
HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
Web: www.anybus.com

User Guide

Anybus
®

 CompactCom 40
Common Ethernet

Doc.Id. HMSI-27-269
Rev. 1.10

Important User Information

This document is intended to provide a good understanding of the functionality offered by Anybus CompactCom
40 Common Ethernet module. The document only describes the features that are specific to this module. For gen-
eral information regarding the Anybus CompactCom 40, consult the Anybus CompactCom 40 design guides.

The reader of this document is expected to be familiar with high level software design, and communication sys-
tems in general. The use of advanced EtherNet/IP-specific functionality may require in-depth knowledge in Ether-
Net/IP networking internals and/or information from the official EtherNet/IP specifications. In such cases, the
people responsible for the implementation of this product should either obtain the EtherNet/IP specification to gain
sufficient knowledge or limit their implementation in such a way that this is not necessary.

Liability

Every care has been taken in the preparation of this manual. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot
assume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their
respective holders.

Warning: This is a class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD
control procedures are not followed. Static control precautions are required when handling the prod-
uct. Failure to observe this may cause damage to the product.

Anybus CompactCom 40 Common Ethernet User Guide

Rev 1.10

Copyright© HMS Industrial Networks AB

Nov 2015 Doc Id HMSI-27-269

Chapter 1 About the Anybus CompactCom 40 Common Ethernet

General... 9

Features.. 9

Chapter 2 Basic Operation

General Information.. 10

Software Requirements ... 10

Device Customization ... 10
Network Identity ... 10
Web Interface... 11
Socket Interface (Advanced Users Only)... 11

Communication Settings ... 12
Communication Settings in Stand Alone Shift Register Mode ... 13

Diagnostics .. 13

Network Data Exchange... 14

File System... 15
Overview .. 15
General Information... 16
System Files ... 16

Chapter 3 Firmware Download / Firmware Upgrade

Using Firmware Manager II ... 17

Via the Internal File System.. 18

Chapter 4 FTP Server

General Information.. 19

User Accounts .. 19

Session Example... 20

Chapter 5 Web Server

General Information.. 21

Default Web Pages... 21
Network Configuration .. 22
Ethernet statistics page ... 24

Server Configuration.. 25
General Information... 25
Index Page... 25
Default Content Types ... 26
Authorization.. 26

Table of Contents

Table of Contents

Chapter 6 E-mail Client

General Information.. 28

How to Send E-mail Messages... 28

Chapter 7 Server Side Include (SSI)

General Information.. 29

Include File.. 29

Command Functions ... 30
General Information... 30
GetConfigItem() ... 31
SetConfigItem() .. 32
SsiOutput().. 34
DisplayRemoteUser ... 34
ChangeLanguage() ... 35
IncludeFile()... 36
SaveDataToFile() .. 37
printf() ... 38
scanf() .. 40

Argument Functions.. 42
General Information... 42
ABCCMessage() ... 42

SSI Output Configuration... 46

Chapter 8 JSON

General Information.. 47

JSON Objects ... 47
ADI.. 47
Module .. 50
Network .. 51
Services .. 55
Hex Format Explained... 55

Example ... 55

Chapter 9 Anybus Module Objects

General Information.. 56

Anybus Object (01h).. 57

Diagnostic Object (02h) .. 58

Network Object (03h) ... 59

Network Configuration Object (04h) ... 60

Socket Interface Object (07h) .. 69

SMTP Client Object (09h) .. 86

Anybus File System Interface Object (0Ah) .. 91

Network Ethernet Object (0Ch).. 104

Chapter 10 Host Application Objects

General Information.. 105

Ethernet Host Object (F9h) ... 106

Application File System Interface Object (EAh) .. 110

Appendix A Categorization of Functionality

Basic ... 123

Extended.. 123

Appendix B Implementation Details

SUP-Bit Definition... 124

Anybus Statemachine... 124

Application Watchdog Timeout Handling ... 124

Appendix C Message Segmentation

General... 125

Command Segmentation... 126

Response Segmentation... 127

Appendix D Secure HICP (Secure Host IP Configuration Protocol)

General... 128

Operation... 128

Appendix E Technical Specification

Front View .. 129
Network Status LED... 129
Module Status LED ... 129
LINK/Activity LED 3/4 .. 130

Protective Earth (PE) Requirements... 130

Power Supply .. 130

Environmental Specification .. 130

EMC Compliance... 130

Appendix F Copyright Notices

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documents

P.2 Document History

Summary of Recent Changes (1.06... 1.10)

Revision List

Document Author

Anybus CompactCom 40 Software Design Guide HMS

Anybus CompactCom M40 Hardware Design Guide HMS

Anybus CompactCom 40 Network Guides

Change Page(s)

Updated JSON chapter 47

Updated Ethernet Host Object (F9h) 106

Changed advanced to extended, removed category advanced

Revision Date Author(s) Chapter(s) Description

0.95 2014-06-17 KeL - Preliminary

1.00 2014-09-09 KaD All First release

1.01 2014-09-10 KaD 7 Minor corrections

1.05 2014-09-22 KaD 1, 2, 3, E Major update

1.06 2015-01-22 KaD F Minor update

1.10 2015-11-04 KeL 8, 10 Minor update

About This Document 8

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘module’ refers to the Anybus CompactCom 40 module.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus module.

• Hexadecimal values are either written in the format NNNNh or the format 0xNNNN, where
NNNN is the hexadecimal value.

P.4 Support

For general contact information and support, please refer to the contact and support pages at
www.anybus.com.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 1

1. About the Anybus CompactCom 40 Common
Ethernet

1.1 General

The Anybus CompactCom 40 Common Ethernet communication module provides a common platform
for the Industrial Ethernet networks, that are supported in the Anybus CompactCom 40 product family.
The communication software for the selected network is downloaded to the module and the module will
seamlessly integrate to the network. It is also possible to use the module as a general Ethernet interface,
using the included TCP/IP stack (See “Socket Interface Object (07h)” on page 69).

The modular approach of the Anybus CompactCom 40 platform allows the module to be customized,
allowing the end product to appear as a vendor-specific implementation rather than a generic Anybus
module.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules defined
in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully interchangeable
with any other device following that specification. Generally, no additional network related software
support is needed, however in order to be able to take full advantage of advanced network specific func-
tionality, a certain degree of dedicated software support may be necessary.

1.2 Features

• Two Ethernet ports

• Ethernet RJ45 connectors

• Common hardware platform for Ethernet networks

• 10/100 Mbit, full/half duplex operation

• Web server w. customizable content

• FTP server

• E-mail client

• JSON functionality

• Server Side Include (SSI) functionality

• Transparent Socket Interface

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 2

2. Basic Operation

2.1 General Information

At delivery the module supports general Ethernet functionality, such as e.g. FTP and web server. The
built in socket interface allows additional protocols to be implemented on top of TCP/IP, see “Socket
Interface (Advanced Users Only)” on page 11.

Firmware to enable communication with another network, can be downloaded in different ways, see
“Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”” on page 10.

2.2 Software Requirements

Generally, no additional network support code needs to be written in order to support the Anybus Com-
pactCom 40 Common Ethernet. However, certain restrictions must be taken into account.

• Certain functionality in the module requires that the command ‘Get_Instance_Num-
ber_By_Order’ (Application Data Object, FEh) is implemented in the host application.

For in-depth information regarding the Anybus CompactCom 40 software interface, consult the general
Anybus CompactCom 40 Software Design Guide.

See also...

• “Diagnostic Object (02h)” on page 58 (Anybus Module Objects)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

2.3 Device Customization

2.3.1 Network Identity

By default, the module uses the following identity settings:

• Vendor ID: 005Ah (HMS Industrial Networks)

• Device Type: 002Bh (Generic Device)

• Product Code: 00A3h (Common Ethernet)

• Product Name: ‘Anybus CompactCom 40 Common Ethernet’

Depending on network downloaded, it is possible to customize the identity of the module by imple-
menting the corresponding instance attributes in the respective network Host Objects.

Basic Operation 11

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

2.3.2 Web Interface

The web interface can be fully customized to suit a particular application. Dynamic content can be cre-
ated by means JSON and SSI scripting. Data and web pages are stored in a FLASH-based file system,
which can be accessed using any standard FTP-client or the File System Interface Object.

See also...

• “File System” on page 15

• “FTP Server” on page 19

• “Web Server” on page 21

• “Server Side Include (SSI)” on page 29

• “JSON” on page 47

2.3.3 Socket Interface (Advanced Users Only)

The built in socket interface allows additional protocols to be implemented on top of TCP/IP. Data is
structured by the application and is then embedded within the Ethernet frames. The host application
can open network connections of its own to other nodes on the network, e.g. if you want to connect to
another server or use a web server of your own.

See also...

• “Socket Interface Object (07h)” on page 69 (Anybus Module Object)

• “Message Segmentation” on page 125

Basic Operation 12

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

2.4 Communication Settings

As with other Anybus CompactCom products, network related communication settings are grouped in
the Network Configuration Object (04h).

In this case, this includes...

• TCP/IP settings

These settings must be set properly in order for the module to be able to participate on the net-
work.

The module supports DHCP, which may be used to retrieve the TCP/IP settings from a DHCP-
server automatically. DHCP is enabled by default, but can be disabled if necessary.

• Physical Link Settings

By default, the module uses auto negotiation to establish the physical link settings, however it is
possible to force a specific setting if necessary.

The parameters in the Network Configuration Object (04h) are available from the network through the
built in web server.

See also...

• “Web Server” on page 21

• “Network Configuration Object (04h)” on page 60 (Anybus Module Object)

• “Secure HICP (Secure Host IP Configuration Protocol)” on page 128

Basic Operation 13

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

2.4.1 Communication Settings in Stand Alone Shift Register Mode

If the Anybus CompactCom 40 is used stand alone, there is no application from which to set the IP
address. The IP address is instead set using the DIP1 switches (IP address byte 3) and the virtual attrib-
utes (Ethernet Host object (F9h), attribute #17), that are written to memory during setup (IP address
byte 0 - 2). A flowchart is shown below.

See also...

• “Ethernet Host Object (F9h)” on page 106

• Anybus CompactCom M40 Hardware Design Guide

• “Network Configuration Object (04h)” on page 60

2.5 Diagnostics

Start

DIP1 switch settings
(0 - 255)

 255 0

1 - 254

Values stored in
 Network Configuration
Object instances #3 - #6

 will be used

Ethernet
 Host Object (F9h),

attribute #17
implemented

Yes

No Use default value for
IP address bytes 0 - 2:

192.168.0.X

Use DIP switch settings
for IP address byte 3

End

Use attribute #17 values
for IP address bytes 0 - 2

IP address is stored in Network
Configuration Object (04h),

 instance #3

Check for DHCP
availability

Yes

No

DHCP will be used for
communication settings,

that will be stored in
Network Configuration

Object (04h), instances #3 - #6

Values stored in
 Network Configuration
Object instances #3 - #6

 will be used

Network Configuration Object (04h)
Instance #4, Subnet mask: 255.255.255.0

Instance #5 Gateway address: 0.0.0.0
Instance 6, DHCP: OFF

Basic Operation 14

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Events and their severity value are recorded in the Diagnostic Object.

See also...

• “Diagnostic Object (02h)” on page 58 (Anybus Module Object)

2.6 Network Data Exchange

The Anybus CompactCom 40 Common Ethernet does not perform any network specific handling of
the process data.

For information on network data exchange for supported networks, please consult the respective net-
work guides, available at the support pages at www.anybus.com.

Basic Operation 15

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

2.7 File System

Category: Extended

2.7.1 Overview

The Anybus CompactCom 40 Common Ethernet has an in-built file system, that can be accessed from
the application and from the network. Three directories are predefined:

• VFS - The virtual file system that e.g. holds the Anybus default web pages of the module.

• Application - This directory provides access to the application file system through the Applica-
tion File System Interface Object (EAh).

• Firmware - Firmware updates are stored in this directory.

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware

Basic Operation 16

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

2.7.2 General Information

The built-in file system hosts 28 MByte of nonvolatile storage, which can be accessed by the HTTP and
FTP servers, the e-mail client, and the host application (through the Anybus File System Interface Ob-
ject (0Ah)).

The file system uses the following conventions:

• ‘\’ (backslash) is used as a path separator

• Names may contain spaces (‘ ’) but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the following
characters: ‘\ / : * ? “ < > |’

• Names cannot be longer than 48 characters

• A path cannot be longer than 126 characters (filename included)

See also...

• “FTP Server” on page 19

• “Web Server” on page 21

• “E-mail Client” on page 28

• “Server Side Include (SSI)” on page 29

• “Anybus File System Interface Object (0Ah)” on page 91

• “Application File System Interface Object (EAh)” on page 110

IMPORTANT: The file system is located in flash memory. Due to technical reasons, each flash segment can be erased
approximately 100000 times before failure, making it unsuitable for random access storage.

