42

6) the PARAMETERS zone in the mailbox is copied into paramsFromBoardToApp→
Cb.par[],

7) if the paramsFromAppToBoard→Data existe, table exists, the mailbox’s DATA zone is
copied into paramsFromBoardToApp→Data,

8) the application is woken up or alerted depending on the lpoOverlapped value.

The length of the MCC_CMD Data field is variable. For example, the structure can be
created by dynamically allocating (sizeof(MCC_CMD)+data_length) bytes; the
MCX_DIRECT_IO_BUFFER_SIZE(datalen) macro can be used to calculate the required
number of bytes. The driver recognises the existence of the Data field if the Cb.length field is
non-null. Otherwise, it assumes that the command that is to be executed does not use the
mailbox’s DATA zone.

paramsAppSize must be equal to the sum of sizeof(MCC_CMD) and the length of the data
zone.

If the command has been executed correctly, the integer designated by lpcbBytesReturned will
still equal paramsBoardSize.

The _MCC_CMD structure contains the following elements :

unsigned char Cb.opcode; Code of the command that is to be executed. mcc_mcx.h
defines the symbolic names for these codes.

unsigned char Cb.status; The returned result supplied by the board in the STATUS
zone.

unsigned char Cb.par[76]; The command parameters; returned parameters for some
commands.

unsigned char Cb.ichan; }
unsigned char Cb.icond; } Returns a copy of the mailbox INTERRUPT
unsigned char Cb.ipar1; } zone. Theoretically, these five elements are not
unsigned char Cb.ipar2; } used 4.
unsigned char Cb.ipar3; }
unsigned char *Cb.data; Unused in Windows NT 5.
unsigned char *Cb.kdata; Field used temporarily by the driver during command

execution.
unsigned short Cb.length; Working length of the data zone in bytes.
unsigned char Data[0...]; Data zone that will be exchanged with the board’s mailbox;

because this zone must immediately follow the Cb structure,
the MCC_CMD variable length structure is used 6.

4 except for the LDIAL command used by the MCC board.
5 In a UNIX environment, pointer to the data zone that will be exchanged with the board’s mailbox.
6 This zone is not used in the UNIX driver.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

43

Notes
" To avoid errors, it is advisable to include the same pointer in paramsFromAppToBoard

and paramsFromBoardToApp, and the same length in paramsAppSize and
paramsBoardSize.

" To ensure compatibility with the UNIX driver, we suggest initialising
paramsFromAppToBoard→Cb.data = paramsFromAppToBoard→Data.

" To avoid confusion between Cb.par[]which starts at Cb.par[0], and the command
description which starts at PARAMETER 1, it is advisable to reference PARAMETER N
by :

paramsFromAppToBoard→Cb.par[N-1] to quote the PARAMETRE N.

Interactions between these functions and normal driver operation
The description below is up-to-date for version 1.8.3 of the driver. These interactions may
change in future versions.

ALLOC :
The driver detects this command and, if necessary, adjusts the buffer size information.
It can consequently replace SetupComm() which is ignored.

CHDEF :
A CHDEF is executed by the driver during SetCommState, if an attempt is made to
change DCB.EvtChar. In this case, only EvtChar is included in the CHDEF command.

MINTR :
- This command is executed during CreateFile, CloseHandle, DeviceIoControl
(IOCTL_SERIAL_SET_SYNC_STATE), SetCommMask (if the EV_RXFLAG is
activated or deactivated) and in some cases during ReadFile.
- The activated sources are: IT1, IT2 (bit Mde=1), IT3 (if EV_RXFLAG is active),
IT5, IT6, IT7.

PROTO :
- The driver detects this command and adjusts its own protocol information. It can
consequently replace DeviceIoControl SET_SYNC_STATE to enable the use of non-
standardised parameters ; this does not disrupt driver operation.
- The VINIT, RXENB, MINTR and, in some cases VMODE, EscapeCommFunction()
commands must then be executed to position RTS and DTR, and PurgeComm() to
purge the buffers.

RSMDE :
- No undesirable interaction.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

44

II.5 Samples of CMD and CMD_AUTO

Set422() switches an MCX serial channel to RS422 by sending the RSMDE command to the
board’s firmware.

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>
...

BOOLEAN Set422(HANDLE hfd)
{

MCC_CMD cmd;
long return_bytes;
int lasterror;

//
// init opcode and parameters, see RSMDE command in
// basic software or multiprotocol documentation
//
cmd.Cb.opcode = RSMDE;
cmd.Cb.par[1-1] = 0; // Will be replaced by channel n°
cmd.Cb.par[2-1] = 1; // Mode RS422 active
cmd.Cb.length = 0; // No data zone required

if(!DeviceIoControl(hfd, IOCTL_SERIAL_CMD_AUTO,
&cmd,sizeof(cmd),
&cmd,sizeof(cmd),
&return_bytes,NULL)) {

printf("Set422: error, code %d\n",GetLastError());
return FALSE;

}
return TRUE;

}

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

45

Relrp() runs the RELRP command on the board. This command is not linked to a particular
channel. The command sends information on the board type and capabilities.

