
HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
Web: www.anybus.com

Network Guide

Anybus
®

 CompactCom 40 EtherNet/IP
Doc.Id. HMSI-27-212

Rev. 1.5

Important User Information

This document is intended to provide a good understanding of the functionality offered by EtherNet/IP. The docu-
ment only describes the features that are specific to the Anybus CompactCom 40 EtherNet/IP. For general infor-
mation regarding the Anybus CompactCom 40, consult the Anybus CompactCom 40 design guides.

The reader of this document is expected to be familiar with high level software design, and communication sys-
tems in general. The use of advanced EtherNet/IP-specific functionality may require in-depth knowledge in Ether-
Net/IP networking internals and/or information from the official EtherNet/IP specifications. In such cases, the
people responsible for the implementation of this product should either obtain the EtherNet/IP specification to gain
sufficient knowledge or limit their implementation in such a way that this is not necessary.

Liability

Every care has been taken in the preparation of this manual. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot
assume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their
respective holders.

Warning: This is a class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD
control procedures are not followed. Static control precautions are required when handling the prod-
uct. Failure to observe this may cause damage to the product.

Anybus CompactCom 40 EtherNet/IP Network Guide

Rev 1.5

Copyright© HMS Industrial Networks AB

Apr 2016 Doc Id HMSI-27-212

Preface About This Document

Related Documents.. 8

Document History ... 8

Conventions & Terminology.. 9

Abbreviations.. 9

Support .. 9

Chapter 1 About the Anybus CompactCom 40 EtherNet/IP

General... 10

Features.. 10

Beacon Based DLR (Device Level Ring) ... 11

Chapter 2 Basic Operation

General Information.. 12
Software Requirements ... 12

Device Customization ... 13
Network Identity ... 13
Electronic Data Sheet (EDS) .. 13
EtherNet/IP & CIP Implementation ... 14
Web Interface... 14
Socket Interface (Advanced Users Only)... 14
Modular Device Functionality .. 15
QuickConnect .. 15
CIP Safety... 15

Communication Settings ... 16
Communication Settings in Stand Alone Shift Register Mode ... 17

Diagnostics .. 18

Network Data Exchange... 19
Application Data .. 19
Process Data.. 19
Translation of Data Types ... 19

File System... 20
Overview .. 20
General Information... 21
System Files ... 21

Table of Contents

Table of Contents

Chapter 3 FTP Server

General Information.. 22

User Accounts .. 22

Session Example... 23

Chapter 4 Web Server

General Information.. 24

Default Web Pages... 24
Network Configuration .. 25
Ethernet statistics page ... 27

Server Configuration.. 29
General Information... 29
Index Page... 29
Default Content Types ... 30
Authorization.. 30

Chapter 5 E-mail Client

General Information.. 32

How to Send E-mail Messages... 32

Chapter 6 Server Side Include (SSI)

General Information.. 33

Include File.. 33

Command Functions ... 34
General Information... 34
GetConfigItem() ... 35
SetConfigItem() .. 36
SsiOutput().. 38
DisplayRemoteUser ... 38
ChangeLanguage() ... 39
IncludeFile()... 40
SaveDataToFile() .. 41
printf() ... 42
scanf() .. 44

Argument Functions.. 46
General Information... 46
ABCCMessage() ... 46

SSI Output Configuration... 50

Chapter 7 JSON

General Information.. 51

JSON Objects ... 51
ADI.. 51
Module .. 54
Network .. 55
Services .. 59
Hex Format Explained... 59

Example ... 60

 Chapter 8 CIP Objects

General Information.. 61

Translation of Status Codes.. 62

Identity Object (01h) ... 63

Message Router (02h) .. 66

Assembly Object (04h) .. 67

Connection Manager (06h) ... 70

Parameter Object (0Fh)... 74

DLR Object (47h) .. 77

QoS Object (48h) ... 78

Base Energy Object (4Eh) .. 79

Power Management Object (53h).. 81

ADI Object (A2h) .. 83

Port Object (F4h) ... 85

TCP/IP Interface Object (F5h) ... 87

Ethernet Link Object (F6h).. 90

Chapter 9 Anybus Module Objects

General Information.. 95

Anybus Object (01h).. 96

Diagnostic Object (02h) .. 97

Network Object (03h) ... 98

Network Configuration Object (04h) ... 99

Socket Interface Object (07h) .. 109

SMTP Client Object (09h) .. 126

Anybus File System Interface Object (0Ah) .. 131
Examples .. 144

Network Ethernet Object (0Ch).. 148

Functional Safety Module Object (11h).. 149

CIP Port Configuration Object (0Dh).. 153

Chapter 10 Host Application Objects

General Information.. 155

Functional Safety Host Object (E8h).. 156

CIP Identity Host Object (EDh) ... 158

Sync Object (EEh) ... 160

EtherNet/IP Host Object (F8h) ... 161

Ethernet Host Object (F9h) ... 171

Application File System Interface Object (EAh) .. 174

Appendix A Categorization of Functionality

Basic ... 187

Extended.. 187

Appendix B Implementation Details

SUP-Bit Definition... 188

Anybus Statemachine... 188

Application Watchdog Timeout Handling ... 188

Appendix C Message Segmentation

General... 189

Command Segmentation... 190

Response Segmentation... 191

Appendix D Secure HICP (Secure Host IP Configuration Protocol)

General... 192

Appendix E Technical Specification

Front View .. 193

Protective Earth (PE) Requirements... 194

Power Supply .. 194

Environmental Specification .. 194

EMC Compliance... 194

Appendix F Timing & Performance

General Information.. 195

Internal Timing... 195
Startup Delay .. 195
NW_INIT Handling ... 195
Event Based WrMsg Busy Time .. 196
Event Based Process Data Delay ... 196

Appendix G Copyright Notice

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documents

P.2 Document History

Summary of Recent Changes (1.4... 1.5)

Revision List

Document Author

Anybus CompactCom 40 Software Design Guide HMS

Anybus CompactCom M40 Hardware Design Guide HMS

Anybus CompactCom B40 Hardware Design Guide HMS

CIP specification, Volumes 1 (CIP Common) and 2 (EtherNet/IP) ODVA

Change Page(s)

Added information about safety to feature section 10

Added CIP Safety section to Basic Operation chapter 15

Added Class 0 Connection details to the Connection Manager (06h) 71

Added Functional Safety Module Object (11h) 149

Added Functional Safety Host Object (E8h) 156

Revision Date Author(s) Chapter(s) Description

1.00 2014-06-04 KeL All First official revision

1.10 2014-07-17 KeL 2, 6, 7, 8, E Misc. updates

1.11 2014-08-27 KaD 2 Major update

1.20 2015-01-09 KeL 7, 8, 9, F Misc. updates

1.30 2015-11-04 KeL 2, 7, 8, 9,
10, 7, E

Misc. updates and corrections

1.4 2016-04-04 KaD 1,7, 8, 10 Misc. updates

1.5 2016-04-22 KaD 1, 2, 9, 10 Safety updates

About This Document 9

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘module’ refers to the Anybus CompactCom 40 module.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus module.

• Hexadecimal values are either written in the format NNNNh or the format 0xNNNN, where
NNNN is the hexadecimal value.

P.4 Abbreviations

P.5 Support

For general contact information and where to find support, please refer to the contact and sup-
port pages at www.anybus.com.