The following operations will erase one or more flash segments:

• Deleting, moving or renaming a file or directory

• Writing or appending data to an existing file

• Formatting the file system

2.7.3 System Files

The file system contains a set of files used for system configuration. These files, known as “system files”.
are regular ASCII files which can be altered using a standard text editor (such as the Notepad in Micro-
soft WindowsTM). The format of these files are, with a few exceptions, based on the concept of ‘keys’,
where each ‘key’ can be assigned a value, see below.

Example

[Key1]
value of Key1

[Key2]
value of Key2

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 3

3. Firmware Download / Firmware Upgrade

Download and upgrade of network communication firmware for a specific industrial Ethernet network
can be performed in different ways.

3.1 Using Firmware Manager II

This tool is available without cost from the HMS website, www.anybus.com. It can be used to download
new firmware or firmware upgrades for all Anybus CompactCom modules.

Using the tool, perform the following steps to download new firmware to the module.

1. Connect a computer with the Firmware Manager II software installed to the network containing
the module.

2. Start the Firmware Manager II tool.

3. Scan the network and find the module.

4. Click the Firmware Repository icon in the menu, to open the Firmware Repository window.
Drag the firmware folder into the window to add the new firmware to the repository. Close the
Firmware Repository window.

5. In the scan window, under the “Available Networks” tab, select the appropriate firmware for the
module. Click the “Change Network” button. A confirmation window will appear. Clicking
“Yes” will start the download of the new firmware.

6. After download, a restart of the module is needed to install the new firmware. If the application
allows it, it is possible to restart the module via the “Restart Module” button in the Firmware
Manager II tool. If the application does not allow restart from the network, a manual restart of
the module is needed.

For more information, see the help file in the Firmware Manager II software.

Firmware Download / Firmware Upgrade 18

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

3.2 Via the Internal File System

The internal file system of the module includes a directory (/firmware), where the new firmware or the
upgrade is stored. The file system can be accessed through FTP or via the File System Interface Object.
The next time the module is started, the new firmware will be installed. After the firmware is installed,
the firmware file is deleted from the /firmware directory.

See also ...

• “File System” on page 15

• “FTP Server” on page 19

• “Application File System Interface Object (EAh)” on page 110

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 4

4. FTP Server

4.1 General Information

Category: extended

The built-in FTP server makes it easy to manage the file system using a standard FTP client. It can be
disabled using attribute #6 in the Ethernet Host Object (F9h), see page 106.

By default, the following port numbers are used for FTP communication:

• TCP, port 20 (FTP data port)

• TCP, port 21 (FTP command port)

The FTP server supports up to two concurrent clients.

4.2 User Accounts

User accounts are stored in the configuration file '\ftp.cfg'. This file holds the user names, passwords,
and home directory for all users. Users are not able to access files outside of their home directory.

File Format:

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
User3:Password3:Homedirectory3

Optionally, the UserN:PasswordN-section can be replaced by a path to a file containing a list of users
as follows:

File Format (‘\ftp.cfg’):

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
.
.
UserN:PasswordN:HomedirectoryN
\path\userlistA:HomedirectoryA
\path\userlistB:HomedirectoryB

The files containing the user lists shall have the following format:

File Format:

User1:Password1
User2:Password2
User3:Password3
.
.
.
UserN:PasswordN

Notes:

• Usernames must not exceed 16 characters in length.

• Passwords must not exceed 16 characters in length.

• All printable characters, except the separator ‘:’, are allowed in usernames and passwords.

FTP Server 20

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

• If ‘\ftp.cfg’ is missing or cannot be interpreted, all username/password combinations will be ac-
cepted and the home directory will be the system root (i.e. ‘\’).

• The home directory for a user must also exist in the file system if they should be able to log in,
just adding the user information to the 'ftp.cfg' file it is not enough.

• If ‘Admin Mode’ has been enabled in the Ethernet Object, all username/password combinations
will be accepted and the user will have unrestricted access to the file system (i.e. the home direc-
tory will be the system root)1.

• It is strongly recommended to have at least one user with root access (‘\’) permission. If not,
‘Admin Mode’ must be enabled each time a system file needs to be altered (including ‘\ftp.cfg’).

4.3 Session Example

The Windows Explorer features a built-in FTP client which can easily be used to access the file system
as follows:

1. Open the Windows Explorer.

2. In the address field, type FTP://<user>:<password>@<address>

- Substitute <address> with the IP address of the Anybus module

- Substitute <user> with the username

- Substitute <password> with the password

3. Press enter. The Explorer will now attempt to connect to the Anybus module using the specified
settings. If successful, the file system will be displayed in the Explorer window.

1. Apart from the vfs folder, that is read-only.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 5

5. Web Server

5.1 General Information

Category: extended

The built-in web server provides a flexible environment for end-user interaction and configuration pur-
poses. The powerful combination of JSON, SSI, and client-side scripting allows access to objects and
file system data, enabling the creation of advanced graphical user interfaces.

The web interface is stored in the file system, which can be accessed through the FTP server. If neces-
sary, the web server can be completely disabled in the Ethernet Host Object.

See also...

• “FTP Server” on page 19

• “JSON” on page 47

• “Server Side Include (SSI)” on page 29

• “Ethernet Host Object (F9h)” on page 106

5.2 Default Web Pages

The default web pages provide access to:

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs folder.
These files are read only and cannot be deleted or overwritten. The web server will first look for a file
in the web root folder. If not found it will look for the file in the vfs folder, making it appear as the files
are located in the web root folder. By loading files in the web root folder with exactly the same names
as the default files in the vfs folder, it is possible to customize the web pages, replacing such as pictures,
logos and style sheets.

If a complete customized web system is designed and no files in the vfs folder are to be used, it is rec-
ommended to turn off the virtual file system completely, see the File System Interface Object.

See also...

• “File System” on page 15

• “Anybus File System Interface Object (0Ah)” on page 91

Web Server 22

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

5.2.1 Network Configuration

The network configuration page provides an interface for changing TCP/IP and SMTP settings in the
Network Configuration Object.

The module needs to be reset for the TCP/IP and SMTP settings to take effect. The Ethernet Config-
uration settings will take effect immediately.

Available editable settings will be explained on the next page.

Web Server 23

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

IP Configuration

The module needs a reset for any changes to take effect.

Ethernet Configuration

Changes will take effect immediately.

SMTP Settings

The module needs a reset before any changes take effect

Name Description

DHCP Enable or disable DHCP
Default value: enabled

IP address The TCP/IP settings of the module
Default values: 0.0.0.0
Value ranges: 0.0.0.0 - 255.255.255.255

Subnet mask

Gateway

Host name IP address or name
Max 64 characters

Domain name IP address or name
Max 48 characters

DNS 1 Primary and secondary DNS server, used to resolve host name
Default values: 0.0.0.0
Value ranges: 0.0.0.0 - 255.255.255.255

DNS 2

Name Description

Port 1 Ethernet speed/duplex settings
Default value: autoPort 2

Name Description

Server IP address or name
Max 64 characters

User Max 64 characters

Password Max 64 characters

Confirm password

Web Server 24

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

5.2.2 Ethernet statistics page

The Ethernet statistics web page contains the following information:

Ethernet Link Description

Port 1 Speed: The current link speed.

Duplex: The current duplex configuration.

Port 2 Speed: The current link speed.

Duplex: The current duplex configuration.

Interface Counters Description

In Octets: Received bytes.

In Ucast Packets: Received unicast packets.

In NUcast packets: Received non unicast packets (broadcast and multicast).

In Discards: Received packets discarded due to no available memory buffers.

In Errors: Received packets discarded due to reception error.

In Unknown Protos: Received packets with unsupported protocol type.

Out Octets: Sent bytes.

Out Ucast packets: Sent unicast packets.

Out NUcast packets: Sent non unicast packets (broadcast and multicast).

Out Discards: Outgoing packets discarded due to no available memory buffers.

Out Errors: Transmission errors.

Media Counters Description

Alignment Errors Frames received that are not an integral number of octets in length.

FCS Errors Frames received that do not pass the FCS check.

Single Collisions Successfully transmitted frames which experienced exactly one
collision.

Multiple Collisions Successfully transmitted frames which experienced more than one
collision.

SQE Test Errors Number of times SQE test error messages are generated.a

a. Not provided with current PHY interface.

Deferred Transmissions Frames for which first transmission attempt is delayed because the
medium is busy.

Late Collisions Number of times a collision is detected later than 512 bit-times into
the transmission of a packet.

Excessive Collisions Frames for which a transmission fails due to excessive collisions.

MAC Receive Errors Frames for which reception of an interface fails due to an internal
MAC sublayer receive error.

MAC Transmit Errors Frames for which transmission fails due to an internal MAC sub-
layer receive error.

Carrier Sense Errors Times that the carrier sense condition was lost or never asserted
when attempted to transmit a frame.

Frame Size Too Long Frames received that exceed the maximum permitted frame size.

Frame Size Too Short Frames received that are shorter than lowest permitted frame size.

Web Server 25

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

5.3 Server Configuration

5.3.1 General Information

Category: extended

Basic web server configuration settings are stored in the system file ‘\http.cfg’. This file holds the root
directory for the web interface, content types, and a list of file types which shall be scanned for SSI.

The web root directory determines the location of all files related to the web interface. Files outside of
this directory and its sub-directories cannot be accessed by the web server.

5.3.2 Index Page

The module searches for possible index pages in the following order:

1. <WebRoot>\index.htm

2. <WebRoot>\index.html

3. <WebRoot>\index.shtm

4. <WebRoot>\index.wml

Note 1: Substitute <WebRoot> with the web root directory specified in ‘\http.cfg’.

Note 2: If no index page is found, the module will default to the virtual index file (if enabled).

See also...

• “Default Web Pages” on page 21

File Format:

[WebRoot]
\web

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

[SSIFileTypes]
FileType1
FileType2
...
FileTypeN

• Web Root Directory

The web server cannot access files outside this di-
rectory.

• Content Types

A list of file extensions and their reported content
types.

See also...

- “Default Content Types” on page 26

• SSI File Types

By default, only files with the extension ‘shtm’ are
scanned for SSI. Additional SSI file types can be
added here as necessary.

Web Server 26

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

5.3.3 Default Content Types

By default, the following content types are recognized by their file extension:

Content types can be added or redefined by adding them to the server configuration file, see “General
Information” on page 25.

5.3.4 Authorization

Directories can be protected from web access by placing a file called ‘web_accs.cfg’ in the directory to
protect. This file shall contain a list of users that are allowed to access the directory and its subdirectories.

File Extension Reported Content Type

htm, html, shtm text/html

gif image/gif

jpeg, jpg, jpe image/jpeg

png image/x-png

js application/x-javascript

bat, txt, c, h, cpp, hpp text/plain

zip application/x-zip-compressed

exe, com application/octet-stream

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wbmp image/vnd.wap.wbmp

wmls text/vnd.wap.wmlscript

wmlsc application/vnd.wap.wmlscriptc

xml text/xml

pdf application/pdf

css text/css

File Format:

Username1:Password1
Username2:Password2
...
UsernameN:PasswordN

[AuthName]
(message goes here)

• List of approved users.

• Optionally, a login message can be specified by including the
key [AuthName]. This message will be displayed by the web
browser upon accessing the protected directory.

Web Server 27

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

The list of approved users can optionally be redirected to one or several other files, see example below.

Note: if the list of approved users is put in another file, be aware that this file can be accessed and read
from the network.

Example:

In this example, the list of approved users will be loaded from ‘here.cfg’ and ‘too.cfg’.

[File path]
\i\put\some\over\here.cfg
\i\actually\put\some\of\it\here\too.cfg

[AuthType]
Basic

[AuthName]
Howdy. Password, please.

The field ‘AuthType´ is used to identify the authentication scheme.

Value Description

Basic Web authentication method using plain-
text passwords.

Digest More secure method using challenge-
response authentication. Used as default
if no [Authtype] field is specified.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 6

6. E-mail Client

6.1 General Information

Category: extended

The built-in e-mail client allows the application to send e-mail messages through an SMTP-server. Mes-
sages can either be specified directly in the SMTP Client Object, or retrieved from the file system. The
latter may contain SSI, however note that for technical reasons, certain commands cannot be used (spec-
ified separately for each SSI command).

The client supports authentication using the ‘LOGIN’ method. Account settings etc. are stored in the
Network Configuration Object.

See also...

• “Network Configuration Object (04h)” on page 60

• “SMTP Client Object (09h)” on page 86

6.2 How to Send E-mail Messages

To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes...

• A valid SMTP-server address

• A valid user name

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the ‘Create’-command (03h)

2. Specify the sender, recipient, topic and message body in the e-mail instance

3. Issue the ‘Send Instance Email’-command (10h) towards the e-mail instance

4. Optionally, delete the e-mail instance using the ‘Delete’-command (04h)

Note: See “SMTP Client Object (09h)” on page 86 for more information.