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <winioctl.h>
#include <mcc_mcx.h>

BOOL Relrp()
{

PMCC_CMD command;/* space for RELRP and its parameters */
DWORD retLen; /* length returned by DeviceIoControl */
int cmdLen; /* length of command structure */
int dataLen; /* Length of the RELRP Data area */
HANDLE hDevice;

// one of the channels must be used (any one will do)
hDevice = CreateFile("\\\\.\\COM3",

GENERIC_WRITE|GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

//
// init opcode and data, see RELRP command in
// basic software or multiprotocol documentation
//
dataLen = 18;
cmdLen = MCX_DIRECT_IO_BUFFER_SIZE(dataLen);
command = malloc(cmdLen);
command->Cb.opcode = RELRP;
command->Cb.length = dataLen;
// the following assignment distinguishes the MCC boards
// which do not modify data item 18.
command->Data[18-1] = MCX_TYPE_MCC;

if(!DeviceIoControl(hDevice,IOCTL_SERIAL_CMD,
command, cmdLen, command, cmdLen, &retLen, NULL)){

printf("RELRP: Win32 error %d\n", GetLastError());
return FALSE;

}
if(command->Cb.status != 0){

printf("RELRP: failed, status %d\n", command->Cb.status);
return FALSE;

}
printf("RELRP: carte type %d à %d MHz, %d canaux\n",

command->Data[18-1], command->Data[11-1],
command->Data[9-1]);

free(command);
CloseHandle(hDevice);
return TRUE;

}

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

46

Appendix : flow control.

The boards in the MCX range, equipped with the MCX-MULTIPROTOCOL option, and used
with a version of the driver later than 1.7.0, support all the flow controls offered by the
Win32 API, and even some additional controls (accessible by executing the VMODE
command directly).

The restrictions affecting the operation of flow control are described below :

Methods supported
The following flow control options are supported :

- none
- XON/XOFF configurable
- DTR/CTS
- RTS/CTS

In all cases, both transmission directions are controlled. The two directions cannot be
configured independently.

Configuring the control method
The SetCommState service and the interpretation of the fields in the DCB structure (see page
26) have been adapted to address these constraints. The use of the Multiprotocol option and
the board configuration options (i.e. the Register Synchronous and Compatibility values) also
affect operation. Flow control is consequently supported as follows :
a) if the Synchronous indicator is set to 1 (with an old driver and/or old firmware), flow

control will not be supported because the board does not support the VMODE command,
b) otherwise, if fInX or fOutX is TRUE, flow control is XON/XOFF with the XonChar and

XoffChar characters,
c) otherwise, if fRtsControl is set to RTS_CONTROL_HANDSHAKE, flow control is

implemented by hardware with the RTS and CTS signals,
d) otherwise, if fOutxCtsFlow is TRUE or fOutxDsrFlow is TRUE or if fDtrControl is set to

DTR_CONTROL_HANDSHAKE, flow control is implemented by hardware with the
DTR and CTS signals,

e) otherwise there is no flow control.

Compatibility with earlier versions
Earlier versions of the boards and software did not support flow control by RTS/CTS. In any
of the following cases :

- the driver version is 1.6.2 or earlier,
- the “EPROM 1.8/3.8” configuration option has been validated,
- the version of the board firmware is earlier than 1.8,

Rules c) and d) must be combined into a single rule :
c+d) otherwise, if fOutxCtsFlow is TRUE or fOutxDsrFlow is TRUE or fDtrControl is set to

DTR_CONTROL_HANDSHAKE or fRtsControl is set to RTS_CONTROL_
HANDSHAKE, flow control is implemented by hardware with the DTR and CTS signals,

Note
To ensure compatibility with future versions, use the combination that matches the cable you
are actually using (e.g. if the incoming control signal is on CTS, use fOutxDsrFlow to manage
it instead of fOutxCtsFlow).

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

47

III APPENDIX : SPECIFIC ERROR CODES.
The error codes returned by the Win32 API are as described in the API documentation. Here,
however, is a selected list of error codes that are not easily understood :

2 ERROR_FILE_NOT_FOUND
The driver has not started. Consult the Event Viewer and the Device
Manager.

5 ERROR_ACCESS_DENIED
The channel has already been opened by another process.

21 ERROR_NOT_READY
In WriteFile, transmission is impossible because the Data Link layer
(LAPB) is not connected.

23 ERROR_CRC
In a ReadFile, this error indicates that the received frame contains an error
(all types of error generate this error code, and not just CRC errors).