Abbreviation Meaning

API assigned packet interval

RPI requested packet interval

T target (in this case the module)

O origin (in this case the master)

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 1

1. About the Anybus CompactCom 40 EtherNet/IP

1.1 General

The Anybus CompactCom 40 EtherNet/IP communication module provides instant Ethernet and Eth-
erNet/IP connectivity via the patented Anybus CompactCom host interface. Any device that supports
this standard can take advantage of the features offered by the module, allowing seamless network inte-
gration regardless of network type. The module supports both linear and ring network topology (DLR,
Device Level Ring).

The modular approach of the Anybus CompactCom 40 platform allows the CIP-object implementation
to be extended to fit specific application requirements. Furthermore, the Identity Object can be custom-
ized, allowing the end product to appear as a vendor-specific implementation rather than a generic An-
ybus module.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules defined
in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully interchangeable
with any other device following that specification. Generally, no additional network related software
support is needed, however in order to be able to take full advantage of advanced network specific func-
tionality, a certain degree of dedicated software support may be necessary.

1.2 Features

• Two EtherNet/IP ports

• Ethernet RJ45 connectors

• Beacon Based DLR (Device Level Ring) and linear network topology supported

• Black channel interface, offering a transparent channel supporting Functional Safety up to SIL3
with separate safety module1

• 10/100 Mbit, full/half duplex operation

• Web server w. customizable content

• FTP server

• Email client

• Server Side Include (SSI) functionality

• JSON functionality

• Customizable Identity Information

• Up to 65535 ADIs

• CIP Parameter Object support

• Expandable CIP-object implementation

• Supports unconnected CIP routing

• Transparent Socket Interface

• Modular Device functionality

• QuickConnect supported

• Multiple IO assembly instances can be created

1. IXXAT Safe T100 recommended

About the Anybus CompactCom 40 EtherNet/IP 11

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

1.3 Beacon Based DLR (Device Level Ring)

Device Level Ring (DLR) is a network technology for industrial applications that uses embedded switch
functionality in automation end devices, such as programmable automation controllers and I/O mod-
ules, to enable Ethernet ring network topologies at the device level. DLR technology adds network re-
silience to optimize machine operation.

Beacon based DLR networks consist of a ring supervisor and a number of ring nodes, and use “beacons”
to detect breaks in the ring. When a DLR network detects a break in the ring, it provides ways to alter-
natively route the data to recover the network. Diagnostics built into DLR products can identify the
point of failure, thus helping to speed maintenance and reduce repair time.

The Anybus CompactCom 40 EtherNet/IP implements the DLR protocol, and it is enabled by default.
The device is able to process and act on beacon frames sent by ring supervisors, and supports beacon
rates down to 100 μs.

If needed, the DLR functionality can be disabled. This can be done by setting attribute 31 (Enable DLR)
in the EtherNet/IP Host Object to False. See “Instance Attributes (Instance #1)” on page 162.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 2

2. Basic Operation

2.1 General Information

2.1.1 Software Requirements

Generally, no additional network support code needs to be written in order to support the Anybus Com-
pactCom 40 EtherNet/IP. However, due to the nature of the EtherNet/IP networking system, certain
restrictions must be taken into account:

• Certain functionality in the module requires that the command ‘Get_Instance_Num-
ber_By_Order’ (Application Data Object, FEh) is implemented in the host application.

• Up to 5 diagnostic instances (See “Diagnostic Object (02h)” on page 97) can be created by the
host application during normal conditions. An additional 6th instance may be created in event of
a major fault.1

• EtherNet/IP in itself does not impose any specific timing demands when it comes to acyclic re-
quests (i.e. requests towards instances in the Application Data Object), however it is generally
recommended to process and respond to such requests within a reasonable time period. The ap-
plication that sends the request, also decides the timeout, e.g. EIPScan employs a timeout of 10
seconds.

• The use of advanced CIP-specific functionality may require in-depth knowledge in CIP network-
ing internals and/or information from the official CIP and EtherNet/IP specifications. In such
cases, the people responsible for the implementation of this product is expected either to obtain
these specifications to gain sufficient knowledge or limit their implementation is such a way that
this is not necessary.

For in-depth information regarding the Anybus CompactCom 40 software interface, consult the general
Anybus CompactCom 40 Software Design Guide.

See also...

• “Diagnostic Object (02h)” on page 97 (Anybus Module Objects)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

1. This limit is set by the module, not by the network.

Basic Operation 13

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.2 Device Customization

2.2.1 Network Identity

By default, the module uses the following identity settings:

• Vendor ID: 005Ah (HMS Industrial Networks)

• Device Type: 002Bh (Generic Device)

• Product Code: 0037h (Anybus CompactCom 40 EtherNet/IP)

• Product Name: ‘Anybus CompactCom 40 EtherNet/IP(TM)’

Optionally, it is possible to customize the identity of the module by implementing the corresponding
instance attributes in the EtherNet/IP Host Object.

See also...

• “Identity Object (01h)” on page 63 (CIP-object)

• “EtherNet/IP Host Object (F8h)” on page 161 (Host Application Object)

IMPORTANT: According to the CIP specification, the combination of Vendor ID and serial number must be unique.
It is not permitted to use a custom serial number in combination with the HMS Vendor ID (005Ah), nor is it permitted
to choose Vendor ID arbitrarily. Failure to comply to this requirement will induce interoperability problems and/or other
unwanted side effects. HMS approves use of the HMS Vendor ID (005Ah), in combination with the default serial num-
ber, under the condition that the implementation requires no deviations from the standard EDS-file.

To obtain a Vendor ID, contact the ODVA.

2.2.2 Electronic Data Sheet (EDS)

On EtherNet/IP, the characteristics of a device is stored in an ASCII data file with the suffix EDS. This
file is used by configuration tools etc. when setting up the network configuration. HMS supplies a stand-
ard (generic) EDS-file, which corresponds to the default settings in the module. However, due to the
flexible nature of the Anybus CompactCom concept, it is possible to alter the behavior of the product
in ways which invalidate the generic EDS-file. In such case, a custom EDS-file needs to be created,
which in turn invalidates the default identity information and require re-certification of the product.

Note: Since the module implements the Parameter Object, it is possible for configuration tools such as
RSNetWorx to automatically generate a suitable EDS-file. Note that this functionality requires that the
command ‘Get_Instance_Number_By_Order’ (Application Data Object, FEh) has been implemented
in the host application.

See also...

• “Parameter Object (0Fh)” on page 74 (CIP-object)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

IMPORTANT: HMS approves use of the standard EDS-file only under the condition that it matches the actual im-
plementation and that the identity information remains unchanged.

Basic Operation 14

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.2.3 EtherNet/IP & CIP Implementation

By default, the module supports the generic CIP profile. Optionally, it is possible to re-route requests to
unimplemented CIP objects to the host application, thus enabling support for other profiles etc.

To support a specific profile, perform the following steps:

• Set up the identity settings in the EtherNet/IP Host Object according to profile requirements.

• Implement the Assembly Mapping Object in the host application.

• Set up the Assembly Instance Numbers according to profile requirements.

• Enable routing of CIP messages to the host application in the EtherNet/IP Host Object.

• Implement the required CIP objects in the host application.

See also...

• “EtherNet/IP Host Object (F8h)” on page 161 (Host Application Object)

• “Command Details: Process_CIP_Object_Request” on page 166

2.2.4 Web Interface

The web interface can be fully customized to suit a particular application. Dynamic content can be cre-
ated by means of JSON and SSI scripting. Data and web pages are stored in a FLASH-based file system,
which can be accessed using any standard FTP-client.