Sending a message based on a file in the file system is achieved using the ‘Send Email from File’-com-
mand. For a description of the file format, see “Command Details: Send Email From File” on page 89.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 7

7. Server Side Include (SSI)

7.1 General Information

Category: extended

Server Side Include functionality, or SSI, allows data from files and objects to be represented on web
pages and in e-mail messages.1

SSI are special commands embedded within the source document. When the Anybus module encoun-
ters such a command, it will execute it, and replace it with the result specified operation (if applicable).

By default, only files with the extension ‘shtm’ are scanned for SSI.

7.2 Include File

This function includes the contents of a file. The content is scanned for SSI.

Note: This function cannot be used in e-mail messages.

Syntax:

<?--#include file="filename"-->

filename-Source file

Default Output:

1. JSON offers more functionality when it comes to web pages, but is also more complex to use, see “JSON”
on page 47.

Scenario Default Output

Success (contents of file with any SSI tags replaced by their respective output)

Failure (e.g. file not
found)

Nothing, i.e. the SSI tag is replaced by an empty string.

Server Side Include (SSI) 30

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3 Command Functions

7.3.1 General Information

Command functions executes commands and includes the result.

General Syntax:

<?--#exec cmd_argument='command'-->

command-Command function, see below.

Command Functions:

Command Valid for Email Messages Page

GetConfigItem() Yes 31

SetConfigItem() No 32

SsiOutput() Yes 34

DisplayRemoteUser No 34

ChangeLanguage() No 35

IncludeFile() Yes 36

SaveDataToFile() No 37

printf() Yes 38

scanf() No 40

Server Side Include (SSI) 31

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.2 GetConfigItem()

This command returns specific information from a file in the file system.

File Format:

The source file must have the following format:

[key1]
value1

[key2]
value2
...
[keyN]
valueN

Syntax:

<?--exec cmd_argument='GetConfigItem("filename", "key",
 "separator")'-->

filename -Source file to read from.
key -Source [key] in file.
separator -Optional; specifies line separation characters (e.g. “
”).

(default is CRLF).

Default Output:

Example:

The following SSI...

<?--exec cmd_argument='GetConfigItem("\fruit.cnf", "Lemon")'-->

... in combination with the following file (‘\fruit.cnf’)...

[Apple]
Green

[Lemon]
Yellow

[Banana]
Blue

... returns the string Yellow.

Scenario Default Output

Success (value of specified key)

Authentication Error “Authentication error”

File open error “Failed to open file “filename” “

Key not found “Tag (key) not found”

Server Side Include (SSI) 32

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.3 SetConfigItem()

This function stores an HTML-form as a file in the file system.

Note: This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='SetConfigItem("filename" [, Overwrite])'-->

filename-Destination file. If the specified file does not exist, it will be created
(provided that the path is valid).

Overwrite-Optional; forces the module to create a new file each time the command
is issued. The default behavior is to modify the existing file.

File Format:

Each form object is stored as a [tag], followed by the actual value.

[form object name 1]
form object value 1

[form object name 2]
form object value 2

[form object name 3]
form object value 3

...

[form object name N]
form object value N

Note: Form objects with names starting with underscore (‘_’) will not be stored.

Default Output:

Scenario Default Output

Success “Configuration stored to “filename” ”

Authentication Error “Authentication error ”

File open error “Failed to open file “filename” “

File write error “Could not store configuration to “filename” “

Server Side Include (SSI) 33

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SetConfigItem command.

<HTML>
<HEAD><TITLE>SetConfigItem Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SetConfigItem("\food.txt")'-->

<FORM action="test.shtm">
<P>
<LABEL for="Name">Name: </LABEL>

<INPUT type="text" name="Name">

<LABEL for="_Age">Age: </LABEL>

<INPUT type="text" name="_Age">

<LABEL for="Food">Food: </LABEL>

<INPUT type="radio" name="Food" value="Cheese"> Cheese

<INPUT type="radio" name="Food" value="Sausage"> Sausage

<LABEL for="Drink">Drink: </LABEL>

<INPUT type="radio" name="Drink" value="Wine"> Wine

<INPUT type="radio" name="Drink" value="Beer"> Beer

<INPUT type="submit" name="_submit">
<INPUT type="reset" name="_reset">

</P>
</FORM>

</BODY>
</HTML>

The resulting file (‘\food.txt’) may look somewhat as follows:

[Name]
Cliff Barnes

[Food]
Cheese

[Drink]
Beer

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Server Side Include (SSI) 34

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.4 SsiOutput()

This command temporarily modifies the SSI output of the following command function.

Syntax:

<?--#exec cmd_argument='SsiOutput("success", "failure")'-->

success- String to use in case of success
failure - String to use in case of failure

Default Output:

(this command produces no output on its own)

Example:

The following example illustrates how to use this command.

<?--#exec cmd_argument='SsiOutput ("Parameter stored", "Error")'-->
<?--#exec cmd_argument='SetConfigItem("File.cfg", Overwrite)'-->

See also...

• “SSI Output Configuration” on page 46

7.3.5 DisplayRemoteUser

This command stores returns the user name on an authentication session.

Note: This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='DisplayRemoteUser'-->

Default Output:

Scenario Default Output

Success (current user)

Server Side Include (SSI) 35

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.6 ChangeLanguage()

This command changes the language setting based on an HTML form object.

Note: This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='ChangeLanguage("source")'-->

source -Name of form object which contains the new language setting.
The passed value must be a single digit as follows:

Default Output:

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the ChangeLanguage() command.

<HTML>
<HEAD><TITLE>ChangeLanguage Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='ChangeLanguage("lang")'-->

<FORM action="test.shtm">
<P>
<LABEL for="lang">Language(0-4): </LABEL>

<INPUT type="text" name="lang">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Form value Language

“0” English

“1” German

“2” Spanish

“3” Italian

“4” French

Scenario Default Output

Success “Language changed”

Error “Failed to change language “

Server Side Include (SSI) 36

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.7 IncludeFile()

This command includes the content of a file. Note that the content is not scanned for SSI.

Syntax:

<?--#exec cmd_argument='IncludeFile("filename" [, separator])'-->

filename-Source file

separator-Optional; specifies line separation characters (e.g. “
”).

Default Output:

Example:

The following example demonstrates how to use this function.

<HTML>
<HEAD><TITLE>IncludeFile Test</TITLE></HEAD>
<BODY>
<H1> Contents of ‘info.txt’:</H1>
<P>
<?--#exec cmd_argument='IncludeFile("info.txt")'-->.

</P>
</BODY>
</HTML>

Contents of ‘info.txt’:
Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit...

When viewed in a browser, the resulting page should look somewhat as follows:

See also...

• “Include File” on page 29

Scenario Default Output

Success (file contents)

Authentication Error “Authentication error ”

File open error “Failed to open file “filename” “

Server Side Include (SSI) 37

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.8 SaveDataToFile()

This command stores data from an HTML-form as a file in the file system. Content from the different
form objects are separated by a blank line (2*CRLF).

Note: This command cannot be used in email messages.

Syntax:

<?--#exec cmd_argument='SaveDataToFile("filename" [, "source"],
 Overwrite|Append)'-->

filename -Destination file. If the specified file does not exist, it will be created
(provided that the path is valid).

source - Optional; by specifying a form object, only data from that particular form
object will be stored. Default behaviour is to store data from all form
objects except the ones where the name starts with underscore (‘_’).

Overwrite|Append -Specifies whether to overwrite or append data to existing files.

Default Output:

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SaveDataToFile command.

<HTML>
<HEAD><TITLE>SaveDataToFile Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SaveDataToFile("\stuff.txt", “Meat”, Overwrite)'-->

<FORM action="test.shtm">
<P>
<LABEL for="Fruit">Fruit: </LABEL>

<INPUT type="text" name="Fruit">

<LABEL for="Meat">Meat: </LABEL>

<INPUT type="text" name="Meat">

<LABEL for="Bread">Bread: </LABEL>

<INPUT type="text" name="Bread">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

The resulting file (‘\stuff.txt’) will contain the value specified for the form object called ‘Meat’.

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Scenario Default Output

Success “Configuration stored to “filename” ”

Authentication Error “Authentication error ”

File write error “Could not store configuration to “filename” “

Server Side Include (SSI) 38

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.9 printf()

This function returns a formatted string which may contain data from the Anybus module and/or ap-
plication. The formatting syntax used is similar to that of the standard C-function printf().

The function accepts a template string containing zero or more formatting tags, followed by a number
of arguments. Each formatting tag corresponds to a single argument, and determines how that argument
shall be converted to human readable form.

Syntax:

<?--#exec cmd_argument='printf("template" [, argument1, ..., argumentN])'-->

Default Output:

Example:

See also...

- “ABCCMessage()” on page 42

- “Example (Get_Attribute):” on page 44

Scenario Default Output

Success (printf() result)

ABCCMessage error ABCCMessage error string (“Errors” on page 45)

template- Template which determines how the arguments shall be represented. May
contain any number of formatting tags which are substituted by subse-
quent arguments and formatted as requested. The number of format tags
must match the number of arguments; if not, the result is undefined.

Formatting tags are written as follows:

%[Flags][Width][.Precision][Modifier]type

See also...

• “Formatting Tags” on page 39

argument- Source arguments; optional parameters which specify the actual source of
the data that shall be inserted in the template string. The number of argu-
ments must match the number of formatting tags; if not, the result is un-
defined.

At the time of writing, the only allowed argument is ABCCMessage().

See also...

• “ABCCMessage()” on page 42

Server Side Include (SSI) 39

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Formatting Tags

• Type (Required)

The Type-character is required and determines the basic representation as follows:

• Flags (Optional)

• Width (Optional)

• .Precision (Optional)

The exact meaning of this field depends on the type character:

• Modifier

Type Character Representation Example

c Single character b

d, i Signed decimal integer. 565

e, E Floating-point number in exponential notation. 5.6538e2

f Floating-point number in normal, fixed-point notation. 565.38

g, G %e or %E is used if the exponent is less than -4 or greater than or equal to the
precision; otherwise %f is used. Trailing zeroes/decimal point are not printed.

565.38

o Unsigned octal notation 1065

s String of characters Text

u Unsigned decimal integer 4242

x, X Hexadecimal integer 4e7f

% Literal %; no assignment is made %

Flag Character Meaning

- Left-justify the result within the give width (default is right justification)

+ Always include a ‘+’ or ‘-’ to indicate whether the number is positive or negative

(space) If the number does not start with a ‘+’ or ‘-’, prefix it with a space character instead.

0 (zero) Pad the field with zeroes instead of spaces

For %e, %E, and %f, forces the number to include a decimal point, even if no digits follow.
For %x and %X, prefixes 0x or 0X, respectively.

Width Meaning

number Specifies the minimum number of characters to be printed.
If the value to be printed is shorter than this number, the result is padded to make up the
field width. The result is never truncated even if the result is larger.

* The width is not specified in the format string, it is specified by an integer value preceding
the argument that has to be formatted.

Type Character Meaning

d, i, o, u, x, X Specifies the minimum no. of decimal digits to be printed. If the value to be printed is
shorter than this number, the result is padded with space. Note that the result is never trun-
cated, even if the result is larger.

e, E, f Specifies the no. of digits to be printed after the decimal point (default is 6).

g, G Specifies the max. no. of significant numbers to be printed.

s Specifies the max. no. of characters to be printed

c (no effect)

Modifier Meaning

hh Argument is interpreted as SINT8 or UINT8

h Argument is interpreted as SINT16 or UINT16

l Argument is interpreted as SINT32 or UINT32

Server Side Include (SSI) 40

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.3.10 scanf()

This function is very similar to the printf() function described earlier, except that it is used for input rath-
er than output. The function reads a string passed from an HTML form object, parses the string as spec-
ified by a template string, and sends the resulting data to the specified argument. The formatting syntax
used is similar to that of the standard C-function scanf().

The function accepts a source, a template string containing zero or more formatting tags, followed by a
number of arguments. Each argument corresponds to a formatting tag, which determines how the data
read from the HTML form shall be interpreted prior sending it to the destination argument.

Note: This command cannot be used in email messages.

Syntax:

<?--#exec cmd_argument='scanf("source", "template" [,
 argument1, ..., argumentN])'-->

Default Output:

Example:

See also...

- “ABCCMessage()” on page 42

- “Example (Set_Attribute):” on page 44

Scenario Default Output

Success “Success”

Parsing error “Incorrect data format ”

Too much data for argument “Too much data ”

ABCC Message error ABCCMessage error string (“Errors” on page 45)

source - Name of the HTML form object from which the string shall be extracted.

template- Template which specifies how to parse and interpret the data. May contain
any number of formatting tags which determine the conversion prior to
sending the data to subsequent arguments. The number of formatting tags
must match the number of arguments; if not, the result is undefined.

Formatting tags are written as follows:

%[*][Width][Modifier]type

See also...

• “Formatting Tags” on page 41

argument- Destination argument(s) specifying where to send the interpreted data.
The number of arguments must match the number of formatting tags; if
not, the result is undefined.

At the time of writing, the only allowed argument is ABCCMessage().