38 ERROR_HANDLE_EOF
In LAPB protocol, indicates that the Data Link layer is disconnected before
or after the execution of a ReadFile, and that there is no outstanding frame
in the receive buffer.

57 ERROR_ADAP_HDW_ERR
Unexpected error on the MINTR command. Probably a board malfunction.

87 ERROR_INVALID_PARAMETER
1) In DeviceIoControl, WaitCommEvent, ReadFile and WriteFile, this

error can, in particular, indicate that the lpoOverlapped parameter does
not match the options requested in the CreateFile; either that or the
hEvent element in the OVERLAP structure is incorrect.

2) In DeviceIoControl, either one of the parameters or one of the elements
in the structure supplied in the third parameter position is incorrect.

122 ERROR_INSUFFICIENT_BUFFER
1) The length specified in DeviceIoControl is wrong.
2) In DeviceIoControl, the value of the Cb.length element in the

IOCTL_SERIAL_CMD or CMD_AUTO function is too small.

995 ERROR_OPERATION_ABORTED
1) The board did not answer a command within the timeout. The most likely

causes are : the interrupt supplying the active IRQ is not pushed in or is
the wrong one ; the board is very busy, in which case the
CommandTimeout parameter value should be increased ; or there is a
constant influx of parasites on the channel.

2) In LAPB protocol, a WriteFile was attempted when the link was down.

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

48

997 ERROR_IO_PENDING
The operation has not been completed. See GetOverlappedResult().

1450 ERROR_NO_SYSTEM_RESOURCES
A DeviceIoControl sent to the driver has not been recognised. The likely
causes are : the application sends a DeviceIoControl with a bad code ; the
version of Windows NT is not supported.

1784 ERROR_INVALID_USER_BUFFER
In WriteFile, the ‘count’ parameter is too high for the size of the buffer or
the frames, or exceeds the 31 Kbyte limit.

IV APPENDIX : LIMITATIONS AND DIFFERENCES WITH THE COM PORTS.
Several restrictions are due to the interactions between the different capabilities of the Win32
API, the driver, the firmware, and the board itself.

The board’s basic software limits the available flow control types (see Appendix entitled
“Flow control” above). The Multiprotocol option, though less effective in synchronous mode,
is not affected by this restriction.

134.5 bauds transmission speed : the DCB does not support this speed because BaudRate is a
LONG variable. However, the driver does support this speed via the value (ULONG)(-134).

The DSR signal (circuit 107) does not exist on all boards (see the board connector
documentation). A configuration option and an API function can be used to swap the
processing of this signal with RING, which enables a pseudo-DSR implementation, if an
appropriate cable is used.

In synchronous mode, the RING signal (circuit 125) is only available as from release E of the
MCX-BP connection package.
DTR in synchronous mode : see the Multiprotocol software manual [DT003] and the
MCX_HDLC_USERDTR indicator on page 38.

Supported speeds : see the appropriate firmware manual [DT002], [DT003].

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

49

PCI WAN HDLC RANGE, WINDOWS NT 4.0 AND 2000 USER MANUAL. REV A.1 APRIL 2002

50

CONTACT ACKSYS

Our sales department welcomes your enquiries about any aspect of our product range, from
signal converters to passive boards, and will gladly offer specific technical support to help you
with your own development projects. Please call us on :

01 39 11 62 81 in France or 33 1 39 11 62 81 from abroad

Our support hotline is charge-free on :
01 39 11 62 81 in France or 33 1 39 11 62 81 from abroad

	Presentation
	Operational restrictions
	Supported protocols€: an overview
	Asynchronous mode
	Synchronised asynchronous mode
	MONOSYNC and BISYNC modes
	Raw HDLC mode
	HDLC ABM or LAPB mode

	Physical board installation
	SW1, SW2 and SW3 switch settings
	Starting the board
	Diagnostic LEDs on the main board
	LEDs installed on the mezzanine board

	Wiring
	SUBD62 connector pin assignment
	Pin assignment for the 4P570M25 cable
	The electrical interfaces

	NT/2K driver
	Reboot
	Installation and configuration
	Configuring installed boards
	Board properties

	Checking the installation
	Développement tools and examples
	COM COMPATIBILITY MODES
	Application programming interface (API)
	Programming asynchronous communications
	Programming synchronous communications
	Programming the LAPB (or HDLC-ABM) protocol.
	Programming driver-specific services.
	Standard Windows NT utilities.
	Other utilities.

	Détailéd référence manual.
	Extract from the mcc_mcx.h file
	SET/GET SYNC STATE functions
	Example of SET_SYNC_STATE
	CMD and CMD_AUTO functions
	Samples of CMD and CMD_AUTO

	Appendix€: Specific error codes.
	Appendix€: limitations and différences with the COM ports.

	Entete.pdf
	For Windows NT/2000/XP