See also...

• “File System” on page 20

• “FTP Server” on page 22

• “Web Server” on page 24

• “Server Side Include (SSI)” on page 33

• “JSON” on page 51

2.2.5 Socket Interface (Advanced Users Only)

The built in socket interface allows additional protocols to be implemented on top of TCP/IP.

See also...

• “Socket Interface Object (07h)” on page 109 (Anybus Module Object)

• “Message Segmentation” on page 189

Basic Operation 15

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.2.6 Modular Device Functionality

Modular devices consist of a backplane with a certain number of “slots”. The first slot is occupied by
the “coupler” which contains the Anybus CompactCom module. All other slots may be empty or occu-
pied by modules.

When mapping ADIs to process data the application shall map the process data of each module in slot
order.

A list of modules in a Modular Device is available to the EtherNet/IP network master by a request to
the CIP Identity object.

See also ...

• “Modular Device Object (ECh)” (see Anybus CompactCom 40 Software Design Guide)

• “Identity Object (01h)” on page 63

2.2.7 QuickConnect

The module supports the QuickConnect functionality. It is enabled in the EtherNet/IP Host Object.
The module fulfills Class A with a startup time of less than 180 ms, with 16 bytes of I/O data mapped
with parallel, SPI or shift register application interface.

See also ...

• “EtherNet/IP Host Object (F8h)” on page 161

• “TCP/IP Interface Object (F5h)” on page 87 (CIP object)

2.2.8 CIP Safety

The Anybus CompactCom 40 EtherNet/IP device supports the CIP safety profile. This profile makes
it possible for a user to send data on a black channel interface, i.e. a safe channel over EtherNet/IP using
an add-on safety module, e.g. the IXXAT Safe T100. For an application to support CIP safety, the Func-
tional Safety Object (E8h) has to be implemented.

The Anybus CompactCom serial channel is used for the functional safety communication. When this
channel is used for the host application, a second separate serial channel is implemented for the func-
tional safety communication. See the Anybus CompactCom Hardware Design Guide for more informa-
tion.

See “Functional Safety Host Object (E8h)” on page 156.

Basic Operation 16

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.3 Communication Settings

As with other Anybus CompactCom products, network related communication settings are grouped in
the Network Configuration Object (04h).

In this case, this includes...

• TCP/IP settings

These settings must be set properly in order for the module to be able to participate on the net-
work.

The module supports DHCP, which may be used to retrieve the TCP/IP settings from a DHCP-
server automatically. DHCP is enabled by default, but can be disabled if necessary.

• Physical Link Settings

By default, the module uses auto negotiation to establish the physical link settings, however it is
possible to force a specific setting if necessary.

The parameters in the Network Configuration Object (04h) are available from the network through the
built in web server, and through the TCP/IP Interface Object (CIP).

See also...

• “Web Server” on page 24

• “TCP/IP Interface Object (F5h)” on page 87 (CIP)

• “Ethernet Link Object (F6h)” on page 90 (CIP)

• “Network Configuration Object (04h)” on page 99 (Anybus Module Object)

• “Secure HICP (Secure Host IP Configuration Protocol)” on page 192

Basic Operation 17

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.3.1 Communication Settings in Stand Alone Shift Register Mode

If the Anybus CompactCom 40 is used stand alone, there is no application from which to set the IP
address. The IP address is instead set using the DIP1 switches (IP address byte 3) and the virtual attrib-
utes (Ethernet Host object (F9h), attribute #17), that are written to memory during setup (IP address
byte 0 - 2). A flowchart is shown below.

See also...

• “Ethernet Host Object (F9h)” on page 171

• Anybus CompactCom M40 Hardware Design Guide

• “Network Configuration Object (04h)” on page 99

Start

DIP1 switch settings
(0 - 255)

 255 0

1 - 254

Values stored in
 Network Configuration
Object instances #3 - #6

 will be used

Ethernet
 Host Object (F9h),

attribute #17
implemented

Yes

No Use default value for
IP address bytes 0 - 2:

192.168.0.X

Use DIP switch settings
for IP address byte 3

End

Use attribute #17 values
for IP address bytes 0 - 2

IP address is stored in Network
Configuration Object (04h),

 instance #3

Check for DHCP
availability

Yes

No

DHCP will be used for
communication settings,

that will be stored in
Network Configuration

Object (04h), instances #3 - #6

Values stored in
 Network Configuration
Object instances #3 - #6

 will be used

Network Configuration Object (04h)
Instance #4, Subnet mask: 255.255.255.0

Instance #5 Gateway address: 0.0.0.0
Instance 6, DHCP: OFF

Basic Operation 18

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.4 Diagnostics

The severity value of all pending events are combined (using logical OR) and copied to the correspond-
ing bits in the ‘Status’-attribute of the Identity Object (CIP).

See also...

• “Identity Object (01h)” on page 63 (CIP)

• “Diagnostic Object (02h)” on page 97 (Anybus Module Object)

Basic Operation 19

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.5 Network Data Exchange

2.5.1 Application Data

Application Data Instances (ADIs) are represented through the ADI Object (CIP). Each instance within
this objects corresponds directly to an instance in the Application Data Object on the host application
side.

Accessible range of ADIs is 1 to 65535.

See also...

• “Parameter Object (0Fh)” on page 74 (CIP)

• “ADI Object (A2h)” on page 83 (CIP)

2.5.2 Process Data

Process Data is represented as dedicated instances in the Assembly Object (CIP).

See also...

• “Assembly Object (04h)” on page 67 (CIP)

• “Connection Manager (06h)” on page 70 (CIP)

2.5.3 Translation of Data Types

The Anybus data types are translated to CIP-standard and vice versa as follows:

Anybus Data Type CIP Data Type Comments

BOOL BOOL Each ADI element of this type occupies one byte.

ENUM USINT

SINT8 SINT

UINT8 USINT

SINT16 INT Each ADI element of this type occupies two bytes.

UINT16 UINT

SINT32 DINT Each ADI element of this type occupies four bytes.

UINT32 UDINT

FLOAT REAL

CHAR SHORT_STRING SHORT_STRING consists of a single-byte length field (which in this case
represents the number of ADI elements) followed by the actual character data
(in this case the actual ADI elements). This means that a 10-character string
occupies 11 bytes.

SINT64 LINT Each ADI element of this type occupies eight bytes.

UINT64 ULINT

BITS8 BYTE Each ADI element of this type occupies one byte.

BITS16 WORD Each ADI element of this type occupies two bytes.

BITS32 DWORD Each ADI element of this type occupies four bytes.

OCTET USINT

BITS1-7 BYTE Bit fields of size 1 - 7

PAD0-8 BYTE Bit fields of size 0 - 8 used for padding

PAD9-16 BYTE Bit fields of size 9 - 16 used for padding

Basic Operation 20

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.6 File System

Category: Extended

2.6.1 Overview

The Anybus CompactCom 40 EtherNet/IP has an in-built file system, that can be accessed from the
application and from the network. Three directories are predefined:

• VFS - The virtual file system that e.g. holds the web pages of the module.

• Application - This directory provides access to the application file system through the Applica-
tion File System Interface Object (EAh) (optional).

• Firmware - Firmware updates are stored in this directory.