See also...

• “ABCCMessage()” on page 42

Server Side Include (SSI) 41

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Formatting Tags

• Type (Required)

The Type-character is required and determines the basic representation as follows:

• * (Optional)

Data is read but ignored. It is not assigned to the corresponding argument.

• Width (Optional)

Specifies the maximum number of characters to be read.

• Modifier (Optional)

Specifies a different data size.

Type Input Argument Data Type

c Single character CHAR

d Accepts a signed decimal integer SINT8
SINT16
SINT32

i Accepts a signed or unsigned decimal integer. May be given as decimal, hex-
adecimal or octal, determined by the initial characters of the input data:
Initial Characters:Format:

0x Hexadecimal
0 Octal
1... 9 Decimal

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

u Accepts an optionally signed decimal integer. UINT8
UINT16
UINT32

o Accepts an optionally signed octal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

x, X Accepts an optionally signed hexadecimal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

e, E,
f,
g, G

Accepts an optionally signed floating point number. The input format for float-
ing-point numbers is a string of digits, with some optional characteristics:

- It can be a signed value
- It can be an exponential value, containing a decimal rational number fol-

lowed by an exponent field, which consists of an ‘E’ or an ‘e’ followed by an
integer.

FLOAT

n Consumes no input; the corresponding argument is an integer into which
scanf writes the number of characters read from the object input.

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

s Accepts a sequence of non-whitespace characters STRING

[scanset] Accepts a sequence of non-whitespace characters from a set of expected
bytes specified by the scanlist (e.g ‘[0123456789ABCDEF]’)
A literal ‘]’ character can be specified as the first character of the set. A caret
character (‘^’) immediately following the initial ‘[’ inverts the scanlist, i.e.
allows all characters except the ones that are listed.

STRING

% Accepts a single ‘%’ input at this point; no assignment or conversion is done.
The complete conversion specification should be ‘%%’.

-

Modifier Meaning

h SINT8, SINT16, UINT8 or UINT16

l SINT32 or UINT32

Server Side Include (SSI) 42

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.4 Argument Functions

7.4.1 General Information

Argument functions are supplied as parameters to certain command functions.

General Syntax:

(Syntax depends on context)

Argument Functions:

7.4.2 ABCCMessage()

This function issues an object request towards an object in the module or in the host application.

Syntax:

ABCCMessage(object, instance, command, ce0, ce1,
 msgdata, c_type, r_type)

object - Specifies the Destination Object

instance - Specifies the Destination Instance

command - Specifies the Command Number

ce0 - Specifies CmdExt[0] for the command message

ce1 - Specifies CmdExt[1] for the command message

msgdata - Specifies the actual contents of the MsgData[] subfield in the command

c_type - Specifies the data type in the command (msgdata)

r_type - Specifies the data type in the response (msgdata)

Numeric input can be supplied in the following formats:

Decimal (e.g. 50)-(no prefix)
Octal (e.g. 043)- Prefix 0 (zero)
Hex (e.g. 0x1f)- Prefix 0x

See also...

• “Example (Get_Attribute):” on page 44

• “Example (Set_Attribute):” on page 44

Function Description Page

ABCCMessage() - 42

• Data can be supplied in direct form (format depends on c_type)

• The keyword “ARG” is used when data is supplied by the parent
command (e.g. scanf()).

See also...

• “Command Data Types (c_type)” on page 43

See also...

• “Response Data Types (r_type)” on page 43

Server Side Include (SSI) 43

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

• Command Data Types (c_type)

For types which support arrays, the number of elements can be specified using the suffix ‘[n]’,
where ‘n’ specifies the number of elements. Each data element must be separated by space.

• Response Data Types (r_type)

For types which support arrays, the number of elements can be specified using the suffix ‘[n]’,
where ‘n’ specifies the number of elements.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes 1

SINT8 Yes -25

SINT16 Yes 2345

SINT32 Yes -2569

UINT8 Yes 245

UINT16 Yes 40000

UINT32 Yes 32

CHAR Yes A

STRING No “abcde”
Note: Quotes can be included in the string if preceded by backslash(‘\’)
Example: “We usually refer to it as \”the Egg\” “

FLOAT Yes 5.6538e2

BITS8 Yes 8-bit field

BITS16 Yes 16-bit field

BITS32 Yes 32-bit field

OCTET Yes 8-bit field

BIT1 - 7 Yes 1-bit to 7-bit field

PAD0 - 16 Yes 0 - 16-bit field, for filling up a string to a predefined size

NONE No Command holds no data, hence no data type

Type Supports Arrays Comments

BOOL Yes Optionally, it is possible to exchange the BOOL data with a message
based on the value (true or false). In such case, the actual data type
returned from the function will be STRING.
Syntax: BOOL<true><false>
For arrays, the format will be BOOL[n]<true><false>.

SINT8 Yes -

SINT16 Yes -

SINT32 Yes -

UINT8 Yes This type can also be used when reading ENUM data types from an
object. In such case, the actual ENUM value will be returned.

UINT16 Yes -

UINT32 Yes -

CHAR Yes -

STRING No -

ENUM No When using this data type, the ABCCMessage() function will first read
the ENUM value. It will then issue a ‘Get Enum String’-command to
retrieve the actual enumeration string. The actual data type in the
response will be STRING.

FLOAT Yes -

BITS8 Yes -

BITS16 Yes -

BITS32 Yes -

OCTET Yes -

BIT1 - 7 Yes -

Server Side Include (SSI) 44

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

IMPORTANT: It is important to note that the message will be passed transparently to the addressed object. The SSI
engine performs no checks for violations of the object addressing scheme, e.g. a malformed Get_Attribute request which
(wrongfully) includes message data will be passed unmodified to the object, even though this is obviously wrong. Failure to
observe this may cause loss of data or other undesired side effects.

Example (Get_Attribute):

This example shows how to retrieve the IP address using printf() and ABCCMessage().

<?--#exec cmd_argument='printf("%u.%u.%u.%u",
 ABCCMessage(4,3,1,5,0,0,NONE,UINT8[4]))'-->

See also...

- “printf()” on page 38

Example (Set_Attribute):

This example shows how to set the IP address using scanf() and ABCCMessage(). Note the spe-
cial parameter value ‘ARG’, which instructs the module to use the passed form data (parsed by
scanf()).

<?--#exec cmd_argument='scanf("IP", "%u.%u.%u.%u",
 ABCCMessage(4,3,2,5,0,ARG,UINT8[4],NONE))'-->

See also...

- “scanf()” on page 40

PAD0 - 16 Yes -

NONE No -

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 1 Get_attribute

ce0 5 Attribute #5

ce1 0 -

msgdata 0 -

c_type NONE Command message holds no data

r_type UINT8[4] Array of 4 unsigned 8-bit integers

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 2 Set_attribute

ce0 5 Attribute #5

ce1 0 -

msgdata ARG Use data parsed by scanf() call

c_type UINT8[4] Array of 4 unsigned 8-bit integers

r_type NONE Response message holds no data

Type Supports Arrays Comments

Server Side Include (SSI) 45

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Errors

In case an object request results in an error, the error code in the response will be evaluated and trans-
lated to human readable form as follows:

See also...

• “SSI Output Configuration” on page 46

Error Code Output

0 “Unknown error”

1 “Unknown error”

2 “Invalid message format”

3 “Unsupported object”

4 “Unsupported instance”

5 “Unsupported command”

6 “Invalid CmdExt[0]”

7 “Invalid CmdExt[1]”

8 “Attribute access is not set-able”

9 “Attribute access is not get-able”

10 “Too much data in msg data field”

11 “Not enough data in msg data field”

12 “Out of range”

13 “Invalid state”

14 “Out of resources”

15 “Segmentation failure”

16 “Segmentation buffer overflow”

17... 255 “Unknown error”

Server Side Include (SSI) 46

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

7.5 SSI Output Configuration

Optionally, the SSI output can be permanently changed by adding the file ‘\output.cfg’.

File format:

All content above can be included in the file multiple times changing the value ‘X’ in each tag for differ-
ent languages. The module will then select the correct output string based on the language settings. If
no information for the selected language is found, it will use the default SSI output.

See also...

• “SsiOutput()” on page 34

Value of X Language

0 English

1 German

2 Spanish

3 Italian

4 French

• Each error code corresponds to a dedicated
output string, labelled from 1 to 16.

See also...

- “Errors” on page 45

• Use ‘%s” to include the name of the file.

• Use ‘%s” to include the name of the file.

• Use ‘%s” to include the name of the file.

[ABCCMessage_X]
0:"Success string"
1:"Error string 1"
2:"Error string 2"
...
16:"Error string 16"

[GetConfigItem_X]
0:"Success string"
1:"Authentication error string"
2:"File open error string"
3:"Tag not found string"

[SetConfigItem_X]
0:"Success string"
1:"Authentication error string"
2:"File open error string"
3:"File write error string"

[IncludeFile_X]
0:"Success string"
1:"Authentication error string"
2:"File readS error string"

[scanf_X]
0:"Success string"
1:"Parsing error string"

[ChangeLanguage_X]
0:"Success string"
1:"Change error string"

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 8

8. JSON

8.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing and ex-
changing data in an organized and intuitive way. It is used as an alternative to XML, to transmit data
objects consisting of attribute - value pairs between a server and a web application. JavaScripts are used
to create dynamic web pages to present the values.

JSON is more versatile than SSI in that you not only can change the values on a web page, but also the
size and the look of the web page dynamically. A simple example of how to create a web page is added
at the end of this chapter.

Access

The JSON resources should be password protected. Add password protection by adding a file called
web_accs.cfg in the root directory. See “Authorization” on page 26 for more information.

8.2 JSON Objects

8.2.1 ADI

info.json

GET adi/info.json[?callback=<function>].

This object holds data common to all ADIs that are static during runtime. Optionally, a callback may be
passed to the GET-request for JSONP output.

JSON object layout:

{
 "dataformat": 0,
 "numadis": 123,
 "webversion": 1
}

Name Data Type Note

dataformat Number 0 = Little endian
1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs

webversion Number Web/JSON API version

JSON 48

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

data.json

GET adi/data.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches values for up to <count> ADIs, starting from <offset> in a list sorted by ADI
order number. The values may change at any time during runtime. Optionally, a callback may be passed
to the GET-request for JSONP output.

JSON object layout:

[
 "FF",
 "A201",
 "01FAC105"
]

metadata.json

GET adi/metadata.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches metadata for up to <count> ADIs, starting from <offset> in a list sorted by
ADI order number. This data is static during runtime. Optionally, a callback may be passed to the GET-
request for JSONP output.

JSON object layout:

[
{
 "instance": 1,
 "name": "Temperature threshold",
 "numelements": 1,
 "datatype": 0,
 "min": "00",
 "max": "FF",
 "access": 0x03
}
{
 nine more...
}
]

Name Data Type Note

instance Number -

name String May be NULL if no name is present.

numelements Number -

datatype Number -

min String Minimum value. May be NULL if no minimum value is
present.

max String Maximum value. May be NULL of no maximum value is
present.

access Number Bit 0: Read access
Bit 1: Write access

JSON 49

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

enum.json

GET adi/enum.json?inst=<instance>[&value=<element>][&callback=<function>].

This object call fetches enum strings for the instance <instance>. If an <element> is specified, only the
enum string for that value is returned. If no enum strings are available, an empty list is returned. Option-
ally, a callback may be passed to the GET-request for JSONP output.

JSON object layout:

[
 {
 "string": "String for value 1",
 "value": 1
 },
 {
 "string": "String for value 2",
 "value": 2
 },
 ...
]

update.json

POST adi/update.json - form data:
inst=<instance>&value=<data>[&elem=<element>][&callback=<function>].

Updates the value of an ADI for the specified ADI instance <instance>. The value, <data>, shall be
hex formatted (see “Hex Format Explained” on page 55 for more information). If <element> is spec-
ified, only the value of the specified element is updated. In this case, <data> shall only update that single
element value. When <element> is not specified, <data> shall represent the entire array value. Option-
ally, a callback may be passed to the request for JSONP output.

POST adi/update.json - form data: inst=15&value=FF01

{
 "result" : 0
}

Name Data Type Note

string String -

value Number -

Name Data Type Note

result Number 0 = success

JSON 50

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

8.2.2 Module

info.json

GET module/info.json.

JSON object layout:

{
 "modulename": "ABCC M40",
 "serial": "ABCDEF00",
 "fwver": [1, 5, 0],
 "uptime": [5, 123456],
 "cpuload": 55
}

Name Data Type Note

modulename String -

serial String 32 bit hex ASCII

fwver Array of Number (major, minor, build)

uptime Array of Number [high, low] milliseconds (ms)

cpuload Number CPU load in %

JSON 51

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

8.2.3 Network

ethstatus.json

GET network/ethstatus.json.