Important: In the firmware folder, it is not possible to use append mode when writing a file. Be
sure to use write mode only.

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware

Basic Operation 21

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

2.6.2 General Information

The built-in file system hosts 28 MByte of non volatile storage, which can be accessed by the HTTP and
FTP servers, the email client, and the host application (through the Anybus File System Interface Object
(0Ah)).

The file system uses the following conventions:

• ‘\’ (backslash) is used as a path separator

• Names may contain spaces (‘ ’) but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the following
characters: ‘\ / : * ? “ < > |’

• Names cannot be longer than 48 characters

• A path cannot be longer than 126 characters (filename included)

See also...

• “FTP Server” on page 22

• “Web Server” on page 24

• “E-mail Client” on page 32

• “Server Side Include (SSI)” on page 33

• “Anybus File System Interface Object (0Ah)” on page 131

• “Application File System Interface Object (EAh)” on page 174

IMPORTANT: The file system is located in flash memory. Due to technical reasons, each flash segment can be erased
approximately 100000 times before failure, making it unsuitable for random access storage.

The following operations will erase one or more flash segments:

• Creating, deleting, moving or renaming a file or directory

• Writing or appending data to an existing file

• Formatting the file system

2.6.3 System Files

The file system contains a set of files used for system configuration. These files, known as “system files”.
are regular ASCII files which can be altered using a standard text editor (such as the Notepad in Micro-
soft WindowsTM). The format of these files are, with a few exceptions, based on the concept of ‘keys’,
where each ‘key’ can be assigned a value, see below.

Example

[Key1]
value of Key1

[Key2]
value of Key2

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 3

3. FTP Server

3.1 General Information

Category: extended

The built-in FTP server makes it easy to manage the file system using a standard FTP client. It can be
disabled using attribute #6 in the Ethernet Host Object (F9h), see page 171.

By default, the following port numbers are used for FTP communication:

• TCP, port 20 (FTP data port)

• TCP, port 21 (FTP command port)

The FTP server supports up to two concurrent clients.

3.2 User Accounts

User accounts are stored in the configuration file '\ftp.cfg'. This file holds the usernames, passwords,
and home directory for all users. Users are not able to access files outside of their home directory.

File Format:

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
User3:Password3:Homedirectory3

Optionally, the UserN:PasswordN-section can be replaced by a path to a file containing a list of users
as follows:

File Format (‘\ftp.cfg’):

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
.
.
UserN:PasswordN:HomedirectoryN
\path\userlistA:HomedirectoryA
\path\userlistB:HomedirectoryB

The files containing the user lists shall have the following format:

File Format:

User1:Password1
User2:Password2
User3:Password3
.
.
.
UserN:PasswordN

Notes:

• Usernames must not exceed 16 characters in length.

• Passwords must not exceed 16 characters in length.

• All printable characters, except the separator ‘:’, are allowed in usernames and passwords.

FTP Server 23

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

• If ‘\ftp.cfg’ is missing or cannot be interpreted, all username/password combinations will be ac-
cepted and the home directory will be the system root (i.e. ‘\’).

• The home directory for a user must also exist in the file system if they should be able to log in,
just adding the user information to the 'ftp.cfg' file it is not enough.

• If ‘Admin Mode’ has been enabled in the Ethernet Object, all username/password combinations
will be accepted and the user will have unrestricted access to the file system (i.e. the home direc-
tory will be the system root)1.

• It is strongly recommended to have at least one user with root access (‘\’) permission. If not,
‘Admin Mode’ must be enabled each time a system file needs to be altered (including ‘\ftp.cfg’).

3.3 Session Example

The Windows Explorer features a built-in FTP client which can easily be used to access the file system
as follows:

1. Open the Windows Explorer.

2. In the address field, type FTP://<user>:<password>@<address>

- Substitute <address> with the IP address of the Anybus module

- Substitute <user> with the username

- Substitute <password> with the password

3. Press enter. The Explorer will now attempt to connect to the Anybus module using the specified
settings. If successful, the file system will be displayed in the Explorer window.

1. Apart from the vfs folder, that is read-only.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 4

4. Web Server

4.1 General Information

Category: extended

The built-in web server provides a flexible environment for end-user interaction and configuration pur-
poses. The powerful combination of SSI, JSON, and client-side scripting allows access to objects and
file system data, enabling the creation of advanced graphical user interfaces.

The web interfaces is stored in the file system, which can be accessed through the FTP server. If neces-
sary, the web server can be completely disabled in the Ethernet Host Object.

See also...

• “FTP Server” on page 22

• “Server Side Include (SSI)” on page 33

• “JSON” on page 51

• “Ethernet Host Object (F9h)” on page 171

4.2 Default Web Pages

The default web pages provide access to:

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs folder.
These files are read only and cannot be deleted or overwritten. The web server will first look for a file
in the web root folder. If not found it will look for the file in the vfs folder, making it appear as the files
are located in the web root folder. By loading files in the web root folder with exactly the same names
as the default files in the vfs folder, it is possible to customize the web pages, replacing such as pictures,
logos and style sheets.

If a complete customized web system is designed and no files in the vfs folder are to be used, it is rec-
ommended to turn off the virtual file system completely, see the File System Interface Object.

See also...

• “File System” on page 20

• “Anybus File System Interface Object (0Ah)” on page 131

Web Server 25

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

4.2.1 Network Configuration

The network configuration page provides an interface for changing TCP/IP and SMTP settings in the
Network Configuration Object.

The module needs to be reset for the TCP/IP and SMTP settings to take effect. The Ethernet Config-
uration settings will take effect immediately.

Available editable settings will be explained on the next page.

Web Server 26

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

IP Configuration

The module needs a reset for any changes to take effect.

Ethernet Configuration

Changes will take effect immediately.

SMTP Settings

The module needs a reset before any changes take effect

Name Description

DHCP Enable or disable DHCP
Default value: enabled

IP address The TCP/IP settings of the module
Default values: 0.0.0.0
Value ranges: 0.0.0.0 - 255.255.255.255

Subnet mask

Gateway

Host name IP address or name
Max 64 characters

Domain name IP address or name
Max 48 characters

DNS 1 Primary and secondary DNS server, used to resolve host name
Default values: 0.0.0.0
Value ranges: 0.0.0.0 - 255.255.255.255

DNS 2

Name Description

Port 1 Ethernet speed/duplex settings
Default value: autoPort 2

Name Description

Server IP address or name
Max 64 characters

User Max 64 characters

Password Max 64 characters

Confirm password

Web Server 27

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

4.2.2 Ethernet statistics page

The Ethernet statistics web page contains the following information:

Ethernet Link Description

Port 1 Speed: The current link speed.

Duplex: The current duplex configuration.

Port 2 Speed: The current link speed.

Duplex: The current duplex configuration.

Ethernet/IP Statistics Description

Established Class1 Connections Current number of established class1 connections

Established Class3 Connections Current number of established class3 connections

Connection Open Requests Number of received connection open requests

Connection Open Format Rejects Connection open requests rejected due to request format error

Connection Open Resource Rejects Connection open requests rejected due to lack of resources

Connection Open Other Rejects Connection open requests rejected due to other reasons

Connection Close Requests Number of received connection open requests

Connection Close Format Rejects Connection close requests rejected du to request format error

Connection Close Other Rejects Connection close requests rejected due to other reasons

Connection Timeouts Number of connection timeouts

Interface Counters Description

In Octets: Received bytes.

In Ucast Packets: Received unicast packets.

In NUcast packets: Received non unicast packets (broadcast and multicast).

In Discards: Received packets discarded due to no available memory buffers.

In Errors: Received packets discarded due to reception error.

In Unknown Protos: Received packets with unsupported protocol type.

Out Octets: Sent bytes.

Out Ucast packets: Sent unicast packets.

Out NUcast packets: Sent non unicast packets (broadcast and multicast).

Out Discards: Outgoing packets discarded due to no available memory buffers.

Out Errors: Transmission errors.

Media Counters Description

Alignment Errors Frames received that are not an integral number of octets in length.

FCS Errors Frames received that do not pass the FCS check.

Single Collisions Successfully transmitted frames which experienced exactly one
collision.

Multiple Collisions Successfully transmitted frames which experienced more than one
collision.

SQE Test Errors Number of times SQE test error messages are generated.a

Deferred Transmissions Frames for which first transmission attempt is delayed because the
medium is busy.

Late Collisions Number of times a collision is detected later than 512 bit-times into
the transmission of a packet.

Excessive Collisions Frames for which a transmission fails due to excessive collisions.

MAC Receive Errors Frames for which reception of an interface fails due to an internal
MAC sublayer receive error.

MAC Transmit Errors Frames for which transmission fails due to an internal MAC sub-
layer receive error.

Web Server 28

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Carrier Sense Errors Times that the carrier sense condition was lost or never asserted
when attempted to transmit a frame.

Frame Size Too Long Frames received that exceed the maximum permitted frame size.

Frame Size Too Short Frames received that are shorter than lowest permitted frame size.

a. Not provided with current PHY interface.

Media Counters Description

Web Server 29

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

4.3 Server Configuration

4.3.1 General Information

Category: extended

Basic web server configuration settings are stored in the system file ‘\http.cfg’. This file holds the root
directory for the web interface, content types, and a list of file types which shall be scanned for SSI.

The web root directory determines the location of all files related to the web interface. Files outside of
this directory and its sub-directories cannot be accessed by the web server.

4.3.2 Index Page

The module searches for possible index pages in the following order:

1. <WebRoot>\index.htm

2. <WebRoot>\index.html

3. <WebRoot>\index.shtm

4. <WebRoot>\index.wml

Note 1: Substitute <WebRoot> with the web root directory specified in ‘\http.cfg’.

Note 2: If no index page is found, the module will default to the virtual index file (if enabled).

See also...

• “Default Web Pages” on page 24

File Format:

[WebRoot]
\web

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

[SSIFileTypes]
FileType1
FileType2
...
FileTypeN

• Web Root Directory

The web server cannot access files outside this di-
rectory.

• Content Types

A list of file extensions and their reported content
types.

See also...

- “Default Content Types” on page 30

• SSI File Types

By default, only files with the extension ‘shtm’ are
scanned for SSI. Additional SSI file types can be
added here as necessary.

Web Server 30

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

4.3.3 Default Content Types

By default, the following content types are recognized by their file extension:

Content types can be added or redefined by adding them to the server configuration file, see “General
Information” on page 29.

4.3.4 Authorization

Directories can be protected from web access by placing a file called ‘web_accs.cfg’ in the directory to
protect. This file shall contain a list of users that are allowed to access the directory and its subdirectories.

File Extension Reported Content Type

htm, html, shtm text/html

gif image/gif

jpeg, jpg, jpe image/jpeg

png image/x-png

js application/x-javascript

bat, txt, c, h, cpp, hpp text/plain

zip application/x-zip-compressed

exe, com application/octet-stream

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wbmp image/vnd.wap.wbmp

wmls text/vnd.wap.wmlscript

wmlsc application/vnd.wap.wmlscriptc

xml text/xml

pdf application/pdf

css text/css

File Format:

Username1:Password1
Username2:Password2
...
UsernameN:PasswordN

[AuthName]
(message goes here)

• List of approved users.

• Optionally, a login message can be specified by including the
key [AuthName]. This message will be displayed by the web
browser upon accessing the protected directory.

Web Server 31

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

The list of approved users can optionally be redirected to one or several other files, see example below.

Note: if the list of approved users is put in another file, be aware that this file can be accessed and read
from the network.

Example:

In this example, the list of approved users will be loaded from ‘here.cfg’ and ‘too.cfg’.

[File path]
\i\put\some\over\here.cfg
\i\actually\put\some\of\it\here\too.cfg

[AuthType]
Basic

[AuthName]
Howdy. Password, please.

The field ‘AuthType´ is used to identify the authentication scheme.

Value Description

Basic Web authentication method using plain-
text passwords.

Digest More secure method using challenge-
response authentication. Used as default
if no [Authtype] field is specified.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 5

5. E-mail Client

5.1 General Information

Category: extended

The built-in e-mail client allows the application to send e-mail messages through an SMTP-server. Mes-
sages can either be specified directly in the SMTP Client Object, or retrieved from the file system. The
latter may contain SSI, however note that for technical reasons, certain commands cannot be used (spec-
ified separately for each SSI command).

The client supports authentication using the ‘LOGIN’ method. Account settings etc. are stored in the
Network Configuration Object.

See also...

• “Network Configuration Object (04h)” on page 99

• “SMTP Client Object (09h)” on page 126

5.2 How to Send E-mail Messages

To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes...

• A valid SMTP-server address

• A valid user name

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the ‘Create’-command (03h)

2. Specify the sender, recipient, topic and message body in the e-mail instance

3. Issue the ‘Send Instance Email’-command (10h) towards the e-mail instance

4. Optionally, delete the e-mail instance using the ‘Delete’-command (04h)

Note: See “SMTP Client Object (09h)” on page 126 for more information.

Sending a message based on a file in the file system is achieved using the ‘Send Email from File’-com-
mand. For a description of the file format, see “Command Details: Send Email From File” on page 129.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 6

6. Server Side Include (SSI)

6.1 General Information

Server Side Include functionality, or SSI, allows data from files and objects to be represented on web
pages and in e-mail messages.1

SSI are special commands embedded within the source document. When the Anybus module encoun-
ters such a command, it will execute it, and replace it with the result specified operation (if applicable).

By default, only files with the extension ‘shtm’ are scanned for SSI.

6.2 Include File

This function includes the contents of a file. The content is scanned for SSI.

Note: This function cannot be used in e-mail messages.

Syntax:

<?--#include file="filename"-->

filename-Source file

Default Output:

1. JSON offers more functionality when it comes to web pages, but is also more complex to use, see “JSON”
on page 51.

Scenario Default Output

Success (contents of file with any SSI tags replaced by their respective output)

Failure (e.g. file not
found)

Nothing, i.e. the SSI tag is replaced by an empty string.

Server Side Include (SSI) 34

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3 Command Functions

6.3.1 General Information

Command functions executes commands and includes the result.

General Syntax:

<?--#exec cmd_argument='command'-->

command-Command function, see below.

Command Functions:

Command Valid for Email Messages Page

GetConfigItem() Yes 35

SetConfigItem() No 36

SsiOutput() Yes 38

DisplayRemoteUser No 38

ChangeLanguage() No 39

IncludeFile() Yes 40

SaveDataToFile() No 41

printf() Yes 42

scanf() No 44

Server Side Include (SSI) 35

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.2 GetConfigItem()

This command returns specific information from a file in the file system.