Comm Object Definition:

JSON object layout:
{
 "mac": "003011FF0201",
 "comm1": {
 "link": 1,
 "speed": 1,
 "duplex": 1
 }
 "comm2": {
 "link": 0,
 "speed": 0,
 "duplex": 0
 }
}

Name Data Type Note

mac String 6 byte hex

comm1 Object See object definition in the table below

comm2 Object See object definition in the table below

Name Data Type Note

link Number 0: No link
1: Link

speed Number 0: 10 Mbit
1: 100 Mbit

duplex Number 0: Half
1: Full

JSON 52

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

ipstatus.json & ipconf.json

These two object share the same data format. The object ipconf.json returns the configured IP settings,
and ipstatus.json returns the actual values that are currently used. ipconf.json can also be used to alter
the IP settings.

GET network/ipstatus.json, or GET network/ipconf.json.

{
 "dhcp": 0,
 "addr": "192.168.0.55",
 "subnet": "255.255.255.0",
 "gateway": "192.168.0.1",
 "dns1": "10.10.55.1",
 "dns2": "10.10.55.2"
 "hostname": "<hostname>",
 "domainname": "hms.se"
}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the list
above. Values should be in the same format.

Example:

GET ipconf.json?dhcp=0&addr=10.11.32.2&hostname=abcc123&domainname=hms.se

ethconf.json

GET network/ethconf.json.

Name Data Type Note

dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

Name Data Type Note

comm1 Number -

comm2 Number -

JSON 53

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

ifcounters.json

GET network/ifcounters.json?port=<port>. The argument <port> is either 1 or 2.

Name Data Type Note

inoctets Number IN: bytes

inucast Number IN: unicast packets

innucast Number IN: broadcast and multicast packets

indiscards Number IN: discarded packets

inerrors Number IN: errors

inunknown Number IN: unsupported protocol type

outoctets Number OUT: bytes

outucast Number OUT: unicast packets

outnucast Number OUT: broadcast and multicast packets

outdiscards Number OUT: discarded packets

outerrors Number OUT: errors

JSON 54

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

mediacounters.json

GET network/mediacounters.json?port=<port>. The argument <port> is either 1 or 2.

nwstats.json

GET network/nwstats.json.

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eip", "title": "EtherNet/IP Statistics" }]
or
[
 { "identifier": "bacnet", "title": "BACnet/IP Statistics" },
 { "identifier": "bacnetae", "title": "BACnet Alarm and Event" },
 { "identifier": "bacnetapl", "title": "BACnet APL Statistics" }
]

Get network specific statistics:

GET network/nwstats.json?get=<ID>. <ID> is an “identifier” value returned from the previous
command (“eip”, for example)

[
 { "name": "Established Class1 Connections", "value": 0 },
 { "name": "Established Class3 Connections", "value": 1 }
]

Name Data Type Note

align Number Frames received that are not an integral number of octets in
length

fcs Number Frames received that do not pass the FCS check

singlecoll Number Successfully transmitted frames which experienced exactly
one collision

multicoll Number Successfully transmitted frames which experienced more
than one collision

latecoll Number Number of collisions detected later than 512 bit times into
the transmission of a packet

excesscoll Number Frames for which transmissions fail due to excessive colli-
sions

sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal MAC
sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted when
attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted frame
size

tooshort Number Frames received that are shorter than the lowest permitted
frame size

JSON 55

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

8.2.4 Services

smtp.json

GET services/smtp.json.

Note: Password is not returned when retrieving the settings.

8.2.5 Hex Format Explained

The metadata max and min fields and the ADI values are ABP data encoded in a hex format. If the data
type is an integer, the endianness used is determined by the data format field found in adi/info.json (see
“info.json” on page 47).

Examples:
The value “5” encoded as a UINT16, with data format = 0 (little endian):

 0500

The character array “ABC” encoded as CHAR[3] (data format is not relevant for CHAR):

 414243

8.3 Example

This example shows how to create a web page that fetches Module Name and CPU load from the mod-
ule and presents it on the web page. The file, containing this code, has to be stored in the built-in file
system, see “File System” on page 15, and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Name Data Type Note

server String -

user String -

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 9

9. Anybus Module Objects

9.1 General Information

This chapter specifies the Anybus Module Object implementation.

Standard Objects:

• “Anybus Object (01h)” on page 57

• “Diagnostic Object (02h)” on page 58

• “Network Object (03h)” on page 59

• “Network Configuration Object (04h)” on page 60

Network Specific Objects:

• “Socket Interface Object (07h)” on page 69

• “SMTP Client Object (09h)” on page 86

• “Anybus File System Interface Object (0Ah)” on page 91

• “Network Ethernet Object (0Ch)” on page 104

 57

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.2 Anybus Object (01h)

Category

Basic

Object Description

This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)

Basic

Extended

Name Access Type Value

1 Module type Get UINT16 0403h (Standard Anybus 40 CompactCom)

2... 11 - - - Consult the general Anybus CompactCom 40
Software Design Guide for further information.

12 LED colors Get struct of:
UINT8(LED1A)
UINT8(LED1B)
UINT8(LED2A)
UINT8(LED2B)

Value:Color:
01h Green
02h Red
01h Green
02h Red

13... 16 - - - Consult the general Anybus CompactCom 40
Software Design Guide for further information.

Name Access Type Value

17 Virtual attributes Get/Set - Consult the general Anybus CompactCom 40
Software Design Guide for further information.18 Black list/White list Get/Set

19 Network Time Get

 58

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.3 Diagnostic Object (02h)

General Information

Basic

Object Description

This object provides a standardized way of handling host application events & diagnostics, and is thor-
oughly described in the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute
Create
Delete

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes

Basic

See also...

• “Diagnostics” on page 13

Name Access Data Type Value

1... 4 - - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

11 Max no. of instances Get UINT16 5+1 (One instance is reserved for major diagnostic
events.)

12 Supported functionality Get BITS32 00 00 00 00h (Latching events are not supported.)

Name Access Type Value

1 Severity Get UINT8 Consult the general Anybus CompactCom 40 Software
Design Guide for further information.2 Event Codea

a. This attribute can not be represented on the network and is thus ignored by the module.

Get UINT8

3 - - - Not implemented in product.

4 Slota Get UINT16 Consult the general Anybus CompactCom 40 Software
Design Guide for further information.5 ADIa Get UINT16

6 Elementa Get UINT8

7 Bita Get UINT8

 59

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.4 Network Object (03h)

Category

Basic

Object Description

For more information regarding this object, consult the general Anybus CompactCom 40 Software De-
sign Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String
Map_ADI_Write_Area
Map_ADI_Read_Area
Map_ADI_Write_Ext_Area
Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)

Name Access Type Value

1 Name Get Array of CHAR ‘Network’

2 Revision Get UINT8 02h

3 Number of instances Get UINT16 01h

4 Highest instance num-
ber

Get UINT16 01h

Name Access Type Value

1 Network type Get UINT16 00A3h

2 Network type string Get Array of CHAR ‘Common Ethernet”

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL 0 (False)

5 - 7 - - - Consult the general Anybus CompactCom 40 Soft-
ware Design Guide for further information.

 60

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.5 Network Configuration Object (04h)

Category

Extended

Object Description

This object holds network specific configuration parameters that may be set by the end user. A reset
command (factory default) issued towards this object will result in all instances being set to their default
values.

If the settings in this object do not match the configuration used, the Module Status LED will flash red
to indicate a minor error.

The object is described in further detail in the Anybus CompactCom 40 Software Design Guide.

See also...

• “Communication Settings” on page 12

• “E-mail Client” on page 28

Supported Commands

Object: Get_Attribute
Reset

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network Configuration’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 000Fh (15)

4 Highest instance no. Get UINT16 0011h (17)

 61

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #3, IP Address)

Extended

Instance Attributes (Instance #4, Subnet Mask)

Extended

Instance Attributes (Instance #5, Gateway Address)

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘IP address’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Subnet mask’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Gateway’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

 62

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #6, DHCP Enable)

Extended

Instance Attributes (Instance #7, Ethernet Communication Settings 1)

Changes have immediate effect.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘DHCP’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Any change is valid after reset.
Value:Enum. String:Meaning:

00h ‘Disable’ DHCP disabled
01h ‘Enable’ DHCP enabled (default)

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Value:Enum. String:Meaning:

00h ‘Disable’ DHCP disabled
01h ‘Enable’ DHCP enabled (default)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Comm 1’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

 63

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #8, Ethernet Communication Settings 2)

Changes have immediate effect.

Extended

Instance Attributes (Instance #9, DNS1)

This instance holds the address to the primary DNS server.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Comm 2’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘DNS1’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

 64

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #10, DNS2)

This instance holds the address to the secondary DNS server.

Extended

Instance Attributes (Instance #11, Host name)

This instance holds the host name of the module.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘DNS2’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Host name’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Host name, 64 characters

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Host name, 64 characters

 65

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #12, Domain name)

This instance holds the domain name.

Extended

Instance Attributes (Instance #13, SMTP Server)

This instance holds the SMTP server address.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘Domain name’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 30h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Domain name, 48 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Host name, 48 characters

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘SMTP Server’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP server address, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP server address, 64 characters

 66

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #14, SMTP User)

This instance holds user name for the SMTP account.

Extended

Instance Attributes (Instance #15, SMTP Password)

This instance holds the password for the SMTP account. Changes are valid after reset.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘SMTP User’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account user name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP account user name , 64 characters

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 68.

Get Array of CHAR ‘SMTP Pswd’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account password, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP account password, 64 characters

 67

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #16, MDI 1 settings)

This instance holds the settings for MDI/MDIX 1. Changes have immediate effect.

Extended

Instance Attributes (Instance #17, MDI 2 settings)

This instance holds the settings for MDI/MDIX 2. Changes have immediate effect.

Extended

Instance Attributes (Instances #18 and #19)

These instances are reserved for future attributes.

Name Access Type Description

1 Name Get Array of CHAR ‘MDI 1’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

Name Access Type Description

1 Name Get Array of CHAR ‘MDI 2’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

 68

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Multilingual Strings

The instance names and enumeration strings in this object are multi-lingual, and are translated based on
the current language settings as follows:

Instance English German Spanish Italian French

3 IP address IP-Adresse Dirección IP Indirizzo IP Adresse IP

4 Subnet mask Subnetzmaske Masac. subred Sottorete Sous-réseau

5 Gateway Gateway Pasarela Gateway Passerelle

6 DHCP DHCP DHCP DHCP DHCP

Enable Einschalten Activado Abilitato Activé

Disable Ausschalten Desactivado Disabilitato Désactivé

7 Comm 1 Komm 1 Comu 1 Connessione 1 Comm 1

Auto Auto Auto Auto Auto

10 HDX 10 HDX 10 HDX 10 HDX 10 HDX

10 FDX 10 FDX 10 FDX 10 FDX 10 FDX

100 HDX 100 HDX 100 HDX 100 HDX 100 HDX

100 FDX 100FDX 100 FDX 100 FDX 100 FDX

 8 Comm 2 Komm 2 Comu 2 Connessione 2 Comm 2

Auto Auto Auto Auto Auto

10 HDX 10 HDX 10 HDX 10 HDX 10 HDX

10 FDX 10 FDX 10 FDX 10 FDX 10 FDX

100 HDX 100 HDX 100 HDX 100 HDX 100 HDX

100 FDX 100FDX 100 FDX 100 FDX 100 FDX

9 DNS1 DNS 1 DNS Primaria DNS1 DNS1

10 DNS2 DNS 2 DNS Secundia. DNS2 DNS2

11 Host name Host name Nombre Host Nome Host Nom hôte

12 Domain name Domain name Nobre Domain Nome Dominio Nom Domaine

13 SMTP Server SMTP Server Servidor SMTP Server SMTP SMTP serveur

14 SMTP User SMTP User Usuario SMTP Utente SMTP SMTP utilisa.

15 SMTP Pswd SMTP PSWD Clave SMTP Password SMTP SMTP mt passe

 69

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.6 Socket Interface Object (07h)

Category

Extended

Object Description

This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to
be sent over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. For more
information, see “Message Segmentation” on page 125.