File Format:

The source file must have the following format:

[key1]
value1

[key2]
value2
...
[keyN]
valueN

Syntax:

<?--exec cmd_argument='GetConfigItem("filename", "key",
 "separator")'-->

filename -Source file to read from.
key -Source [key] in file.
separator -Optional; specifies line separation characters (e.g. “
”).

(default is CRLF).

Default Output:

Example:

The following SSI...

<?--exec cmd_argument='GetConfigItem("\fruit.cnf", "Lemon")'-->

... in combination with the following file (‘\fruit.cnf’)...

[Apple]
Green

[Lemon]
Yellow

[Banana]
Blue

... returns the string Yellow.

Scenario Default Output

Success (value of specified key)
Authentication Error “Authentication error”

File open error “Failed to open file “filename” “

Key not found “Tag (key) not found”

Server Side Include (SSI) 36

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.3 SetConfigItem()

This function stores an HTML-form as a file in the file system.

Note: This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='SetConfigItem("filename" [, Overwrite])'-->

filename-Destination file. If the specified file does not exist, it will be created
(provided that the path is valid).

Overwrite-Optional; forces the module to create a new file each time the command
is issued. The default behaviour is to modify the existing file.

File Format:

Each form object is stored as a [tag], followed by the actual value.

[form object name 1]
form object value 1

[form object name 2]
form object value 2

[form object name 3]
form object value 3

...

[form object name N]
form object value N

Note: Form objects with names starting with underscore (‘_’) will not be stored.

Default Output:

Scenario Default Output

Success “Configuration stored to “filename” ”
Authentication Error “Authentication error ”

File open error “Failed to open file “filename” “

File write error “Could not store configuration to “filename” “

Server Side Include (SSI) 37

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SetConfigItem command.

<HTML>
<HEAD><TITLE>SetConfigItem Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SetConfigItem("\food.txt")'-->

<FORM action="test.shtm">
<P>
<LABEL for="Name">Name: </LABEL>

<INPUT type="text" name="Name">

<LABEL for="_Age">Age: </LABEL>

<INPUT type="text" name="_Age">

<LABEL for="Food">Food: </LABEL>

<INPUT type="radio" name="Food" value="Cheese"> Cheese

<INPUT type="radio" name="Food" value="Sausage"> Sausage

<LABEL for="Drink">Drink: </LABEL>

<INPUT type="radio" name="Drink" value="Wine"> Wine

<INPUT type="radio" name="Drink" value="Beer"> Beer

<INPUT type="submit" name="_submit">
<INPUT type="reset" name="_reset">

</P>
</FORM>

</BODY>
</HTML>

The resulting file (‘\food.txt’) may look somewhat as follows:

[Name]
Cliff Barnes

[Food]
Cheese

[Drink]
Beer

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Server Side Include (SSI) 38

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.4 SsiOutput()

This command temporarily modifies the SSI output of the following command function.

Syntax:

<?--#exec cmd_argument='SsiOutput("success", "failure")'-->

success- String to use in case of success
failure - String to use in case of failure

Default Output:

(this command produces no output on its own)

Example:

The following example illustrates how to use this command.

<?--#exec cmd_argument='SsiOutput ("Parameter stored", "Error")'-->
<?--#exec cmd_argument='SetConfigItem("File.cfg", Overwrite)'-->

See also...

• “SSI Output Configuration” on page 50

6.3.5 DisplayRemoteUser

This command stores returns the user name on an authentication session.

Note: This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='DisplayRemoteUser'-->

Default Output:

Scenario Default Output

Success (current user)

Server Side Include (SSI) 39

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.6 ChangeLanguage()

This command changes the language setting based on an HTML form object.

Note: This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='ChangeLanguage("source")'-->

source -Name of form object which contains the new language setting.
The passed value must be a single digit as follows:

Default Output:

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the ChangeLanguage() command.

<HTML>
<HEAD><TITLE>ChangeLanguage Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='ChangeLanguage("lang")'-->

<FORM action="test.shtm">
<P>
<LABEL for="lang">Language(0-4): </LABEL>

<INPUT type="text" name="lang">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Form value Language

“0” English

“1” German

“2” Spanish

“3” Italian

“4” French

Scenario Default Output

Success “Language changed”

Error “Failed to change language “

Server Side Include (SSI) 40

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.7 IncludeFile()

This command includes the content of a file. Note that the content is not scanned for SSI.

Syntax:

<?--#exec cmd_argument='IncludeFile("filename" [, separator])'-->

filename-Source file

separator-Optional; specifies line separation characters (e.g. “
”).

Default Output:

Example:

The following example demonstrates how to use this function.

<HTML>
<HEAD><TITLE>IncludeFile Test</TITLE></HEAD>
<BODY>
<H1> Contents of ‘info.txt’:</H1>
<P>
<?--#exec cmd_argument='IncludeFile("info.txt")'-->.

</P>
</BODY>
</HTML>

Contents of ‘info.txt’:
Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit...

When viewed in a browser, the resulting page should look somewhat as follows:

See also...

• “Include File” on page 33

Scenario Default Output

Success (file contents)
Authentication Error “Authentication error ”

File open error “Failed to open file “filename” “

Server Side Include (SSI) 41

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.8 SaveDataToFile()

This command stores data from an HTML-form as a file in the file system. Content from the different
form objects are separated by a blank line (2*CRLF).

Note: This command cannot be used in email messages.

Syntax:

<?--#exec cmd_argument='SaveDataToFile("filename" [, "source"],
 Overwrite|Append)'-->

filename -Destination file. If the specified file does not exist, it will be created
(provided that the path is valid).

source - Optional; by specifying a form object, only data from that particular form
object will be stored. Default behaviour is to store data from all form
objects except the ones where the name starts with underscore (‘_’).

Overwrite|Append -Specifies whether to overwrite or append data to existing files.

Default Output:

Example:

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SaveDataToFile command.

<HTML>
<HEAD><TITLE>SaveDataToFile Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SaveDataToFile("\stuff.txt", “Meat”, Overwrite)'-->

<FORM action="test.shtm">
<P>
<LABEL for="Fruit">Fruit: </LABEL>

<INPUT type="text" name="Fruit">

<LABEL for="Meat">Meat: </LABEL>

<INPUT type="text" name="Meat">

<LABEL for="Bread">Bread: </LABEL>

<INPUT type="text" name="Bread">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

The resulting file (‘\stuff.txt’) will contain the value specified for the form object called ‘Meat’.

Note: In order for this example to work, the HTML-file must be named ‘test.shtm’.

Scenario Default Output

Success “Configuration stored to “filename” ”

Authentication Error “Authentication error ”

File write error “Could not store configuration to “filename” “

Server Side Include (SSI) 42

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.9 printf()

This function returns a formatted string which may contain data from the Anybus module and/or ap-
plication. The formatting syntax used is similar to that of the standard C-function printf().

The function accepts a template string containing zero or more formatting tags, followed by a number
of arguments. Each formatting tag corresponds to a single argument, and determines how that argument
shall be converted to human readable form.

Syntax:

<?--#exec cmd_argument='printf("template" [, argument1, ..., argumentN])'-->

Default Output:

Example:

See also...

- “ABCCMessage()” on page 46

- “Example (Get_Attribute):” on page 48

Scenario Default Output

Success (printf() result)

ABCCMessage error ABCCMessage error string (“Errors” on page 49)

template- Template which determines how the arguments shall be represented. May
contain any number of formatting tags which are substituted by subse-
quent arguments and formatted as requested. The number of format tags
must match the number of arguments; if not, the result is undefined.