IMPORTANT: The use of functionality provided by this object should only be attempted by users who are already fa-
miliar with socket interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute
Create (See “Command Details: Create” on page 71)
Delete (See “Command Details: Delete” on page 72)

Instance: Get_Attribute
Set_Attribute
Bind (See “Command Details: Bind” on page 73)
Shutdown (See “Command Details: Shutdown” on page 74)
Listen (See “Command Details: Listen” on page 75)
Accept (See “Command Details: Accept” on page 76)
Connect (See “Command Details: Connect” on page 77)
Receive (See “Command Details: Receive” on page 78)
Receive_From (See “Command Details: Receive_From” on page 79)
Send (See “Command Details: Send” on page 80)
Send_To (See “Command Details: Send_To” on page 81)
IP_Add_membership (See “Command Details: IP_Add_Membership” on page 82)
IP_Drop_membership (See “Command Details: IP_Drop_Membership” on page 83)
DNS_Lookup (See “Command Details: DNS_Lookup” on page 84)

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Socket interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0008h

 70

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Sockets #1...8)

Extended

Name Access Type Description

1 Socket type Get UINT8 Value:Socket Type:
00h SOCK_STREAM, NON-BLOCKING (TCP)
01h SOCK_STREAM, BLOCKING (TCP)
02h SOCK_DGRAM, NON-BLOCKING (UDP)
03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to

3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected

4 Host port Get UINT16 Host port number, or 0 (zero) if not connected

5 TCP State Get UINT8 State (TCP sockets only):

Value:State:Description:
00h CLOSED Closed
01h LISTEN Listening for connection
02h SYN_SENT Active, have sent SYN
03h SYN_RECEIVED Have sent and received SYN
04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close
06h FIN_WAIT_1 Have closed, sent FIN
07h CLOSING Closed exchanged FIN; await FIN ACK
08h LAST_ACK Have FIN and close; await FIN ACK
09h FIN_WAIT_2 Have closed, FIN is acknowledged
0Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)

7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)

8 Reuse address Get/Set BOOL Socket can reuse local address

Value:Meaning:
1 Enabled
0 Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only)

Value:Meaning:
1 Enabled
0 Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only)
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)a

a. Must belong to group in order to get the loop backed message

Value:Meaning:
1 Enable (default)
0 Disable

12 Ack delay time Get/Set UINT16 Time for delayed ACKs in ms (TCP sockets only)

Default = 200msb

b. Resolution is 50 ms, i.e. 50...99 = 50 ms, 100...149 = 100 ms, 199 = 150 ms etc.

13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP)

Value:Meaning:
1 Delay (default)
0 Don’t delay (turn off Nagle’s algorithm on socket)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

 71

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object Instance

Description

This command creates a socket.

Note: This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

• Response Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:Socket Type:
00h SOCK_STREAM, NON-BLOCKING (TCP)
01h SOCK_STREAM, BLOCKING (TCP)
02h SOCK_DGRAM, NON-BLOCKING (UDP)
03h SOCK_DGRAM, BLOCKING (UDP)

Field Contents Comments

Data[0] Instance number (low) Instance number of the created socket.

Data[1] Instance number (high)

 72

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with
the RST-flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command
(see “Command Details: Shutdown” on page 74) before deleting the socket, causing the con-
nection to be closed with the FIN-flag instead.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.

CmdExt[1] Instance number to delete (high)

 73

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Bind

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.

CmdExt[1] Requested port number (high)

Field Contents Comments

CmdExt[0] Bound port number (low) Actual port that the socket was bound to.

CmdExt[1] Bound port number (high)

 74

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Shutdown

Category

Extended

Details

Command Code.: 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate
if the connection actually shut down, which means that this command cannot be used to poll non-block-
ing sockets, nor will it block for blocking sockets.

• Command Details

• Response Details

(no data)

The recommended sequence, performed by the application, to gracefully shut down a TCP connection
is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the
send channel, note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EDESTADDRREQ (14)) is
received, indicating that the host closed the receive channel. If host does not close the receive chan-
nel use a timeout and progress to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

A remote host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel
of the socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the
receive channel.

4. Delete the socket instance.

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:Mode:
00h Shutdown receive channel
01h Shutdown send channel
02h Shutdown both receive- and send channel

 75

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Listen

Category

Extended

Details

Command Code.: 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state. Backlog queue length is the number of unaccepted
connections allowed on the socket. When backlog queue is full, further connections will be refused with
RST-flag.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Value:Backlog queue length:
00h 1
01h 2
02h 4

-

 76

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Accept

Category

Extended

Details

Command Code.: 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is cre-
ated for each accepted connection. The new socket is connected with the host and the response returns
its instance number.

NON-BLOCKING mode:

This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode:

This command will block until a connection request has been detected.

Note: This command will only be accepted if there is a free instance to use for accepted connections.
For blocking connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents

Data[0] Instance number for the connected socket (low)

Data[1] Instance number for the connected socket (high)

Data[2] Host IP address byte 3 (low)

Data[3] Host IP address byte 2

Data[4] Host IP address byte 1

Data[5] Host IP address byte 0 (high)

Data[6] Host port number (low)

Data[7] Host port number (high)

 77

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Connect

Category

Extended

Details

Command Code.: 14h

Valid for: Instance

Description

For SOCK_DGRAM-sockets, this command specifies the peer with which the socket is to be associated
(to which datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use
this service multiple times to change their association. SOCK_DGRAM-sockets may dissolve their as-
sociation by connecting to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode:

This command must be issued repeatedly (polled) until a connection is connected, rejected or
timed out. The first connect-attempt will be accepted, thereafter the command will return error
code 22 (EINPROGRESS) on poll requests while attempting to connect.

BLOCKING mode:

This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

• Response Details

(no data)

Field Contents Contents

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Host IP address byte 3 (low) -

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

 78

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Receive

Category

Extended

Details

Command Code.: 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up
to 1472 bytes (see “Message Segmentation” on page 125).

For SOCK_DGRAM-sockets, the module will return the requested amount of data from the next re-
ceived datagram. If the datagram is smaller than requested, the entire datagram will be returned in the
response message. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received
data stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode:

If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode:

The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the
connection. The send channel may however still be valid and must be closed using ‘Shutdown’ and/or
‘Delete’.

• Command Details

• Response Details

Note: The data in the response may be segmented (see “Message Segmentation” on page 125).

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Command Segmentation” on page 126

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Response Segmentation” on page 127

Data[0...n] Received data -

 79

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Receive_From

Category

Extended

Details

Command Code.: 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation
may be used to receive up to 1472 bytes (see “Message Segmentation” on page 125).

The module will return the requested amount of data from the next received datagram. If the datagram
is smaller than requested, the entire datagram will be returned in the response message. If the datagram
is larger than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode:

If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode:

The module will not issue a response until the operation has finished.

• Command Details

• Response Details

Note: The data in the response may be segmented (see “Message Segmentation” on page 125).

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Command Segmentation” on page 126

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Response Segmentation” on page 127

Data[0] Host IP address byte 3 (low) The host address/port information is only included
in the first segment. All data thereafter will start at
Data[0]

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

Data[6...n] Received data

 80

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Send

Category

Extended

Details

Command Code.: 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (see “Message Segmentation” on page 125).

NON-BLOCKING mode:

If there isn’t enough buffer space available in the send buffers, the module will respond with er-
ror code 0006h (EWOULDBLOCK)

BLOCKING mode:

If there isn’t enough buffer space available in the send buffers, the module will block until there
is.

• Command Details

Note: To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be

segmented (see “Message Segmentation” on page 125).

• Response Details

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control see “Command Segmentation” on page 126

Data[0...n] Data to send -

Field Contents Notes

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

 81

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Send_To

Category

Extended

Details

Command Code.: 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK_DGRAM-socket. Message seg-
mentation may be used to send up to 1472 bytes (see “Message Segmentation” on page 125).

• Command Details

Note: To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be
segmented (see “Message Segmentation” on page 125).

• Response Details

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control see “Command Segmentation” on page 126

Data[0] Host IP address byte 3 (low) The host address/port information shall only be
included in the first segment. All data thereafter
must start at Data[0]

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

Data[6...n] Data to send

Field Contents Notes

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

 82

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: IP_Add_Membership

Category

Extended

Details

Command Code.: 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the ‘All
hosts group’ automatically, however this command may be used to specify up to 20 additional member-
ships.

• Command Details

• Response Details

(no data)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Group IP address byte 3 (low) -

Data[1] Group IP address byte 2

Data[2] Group IP address byte 1

Data[3] Group IP address byte 0 (high)

 83

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: IP_Drop_Membership

Category

Extended

Details

Command Code.: 1Ah

Valid for: Instance

Description

This command removes the socket from an IP multicast group membership.

• Command Details

• Response Details

(no data)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Group IP address byte 3 (low) -

Data[1] Group IP address byte 2

Data[2] Group IP address byte 1

Data[3] Group IP address byte 0 (high)

 84

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: DNS_Lookup

Category

Extended

Details

Command Code.: 1Bh

Valid for: Object Instance

Description

This command resolves the given host name and returns the IP address.

• Command Details

• Response Details (Success)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0... N] Host name Host name to resolve

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] IP address byte 3 (low) IP address of the specified host

Data[1] IP address byte 2

Data[2] IP address byte 1

Data[3] IP address byte 0 (high)

 85

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Socket Interface Error Codes (Object Specific)

The following object specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning

1 ENOBUFS No internal buffers available

2 ETIMEDOUT A timeout event occurred

3 EISCONN Socket already connected

4 EOPNOTSUPP Service not supported

5 ECONNABORTED Connection was aborted

6 EWOULDBLOCK Socket cannot block because unblocking socket type

7 ECONNREFUSED Connection refused

8 ECONNRESET Connection reset

9 ENOTCONN Socket is not connected

10 EALREADY Socket is already in requested mode

11 EINVAL Invalid service data

12 EMSGSIZE Invalid message size

13 EPIPE Error in pipe

14 EDESTADDRREQ Destination address required

15 ESHUTDOWN Socket has already been shutdown

16 (reserved) -

17 EHAVEOOB Out of band data available

18 ENOMEM No internal memory available

19 EADDRNOTAVAIL Address is not available

20 EADDRINUSE Address already in use

21 (reserved) -

22 EINPROGRESS Service already in progress

28 ETOOMANYREFS Too many references

101 Command aborted If a command is blocking on a socket, and that socket is closed using the
Delete command, this error code will be returned to the blocking command.

102 DNS name error Failed to resolve the host name (name error response from DNS server)

103 DNS timeout Timeout when performing a DNS lookup

104 DNS command
failed

Other DNS error

 86

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.7 SMTP Client Object (09h)

Category

Extended

Object Description

This object groups functions related to the SMTP-client.

See also...

• “File System” on page 15

• “E-mail Client” on page 28

• “Instance Attributes (Instance #13, SMTP Server)” on page 65

• “Instance Attributes (Instance #14, SMTP User)” on page 66

• “Instance Attributes (Instance #15, SMTP Password)” on page 66

Supported Commands

Object: Get_Attribute
Create
Delete
Send email from file(“Command Details: Send Email From File” on page 89)

Instance: Get_Attribute
Set_Attribute
Send email(“Command Details: Send Email” on page 90)

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘SMTP Client’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h

12 Success count Get UINT16 Reflects the no. of successfully sent messages

13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

 87

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes

Extended

Instances are created dynamically by the application.

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object

Description

This command creates an e-mail instance.

• Command Details

• Response Details

Name Access Type Description

1 From Get/Set Array of CHAR e.g. “someone@somewhere.com”

2 To Get/Set Array of CHAR e.g. “someone.else@anywhere.net”

3 Subject Get/Set Array of CHAR e.g. “Important notice”

4 Message Get/Set Array of CHAR e.g. “Duck and cover”

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 88

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object

Description

This command deletes an e-mail instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

 89

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Send Email From File

Category

Extended

Details

Command Code.: 11h

Valid for: Object

Description

This command sends an e-mail based on a file in the file system.

File format:

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
e-mail subject

[Headers]
extra headers, optional

[Message]
actual e-mail message

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + filename of message file -

 90

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Send Email

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command sends the specified e-mail instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes

Error Codes Meaning

1 SMTP server not found

2 SMTP server not ready

3 Authentication error

4 SMTP socket error

5 SSI scan error

6 Unable to interpret e-mail file

255 Unspecified SMTP error

(other) (reserved)

 91

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.8 Anybus File System Interface Object (0Ah)

Category

Extended

Object Description

This object provides an interface to the built-in file system. Each instance represents a handle to a file
stream and contains services for file system operations. This provides the host application with access
to the built-in file system of the module, e.g. when application specific web pages are to be installed.

Instances are created and deleted dynamically during runtime.

The object is structurally identical to the “Application File System Interface Object (EAh)” on page 110.

Supported Commands

Object: Get_Attribute
Create(“Command Details: Create” on page 93)
Delete(“Command Details: Delete” on page 94)
Format Disc(“Command Details: Format Disc” on page 103)

Instance: Get_Attribute
File Open(“Command Details: File Open” on page 94)
File Close(“Command Details: File Close” on page 95)
File Delete(“Command Details: File Delete” on page 95)
File Copy(“Command Details: File Copy” on page 96)
File Rename(“Command Details: File Rename” on page 97)
File Read(“Command Details: File Read” on page 98)
File Write(“Command Details: File Write” on page 99)
Directory Open(“Command Details: Directory Open” on page 99)
Directory Close(“Command Details: Directory Close” on page 100)
Directory Delete(“Command Details: Directory Delete” on page 100)
Directory Read(“Command Details: Directory Read” on page 101)
Directory Create(“Command Details: Directory Create” on page 102)
Directory Change(“Command Details: Directory Change” on page 102)

 92

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Object Attributes (Instance #0)

Instance Attributes

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Anybus File System Interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0004h

12 Disable virtual file system Get BOOL False

13 Total disc size Get Array of UINT32 -

14 Free space Get Array of UINT32 -

15 Disc CRC Get Array of UINT32 -

Name Access Type Description

1 Instance type Get UINT8 Value:Type:
00h Reserved
01h File instance
02h Directory instance

2 File size Get UINT32 File size in bytes (zero for directories)

3 Path Get Array of CHAR Path where instance operates

 93

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object

Description

This command creates a file operation instance.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 94

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object

Description

This command deletes a file operation instance.