Formatting tags are written as follows:

%[Flags][Width][.Precision][Modifier]type

See also...

• “Formatting Tags” on page 43

argument- Source arguments; optional parameters which specify the actual source of
the data that shall be inserted in the template string. The number of argu-
ments must match the number of formatting tags; if not, the result is un-
defined.

At the time of writing, the only allowed argument is ABCCMessage().

See also...

• “ABCCMessage()” on page 46

Server Side Include (SSI) 43

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Formatting Tags

• Type (Required)

The Type-character is required and determines the basic representation as follows:

• Flags (Optional)

• Width (Optional)

• .Precision (Optional)

The exact meaning of this field depends on the type character:

• Modifier

Type Character Representation Example

c Single character b

d, i Signed decimal integer. 565

e, E Floating-point number in exponential notation. 5.6538e2

f Floating-point number in normal, fixed-point notation. 565.38

g, G %e or %E is used if the exponent is less than -4 or greater than or equal to the
precision; otherwise %f is used. Trailing zeroes/decimal point are not printed.

565.38

o Unsigned octal notation 1065

s String of characters Text

u Unsigned decimal integer 4242

x, X Hexadecimal integer 4e7f

% Literal %; no assignment is made %

Flag Character Meaning

- Left-justify the result within the give width (default is right justification)

+ Always include a ‘+’ or ‘-’ to indicate whether the number is positive or negative

(space) If the number does not start with a ‘+’ or ‘-’, prefix it with a space character instead.

0 (zero) Pad the field with zeroes instead of spaces

For %e, %E, and %f, forces the number to include a decimal point, even if no digits follow.
For %x and %X, prefixes 0x or 0X, respectively.

Width Meaning

number Specifies the minimum number of characters to be printed.
If the value to be printed is shorter than this number, the result is padded to make up the
field width. The result is never truncated even if the result is larger.

* The width is not specified in the format string, it is specified by an integer value preceding
the argument that has to be formatted.

Type Character Meaning

d, i, o, u, x, X Specifies the minimum no. of decimal digits to be printed. If the value to be printed is
shorter than this number, the result is padded with space. Note that the result is never trun-
cated, even if the result is larger.

e, E, f Specifies the no. of digits to be printed after the decimal point (default is 6).

g, G Specifies the max. no. of significant numbers to be printed.

s Specifies the max. no. of characters to be printed

c (no effect)

Modifier Character Meaning

hh Argument is interpreted as SINT8 or UITN8

h Argument is interpreted as SINT16 or UINT16

L Argument is interpreted as SINT32 or UINT32

Server Side Include (SSI) 44

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.3.10 scanf()

This function is very similar to the printf() function described earlier, except that it is used for input rath-
er than output. The function reads a string passed from an HTML form object, parses the string as spec-
ified by a template string, and sends the resulting data to the specified argument. The formatting syntax
used is similar to that of the standard C-function scanf().

The function accepts a source, a template string containing zero or more formatting tags, followed by a
number of arguments. Each argument corresponds to a formatting tag, which determines how the data
read from the HTML form shall be interpreted prior sending it to the destination argument.

Note: This command cannot be used in email messages.

Syntax:

<?--#exec cmd_argument='scanf("source", "template" [,
 argument1, ..., argumentN])'-->

Default Output:

Example:

See also...

- “ABCCMessage()” on page 46

- “Example (Set_Attribute):” on page 48

Scenario Default Output

Success “Success”

Parsing error “Incorrect data format ”

Too much data for argument “Too much data ”

ABCC Message error ABCCMessage error string (“Errors” on page 49)

source - Name of the HTML form object from which the string shall be extracted.

template- Template which specifies how to parse and interpret the data. May contain
any number of formatting tags which determine the conversion prior to
sending the data to subsequent arguments. The number of formatting tags
must match the number of arguments; if not, the result is undefined.

Formatting tags are written as follows:

%[*][Width][Modifier]type

See also...

• “Formatting Tags” on page 45

argument- Destination argument(s) specifying where to send the interpreted data.
The number of arguments must match the number of formatting tags; if
not, the result is undefined.

At the time of writing, the only allowed argument is ABCCMessage().

See also...

• “ABCCMessage()” on page 46

Server Side Include (SSI) 45

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Formatting Tags

• Type (Required)

The Type-character is required and determines the basic representation as follows:

• * (Optional)

Data is read but ignored. It is not assigned to the corresponding argument.

• Width (Optional)

Specifies the maximum number of characters to be read.

• Modifier (Optional)

Specifies a different data size.

Type Input Argument Data Type

c Single character CHAR

d Accepts a signed decimal integer SINT8
SINT16
SINT32

i Accepts a signed or unsigned decimal integer. May be given as decimal, hex-
adecimal or octal, determined by the initial characters of the input data:
Initial Characters:Format:

0x Hexadecimal
0 Octal
1... 9 Decimal

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

u Accepts an optionally signed decimal integer. UINT8
UINT16
UINT32

o Accepts an optionally signed octal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

x, X Accepts an optionally signed hexadecimal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

e, E,
f,
g, G

Accepts an optionally signed floating point number. The input format for float-
ing-point numbers is a string of digits, with some optional characteristics:

- It can be a signed value
- It can be an exponential value, containing a decimal rational number fol-

lowed by an exponent field, which consists of an ‘E’ or an ‘e’ followed by an
integer.

FLOAT

n Consumes no input; the corresponding argument is an integer into which
scanf writes the number of characters read from the object input.

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

s Accepts a sequence of non-whitespace characters STRING

[scanset] Accepts a sequence of non-whitespace characters from a set of expected
bytes specified by the scanlist (e.g ‘[0123456789ABCDEF]’)
A literal ‘]’ character can be specified as the first character of the set. A caret
character (‘^’) immediately following the initial ‘[’ inverts the scanlist, i.e.
allows all characters except the ones that are listed.

STRING

% Accepts a single ‘%’ input at this point; no assignment or conversion is done.
The complete conversion specification should be ‘%%’.

-

Modifier Meaning

h SINT8, SINT16, UINT8 or UINT16

l SINT32 or UINT32

Server Side Include (SSI) 46

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.4 Argument Functions

6.4.1 General Information

Argument functions are supplied as parameters to certain command functions.

General Syntax:

(Syntax depends on context)

Argument Functions:

6.4.2 ABCCMessage()

This function issues an object request towards an object in the module or in the host application.

Syntax:

ABCCMessage(object, instance, command, ce0, ce1,
 msgdata, c_type, r_type)

object - Specifies the Destination Object

instance - Specifies the Destination Instance

command - Specifies the Command Number

ce0 - Specifies CmdExt[0] for the command message

ce1 - Specifies CmdExt[1] for the command message

msgdata - Specifies the actual contents of the MsgData[] subfield in the command

c_type - Specifies the data type in the command (msgdata)

r_type - Specifies the data type in the response (msgdata)

Numeric input can be supplied in the following formats:

Decimal (e.g. 50)-(no prefix)
Octal (e.g. 043)- Prefix 0 (zero)
Hex (e.g. 0x1f)- Prefix 0x

See also...

• “Example (Get_Attribute):” on page 48

• “Example (Set_Attribute):” on page 48

Function Description Page

ABCCMessage() - 46

• Data can be supplied in direct form (format depends on c_type)

• The keyword “ARG” is used when data is supplied by the parent
command (e.g. scanf()).