• Command Details

• Response Details

(no data)

Command Details: File Open

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command opens a file for reading, writing, or appending.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Field Contents Comments

CmdExt[0] Mode Value:Mode:
00h Read mode
01h Write mode
02h Append mode

CmdExt[1] (reserved, set to zero) -

MsgData[0... n] Path + filename Relative to current path

 95

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Close

Category

Extended

Details

Command Code.: 11h

Valid for: Instance

Description

This command closes a previously opened file.

• Command Details

(no data)

• Response Details

Command Details: File Delete

Category

Extended

Details

Command Code.: 12h

Valid for: Instance

Description

This command permanently deletes a specified file from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] File size low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] high byte, high word

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + filename Relative to current path

 96

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Copy

Category

Extended

Details

Command Code.: 13h

Valid for: Instance

Description

This command makes a copy of a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Source path + filename Relative to current path, separated by NULL

NULL

Destination path + filename

 97

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Rename

Category

Extended

Details

Command Code.: 14h

Valid for: Instance

Description

This command renames or moves a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Old path + filename Relative to current path, separated by NULL

NULL

New path + filename

 98

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Read

Category

Extended

Details

Command Code.: 15h

Valid for: Instance

Description

Reads data from a file previously opened for reading.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Bytes no. of bytes to read

CmdExt[1] (reserved, set to zero) -

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Data Data read from file

 99

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Write

Category

Extended

Details

Command Code.: 16h

Valid for: Instance

Description

Writes data to a file previously opened for writing or appending.

• Command Details

• Response Details

Command Details: Directory Open

Category

Extended

Details

Command Code.: 20h

Valid for: Instance

Description

This command opens a directory.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Data[0... n] Data Data to write to file

Field Contents Comments

CmdExt[0] Bytes no. of bytes written

CmdExt[1] (reserved, ignore) -

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Data[0... n] Path + name of directory Relative to current path

 100

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Close

Category

Extended

Details

Command Code.: 21h

Valid for: Instance

Description

This command closes a previously opened directory.

• Command Details

(no data)

• Response Details

(no data)

Command Details: Directory Delete

Category

Extended

Details

Command Code.: 22h

Valid for: Instance

Description

This command permanently deletes an empty directory from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 101

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Read

Category

Extended

Details

Command Code.: 23h

Valid for: Instance

Description

This command reads the contents of a directory previously opened for reading.

The command returns information about a single directory entry, which means that the command must
be issued multiple times to retrieve the complete contents of a directory. When the last entry has been
read, the command returns an “empty” response (i.e. a response where the data size is zero).

• Command Details

(no data)

• Response Details

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Size of entry Low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] High byte, high word

MsgData[4] Flags Bit:Meaning:
0 Entry is a directory
1 Entry is read-only
2 Entry is hidden
3 Entry is a system entry

MsgData[5... n] Name of entry -

 102

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Create

Category

Extended

Details

Command Code.: 24h

Valid for: Instance

Description

This command creates a directory.

• Command Details

• Response Details

(no data)

Command Details: Directory Change

Category

Extended

Details

Command Code.: 25h

Valid for: Instance

Description

This command changes the current directory/path for an instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 103

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Format Disc

Category

Extended

Details

Command Code.: 30h

Valid for: Object

Description

This command formats the file system.

• Command Details

• Response Details

(no data)

Object Specific Error Codes

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Error Codes Meaning

1 Failed to open file

2 Failed to close file

3 Failed to delete file

4 Failed to open directory

5 Failed to close directory

6 Failed to create directory

7 Failed to delete directory

8 Failed to change directory

9 Copy operation failure (could not open source)

10 Copy operation failure (could not open destination)

11 Copy operation failure (write failed)

12 Unable to rename file

 104

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

9.9 Network Ethernet Object (0Ch)

Category

Extended

Object Description

This object provides Ethernet-specific information to the application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network Ethernet’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

Name Access Type Description

1 MAC Address Get Array of UINT8 Current MAC address
See also “Ethernet Host Object (F9h)” on page 106)

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Chapter 10

10. Host Application Objects

10.1 General Information

This chapter specifies the host application object implementation in the module. The objects listed here
may optionally be implemented within the host application firmware to expand the implementation.

Standard Objects:

• Application Object (see Anybus CompactCom 40 Software Design Guide)

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

Network Specific Objects:

• “Ethernet Host Object (F9h)” on page 106

• “Application File System Interface Object (EAh)” on page 110

 106

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

10.2 Ethernet Host Object (F9h)

Category

Basic, extended

Object Description

This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Ethernet’

2 Revision Get UINT8 02h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

 107

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Instance Attributes (Instance #1)

Basic

Extended

Name Access Type Defaulta

a. If an attribute is not implemented, the module will use this value instead

Comment

1 MAC addressb

b. The module is pre-programmed with a valid Mac address. To use that address, do not implement this attribute.

Get Array of UINT8 - 6 byte physical address value; overrides the
pre-programmed Mac address. Note that the
new Mac address value must be obtained from
the IEEE.

Name Access Type Defaulta Comment

2 Enable HICP Get BOOL True Value:Meaning:
True HICP enabled
False HICP disabled

(see “Secure HICP (Secure Host IP Configu-
ration Protocol)” on page 128)

3 Enable Web Server Get BOOL True Value:Meaning:
True web server enabled
False web server disabled

(see “Web Server” on page 21)

5 Enable Web ADI access Get BOOL True Value:Meaning:
True web ADI access enabled
False web ADI access disabled

(see “Web Server” on page 21)

6 Enable FTP server Get BOOL True Value:Meaning:
True FTP server enabled
False FTP server disabled

(see “FTP Server” on page 19)

7 Enable admin mode Get BOOL False Value:Meaning:
True FTP Admin mode enabled
False FTP Admin mode disabled

(see “FTP Server” on page 19)

8 Network Status Set UINT16 - See “Network Status” on page 109

9 Port 1 MAC address Get Array of UINT8 - MAC address for Ethernet port 1, 6 bytes

10 Port 2 MAC address Get Array of UINT8 - MAC address for Ethernet port 2, 6 bytes

11 Enable ACD Get BOOL True Value:Meaning:
True ACD enabled
False ACD disabled

12 Port 1 State Get ENUM Enable State of Ethernet port 1, see “Port State” on
page 109

13 Port 2 State Get ENUM Enable State of Ethernet port 2, see “Port State” on
page 109

14 Reserved

15 Enable reset from HICP Get BOOL False Value:Meaning:
True Possible to reset the module from

HICP
False Not possible to reset the module from

HICP

 108

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

16 IP configuration Set Struct of:
UINT32
 (IP address)
UINT32
 (Subnet mask)
UINIT32
 (Gateway)

N/A The Anybus CompactCom writes the IP con-
figuration (IP address, Subnet mask, Gateway)
to this attribute whenever the configuration is
assigned or changed.

17 IP address byte 0 - 2 Get Array of
UINT8[3]

[0] : 192
[1] : 168
[2] : 0

This attributes holds the first three bytes of the
IP address. The attribute is used in Shift Reg-
ister Mode if the configuration switch value is
set to 1 - 245. The first three bytes of the IP
address will be given by the values in the
attribute and the last byte will be given by the
configuration switch value.

a. If an attribute is not implemented, the module will use this value instead

Name Access Type Defaulta Comment

 109

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Network Status

This attribute holds a bit field which indicates the overall network status as follows:

Port State

The attributes Port 1 State and Port 2 State tells wether the corresponding port is enabled or not.

Bit Contents Description

0 Link Value:Meaning:
True Link detected
False No link

1 IP in use Value:Meaning:
True IP address in use (no address conflict detected)
False No IP address in use

2 IP conflict Value:Meaning:
True IP address conflict detected
False No IP address conflict detected

3 Link port 1 Value:Meaning:
True Valid link on port 1
False No valid link on port 1

4 Link port 2 Value:Meaning:
True Valid link on port 2
False No valid link on port 2

5... 15 (reserved) (mask off and ignore)

Value State Description

00h Enable The Ethernet port is enabled.

01h Disable The Ethernet port is disabled.

 110

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

10.3 Application File System Interface Object (EAh)

Category

Extended

Object Description

This object provides an interface to the built-in file system. Each instance represents a handle to a file
stream and contains services for file system operations. This allows the user to download software
through the FTP server to the application. The application decides the available memory space.

Instances are created and deleted dynamically during runtime.

The object is structurally identical to the “Anybus File System Interface Object (0Ah)” on page 91.

Supported Commands

Object: Get_Attribute
Create(“Command Details: Create” on page 112)
Delete(“Command Details: Delete” on page 113)

Instance: Get_Attribute
File Open(“Command Details: File Open” on page 113)
File Close(“Command Details: File Close” on page 114)
File Delete(“Command Details: File Delete” on page 114)
File Copy(“Command Details: File Copy” on page 115)
File Rename(“Command Details: File Rename” on page 116)
File Read(“Command Details: File Read” on page 117)
File Write(“Command Details: File Write” on page 118)
Directory Open(“Command Details: Directory Open” on page 118)
Directory Close(“Command Details: Directory Close” on page 119)
Directory Delete(“Command Details: Directory Delete” on page 119)
Directory Read(“Command Details: Directory Read” on page 120)
Directory Create(“Command Details: Directory Create” on page 121)
Directory Change(“Command Details: Directory Change” on page 121)

 111

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Object Attributes (Instance #0)

Instance Attributes

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Application File System Interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 Max number of instances supported by the application.

13 Total disc size Get Array of UINT32 -

14 Free space Get Array of UINT32 -

Name Access Type Description

1 Instance type Get UINT8 Value:Type:
00h Reserved
01h File instance
02h Directory instance

2 File size Get UINT32 File size in bytes (zero for directories)

3 Path Get Array of CHAR Path where instance operates

 112

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object

Description

This command creates a file operation instance.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 113

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object

Description

This command deletes a file operation instance.

• Command Details

• Response Details

(no data)

Command Details: File Open

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command opens a file for reading, writing, or appending.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Field Contents Comments

CmdExt[0] Mode Value:Mode:
00h Read mode
01h Write mode
02h Append mode

CmdExt[1] (reserved, ignore) -

MsgData[0... n] Path + filename Relative to current path

 114

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Close

Category

Extended

Details

Command Code.: 11h

Valid for: Instance

Description

This command closes a previously opened file.

• Command Details

(no data)

• Response Details

Command Details: File Delete

Category

Extended

Details

Command Code.: 12h

Valid for: Instance

Description

This command permanently deletes a specified file from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, se to zero) -

CmdExt[1]

MsgData[0] File size low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] high byte, high word

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + filename Relative to current path

 115

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Copy

Category

Extended

Details

Command Code.: 13h

Valid for: Instance

Description

This command makes a copy of a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Source path + filename Relative to current path, separated by NULL

NULL

Destination path + filename

 116

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Rename

Category

Extended

Details

Command Code.: 14h

Valid for: Instance

Description

This command renames or moves a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Old path + filename Relative to current path, separated by NULL

NULL

New path + filename

 117

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Read

Category

Extended

Details

Command Code.: 15h

Valid for: Instance

Description

Reads data from a file previously opened for reading.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Bytes no. of bytes to read

CmdExt[1] (reserved, ignore) -

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Data Data read from file

 118

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: File Write

Category

Extended

Details

Command Code.: 16h

Valid for: Instance

Description

Writes data to a file previously opened for writing or appending.

• Command Details

• Response Details

Command Details: Directory Open

Category

Extended

Details

Command Code.: 20h

Valid for: Instance

Description

This command opens a directory.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Data[0... n] Data Data to write to file

Field Contents Comments

CmdExt[0] Bytes no. of bytes written

CmdExt[1] (reserved, set to zero) -

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Data[0... n] Path + name of directory Relative to current path

 119

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Close

Category

Extended

Details

Command Code.: 21h

Valid for: Instance

Description

This command closes a previously opened directory.

• Command Details

(no data)

• Response Details

(no data)

Command Details: Directory Delete

Category

Extended

Details

Command Code.: 22h

Valid for: Instance

Description

This command permanently deletes an empty directory from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 120

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Read

Category

Extended

Details

Command Code.: 23h

Valid for: Instance

Description

This command reads the contents of a directory previously opened for reading.

The command returns information about a single directory entry, which means that the command must
be issued multiple times to retrieve the complete contents of a directory. When the last entry has been
read, the command returns an “empty” response (i.e. a response where the data size is zero).

• Command Details

(no data)

• Response Details

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0] Size of entry Low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] High byte, high word

MsgData[4] Flags Bit:Meaning:
0 Entry is a directory
1 Entry is read-only
2 Entry is hidden
3 Entry is a system entry

MsgData[5... n] Name of entry -

 121

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Command Details: Directory Create

Category

Extended

Details

Command Code.: 24h

Valid for: Instance

Description

This command creates a directory.

• Command Details

• Response Details

(no data)

Command Details: Directory Change

Category

Extended

Details

Command Code.: 25h

Valid for: Instance

Description

This command changes the current directory/path for an instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 122

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Object Specific Error Codes

Error Codes Meaning

1 Failed to open file

2 Failed to close file

3 Failed to delete file

4 Failed to open directory

5 Failed to close directory

6 Failed to create directory

7 Failed to delete directory

8 Failed to change directory

9 Copy operation failure (could not open source)

10 Copy operation failure (could not open destination)

11 Copy operation failure (write failed)

12 Unable to rename file

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix A

A. Categorization of Functionality

The objects, including attributes and services, of the Anybus CompactCom and the application are di-
vided into two categories: basic and extended.

A.1 Basic

This category includes objects, attributes and services that are mandatory to implement or to use. They
will be enough for starting up the Anybus CompactCom and sending/receiving data with the chosen
network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this category.

A.2 Extended

Use of the objects in this category extends the functionality of the application. Access is given to the
more specific characteristics of the industrial network, not only the basic moving of data to and from
the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the available net-
work functionality is enabled and accessible, access to the specification of the industrial network may be
required.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix B

B. Implementation Details

B.1 SUP-Bit Definition

Not used.

B.2 Anybus Statemachine

The table below describes how the Anybus Statemachine relates to the EtherNet/IP network.

B.3 Application Watchdog Timeout Handling

Upon detection of an application watchdog timeout, the module will cease network participation and
shift to state ‘EXCEPTION’. No other network specific actions are performed.

Anybus State Implementation Comment

WAIT_PROCESS The module stays in this state as long as it is
running. From here it can only change to
ERROR or EXCEPTION.

-

ERROR Duplicate IP address detected -

PROCESS_ACTIVE - The module shall never enter any of these
states.IDLE -

EXCEPTION Unexpected error, e.g. watchdog timeout etc. MS LED turns red (to indicate a major fault)
NS LED is off

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix C

C. Message Segmentation

C.1 General

Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is 1524 bytes. If the host appli-
cation implements a data message size of 1524 bytes, a message will always fit into one segment. The
host application can implement a shorter message size (256 bytes for backwards compatibility with the
30-series).

No service requires messages larger than what is supported by the Anybus CompactCom 40 series 1524
bytes messaging interface. If this interface is used by the application, it allows very basic segmentation
handling. The first segment bit (FS) and the last segment bit (LS) shall always be set in each segmented
command or response. Some commands in the Socket Interface Object (page 69) use segmentation.

If a shorter message size is implemented, segmentation has to be used, setting the FS bit in the first seg-
ment of the message sent, and setting the LS bit in the last segment sent.

The segmentation protocol is implemented in the message layer and must not be confused with the frag-
mentation used on the serial host interface. Consult the general Anybus CompactCom 40 Software De-
sign Guide for further information.

The module supports 20 simultaneous segmented messages.

Message Segmentation 126

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

C.2 Command Segmentation

When a command message is segmented, the command initiator sends the same command header mul-
tiple times. For each message, the data field is exchanged with the next data segment.

Please note that some commands cannot be used concurrently on the same instance, since they both
need access to the segmentation buffer for that instance.

Command segmentation is used for the following commands:

• Send (see “Command Details: Send” on page 80)

• Send To (see “Command Details: Send_To” on page 81)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LS-bit must be set.

• For single segment commands (i.e. size less or equal to 255 bytes), both FS and LS must be set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the cur-
rent segmentation message is discarded. Note however that this only applies to the current seg-
ment; previously transmitted segments are still valid.

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero).

Bit Contents Meaning

0...7 (reserved) Ignore.

Message Segmentation 127

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

C.3 Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands:

• Receive (object specific, see “Command Details: Receive” on page 78)

• Receive From (object specific, see “Command Details: Receive_From” on page 79)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set

• In all subsequent segment, both FS and LS are cleared

• In the last segment, LS is set

• For single segment responses (i.e. size less or equal to 255 bytes), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Bit Contents Meaning

0 (reserved) (set to zero)

1

2 AB Set if the segmentation shall be aborted

3...7 (reserved) (set to zero)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) (set to zero)

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix D

D. Secure HICP (Secure Host IP Configuration
Protocol)

D.1 General

The module supports the Secure HICP protocol used by the Anybus IPconfig utility for changing set-
tings, e.g. IP address, Subnet mask, and enable/disable DHCP. Anybus IPconfig can be downloaded
free of charge from the HMS website, www.anybus.com. This utility may be used to access the network
settings of any Anybus product connected to the network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

D.2 Operation

When the application is started, the network is automatically scanned for Anybus products. The network
can be rescanned at any time by clicking “Scan”.

To alter the network settings of a module, double-click on its entry in the list. A window will appear,
containing the settings for the module.

Validate the new settings by clicking “Set”, or click “Cancel” to cancel all changes. Optionally, the con-
figuration can be protected from unauthorized access by a password. To enter a password, check the
“Change password” check box and enter the password in the “New password” text field.

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix E

E. Technical Specification

E.1 Front View

Please note that the LED indications may change, once specific network communication software has
been downloaded to the module. When the network communication software has been downloaded,
the Network Status LED (labelled L1) and the Module Status LED (labelled L2) must in many cases be
relabelled to conform to specific network certification requirements.

Relabelling can be done by the customer or with interchangeable network specific fronts provided by
HMS. Contact HMS for more information.

E.1.1 Network Status LED

Note: A test sequence is performed on this LED during startup.

E.1.2 Module Status LED

Note: A test sequence is performed on this LED during startup.

Item

1 L1 (Network Status LEDa)

a. Test sequences are performed on the Network and Module Status LEDs during startup.

2 L2 (Module Status LEDa)

3 Link/Activity LED (port 1)

4 Link/Activity LED (port 2)

LED State Description

Off No power

Green IP address assigned

Green, flashing No IP address has been assigned

Red IP address conflict detected, ERROR

LED State Description

Off Not in EXCEPTION or WAIT_PROCESS state

Green In WAIT_PROCESS state

Red Major fault (EXCEPTION state)

1 2

3 4

Technical Specification 130

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

E.1.3 LINK/Activity LED 3/4

Fatal Error

If both the Network Status LED and the Module Status LED are red, a fatal error has occurred.

Ethernet Interface

The Ethernet interface supports 10/100 Mbit/s, full or half duplex operation.

E.2 Protective Earth (PE) Requirements

In order to ensure proper EMC behavior, the module must be properly connected to protective earth
via the PE pad / PE mechanism described in the general Anybus CompactCom 40 Hardware Design
Guide.

HMS Industrial Networks does not guarantee proper EMC behavior unless these PE requirements are
fulfilled.

E.3 Power Supply

Supply Voltage

The module requires a regulated 3.3V power source as specified in the general Anybus CompactCom 40
Hardware Design Guide.

Power Consumption

The Anybus CompactCom 40 Common Ethernet is designed to fulfil the requirements of a Class B
module. For more information about the power consumption classification used on the Anybus Com-
pactCom 40 platform, consult the general Anybus CompactCom 40 Hardware Design Guide.

E.4 Environmental Specification

Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

E.5 EMC Compliance

Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

LED State Description

Off No link, no activity

Green Link (100 Mbit/s) established

Green, flickering Activity (100 Mbit/s)

Yellow Link (10 Mbit/s) established

Yellow, flickering Activity (10 Mbit/s)

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Appendix F

F. Copyright Notices

Copyright 2013 jQuery Foundation and other contributors

http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

**

rsvp.js

Copyright (c) 2013 Yehuda Katz, Tom Dale, and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the "Software"), to deal in

the Software without restriction, including without limitation the rights to

use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the Software is furnished to do

so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

**

Copyright Notices 132

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

libb (big.js)

The MIT Expat Licence.

Copyright (c) 2012 Michael Mclaughlin

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

'Software'), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

**

FatFs - FAT file system module R0.09b (C)ChaN, 2013

FatFs module is a generic FAT file system module for small embedded systems.

This is a free software that opened for education, research and commercial

developments under license policy of following trems.

Copyright (C) 2013, ChaN, all right reserved.

The FatFs module is a free software and there is NO WARRANTY.

No restriction on use. You can use, modify and redistribute it for

personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.

Redistributions of source code must retain the above copyright notice.

**

Copyright Notices 133

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

Copyright (c) 2002 Florian Schulze.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor the names of the contributors

 may be used to endorse or promote products derived from this software

 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ftpd.c - This file is part of the FTP daemon for lwIP

**

Format - lightweight string formatting library.

Copyright (C) 2010-2013, Neil Johnson

All rights reserved.

Redistribution and use in source and binary forms,

with or without modification,

are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

* Neither the name of nor the names of its contributors

 may be used to endorse or promote products derived from this software

 without specific prior written permission.

Copyright Notices 134

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

**

Print formatting routines

Copyright (C) 2002 Michael Ringgaard. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

 may be used to endorse or promote products derived from this software

 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

**

Copyright Notices 135

Doc.Id. HMSI-27-269
Anybus CompactCom 40 Common Ethernet
Doc.Rev. 1.10

lwIP is licenced under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

**

MD5 routines

Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch

ghost@aladdin.com

	Important User Information
	Liability
	Intellectual Property Rights
	Trademark Acknowledgements

	Table of Contents
	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.4 Support

	1. About the Anybus CompactCom 40 Common Ethernet
	1.1 General
	1.2 Features

	2. Basic Operation
	2.1 General Information
	2.2 Software Requirements
	2.3 Device Customization
	2.3.1 Network Identity
	2.3.2 Web Interface
	2.3.3 Socket Interface (Advanced Users Only)

	2.4 Communication Settings
	2.4.1 Communication Settings in Stand Alone Shift Register Mode

	2.5 Diagnostics
	2.6 Network Data Exchange
	2.7 File System
	2.7.1 Overview
	2.7.2 General Information
	2.7.3 System Files

	3. Firmware Download / Firmware Upgrade
	3.1 Using Firmware Manager II
	3.2 Via the Internal File System

	4. FTP Server
	4.1 General Information
	4.2 User Accounts
	4.3 Session Example

	5. Web Server
	5.1 General Information
	5.2 Default Web Pages
	5.2.1 Network Configuration
	5.2.2 Ethernet statistics page

	5.3 Server Configuration
	5.3.1 General Information
	5.3.2 Index Page
	5.3.3 Default Content Types
	5.3.4 Authorization

	6. E-mail Client
	6.1 General Information
	6.2 How to Send E-mail Messages

	7. Server Side Include (SSI)
	7.1 General Information
	7.2 Include File
	7.3 Command Functions
	7.3.1 General Information
	7.3.2 GetConfigItem()
	7.3.3 SetConfigItem()
	7.3.4 SsiOutput()
	7.3.5 DisplayRemoteUser
	7.3.6 ChangeLanguage()
	7.3.7 IncludeFile()
	7.3.8 SaveDataToFile()
	7.3.9 printf()
	7.3.10 scanf()

	7.4 Argument Functions
	7.4.1 General Information
	7.4.2 ABCCMessage()

	7.5 SSI Output Configuration

	8. JSON
	8.1 General Information
	8.2 JSON Objects
	8.2.1 ADI
	8.2.2 Module
	8.2.3 Network
	8.2.4 Services
	8.2.5 Hex Format Explained

	8.3 Example

	9. Anybus Module Objects
	9.1 General Information
	9.2 Anybus Object (01h)
	9.3 Diagnostic Object (02h)
	9.4 Network Object (03h)
	9.5 Network Configuration Object (04h)
	9.6 Socket Interface Object (07h)
	9.7 SMTP Client Object (09h)
	9.8 Anybus File System Interface Object (0Ah)
	9.9 Network Ethernet Object (0Ch)

	10. Host Application Objects
	10.1 General Information
	10.2 Ethernet Host Object (F9h)
	10.3 Application File System Interface Object (EAh)

	A. Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B. Implementation Details
	B.1 SUP-Bit Definition
	B.2 Anybus Statemachine
	B.3 Application Watchdog Timeout Handling

	C. Message Segmentation
	C.1 General
	C.2 Command Segmentation
	C.3 Response Segmentation

	D. Secure HICP (Secure Host IP Configuration Protocol)
	D.1 General
	D.2 Operation

	E. Technical Specification
	E.1 Front View
	E.1.1 Network Status LED
	E.1.2 Module Status LED
	E.1.3 LINK/Activity LED 3/4

	E.2 Protective Earth (PE) Requirements
	E.3 Power Supply
	E.4 Environmental Specification
	E.5 EMC Compliance

	F. Copyright Notices