See also...

• “Command Data Types (c_type)” on page 47

See also...

• “Response Data Types (r_type)” on page 47

Server Side Include (SSI) 47

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

• Command Data Types (c_type)

For types which support arrays, the number of elements can be specified using the suffix ‘[n]’,
where ‘n’ specifies the number of elements. Each data element must be separated by space.

• Response Data Types (r_type)

For types which support arrays, the number of elements can be specified using the suffix ‘[n]’,
where ‘n’ specifies the number of elements.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes 1

SINT8 Yes -25

SINT16 Yes 2345

SINT32 Yes -2569

UINT8 Yes 245

UINT16 Yes 40000

UINT32 Yes 32

CHAR Yes A

STRING No “abcde”
Note: Quotes can be included in the string if preceded by backslash(‘\’)
Example: “We usually refer to it as \”the Egg\” “

FLOAT Yes 5.6538e2

BITS8 Yes 8-bit field

BITS16 Yes 16-bit field

BITS32 Yes 32-bit field

OCTET Yes 8-bit field

BIT1 - 7 Yes 1-bit to 7-bit field

PAD0 - 16 Yes 0 - 16-bit field, for filling up a string to a predefined size

NONE No Command holds no data, hence no data type

Type Supports Arrays Comments

BOOL Yes Optionally, it is possible to exchange the BOOL data with a message
based on the value (true or false). In such case, the actual data type
returned from the function will be STRING.
Syntax: BOOL<true><false>
For arrays, the format will be BOOL[n]<true><false>.

SINT8 Yes -

SINT16 Yes -

SINT32 Yes -

UINT8 Yes This type can also be used when reading ENUM data types from an
object. In such case, the actual ENUM value will be returned.

UINT16 Yes -

UINT32 Yes -

CHAR Yes -

STRING No -
ENUM No When using this data type, the ABCCMessage() function will first read

the ENUM value. It will then issue a ‘Get Enum String’-command to
retrieve the actual enumeration string. The actual data type in the
response will be STRING.

FLOAT Yes -

BITS8 Yes -

BITS16 Yes -

BITS32 Yes -

OCTET Yes -

BIT1 - 7 Yes -

Server Side Include (SSI) 48

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

IMPORTANT: It is important to note that the message will be passed transparently to the addressed object. The SSI
engine performs no checks for violations of the object addressing scheme, e.g. a malformed Get_Attribute request which
(wrongfully) includes message data will be passed unmodified to the object, even though this is obviously wrong. Failure to
observe this may cause loss of data or other undesired side effects.

Example (Get_Attribute):

This example shows how to retrieve the IP address using printf() and ABCCMessage().

<?--#exec cmd_argument='printf("%u.%u.%u.%u",
 ABCCMessage(4,3,1,5,0,0,NONE,UINT8[4]))'-->

See also...

- “printf()” on page 42

Example (Set_Attribute):

This example shows how to set the IP address using scanf() and ABCCMessage(). Note the spe-
cial parameter value ‘ARG’, which instructs the module to use the passed form data (parsed by
scanf()).

<?--#exec cmd_argument='scanf("IP", "%u.%u.%u.%u",
 ABCCMessage(4,3,2,5,0,ARG,UINT8[4],NONE))'-->

See also...

- “scanf()” on page 44

PAD0 - 16 Yes -

NONE No -

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 1 Get_attribute

ce0 5 Attribute #5

ce1 0 -

msgdata 0 -

c_type NONE Command message holds no data

r_type UINT8[4] Array of 4 unsigned 8-bit integers

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 2 Set_attribute

ce0 5 Attribute #5

ce1 0 -

msgdata ARG Use data parsed by scanf() call

c_type UINT8[4] Array of 4 unsigned 8-bit integers

r_type NONE Response message holds no data

Type Supports Arrays Comments

Server Side Include (SSI) 49

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Errors

In case an object request results in an error, the error code in the response will be evaluated and trans-
lated to human readable form as follows:

See also...

• “SSI Output Configuration” on page 50

Error Code Output

0 “Unknown error”

1 “Unknown error”

2 “Invalid message format”

3 “Unsupported object”

4 “Unsupported instance”

5 “Unsupported command”

6 “Invalid CmdExt[0]”

7 “Invalid CmdExt[1]”

8 “Attribute access is not set-able”

9 “Attribute access is not get-able”

10 “Too much data in msg data field”

11 “Not enough data in msg data field”

12 “Out of range”

13 “Invalid state”

14 “Out of resources”

15 “Segmentation failure”

16 “Segmentation buffer overflow”

17... 255 “Unknown error”

Server Side Include (SSI) 50

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

6.5 SSI Output Configuration

Optionally, the SSI output can be permanently changed by adding the file ‘\output.cfg’.

File format:

All content above can be included in the file multiple times changing the value ‘X’ in each tag for differ-
ent languages. The module will then select the correct output string based on the language settings. If
no information for the selected language is found, it will use the default SSI output.

See also...

• “SsiOutput()” on page 38

Value of X Language

0 English

1 German

2 Spanish

3 Italian

4 French

• Each error code corresponds to a dedicated
output string, labelled from 1 to 16.

See also...

- “Errors” on page 49

• Use ‘%s” to include the name of the file.

• Use ‘%s” to include the name of the file.

• Use ‘%s” to include the name of the file.

[ABCCMessage_X]
0:"Success string"
1:"Error string 1"
2:"Error string 2"
...
16:"Error string 16"

[GetConfigItem_X]
0:"Success string"
1:"Authentication error string"
2:"File open error string"
3:"Tag not found string"

[SetConfigItem_X]
0:"Success string"
1:"Authentication error string"
2:"File open error string"
3:"File write error string"

[IncludeFile_X]
0:"Success string"
1:"Authentication error string"
2:"File readS error string"

[scanf_X]
0:"Success string"
1:"Parsing error string"

[ChangeLanguage_X]
0:"Success string"
1:"Change error string"

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 7

7. JSON

7.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing and ex-
changing data in an organized and intuitive way. It is used as an alternative to XML, to transmit data
objects consisting of attribute - value pairs between a server and a web application. JavaScripts are used
to create dynamic web pages to present the values.

JSON is more versatile than SSI in that you not only can change the values on a web page, but also the
size and the look of the web page dynamically. A simple example of how to create a web page is added
at the end of this chapter.

Access

The JSON resources should be password protected. Add password protection by adding a file called
web_accs.cfg in the root directory. See “Authorization” on page 30 for more information.

Error

If the module fails to parse or process a request the response will contain an error object with an Anybus
error code:

{
 "error": 02
}

7.2 JSON Objects

7.2.1 ADI

info.json

GET adi/info.json[?callback=<function>].

This object holds data common to all ADIs that are static during runtime. Optionally, a callback may be
passed to the GET-request for JSONP output.

JSON object layout:

{
 "dataformat": 0,
 "numadis": 123,
 "webversion": 1
}

Name Data Type Note

dataformat Number 0 = Little endian
1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs

webversion Number Web/JSON API version

JSON 52

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

data.json

GET adi/data.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches values for up to <count> ADIs, starting from <offset> in a list sorted by ADI
order number. The values may change at any time during runtime. Optionally, a callback may be passed
to the GET-request for JSONP output.

JSON object layout:

[
 "FF",
 "A201",
 "01FAC105"
]

metadata.json

GET adi/metadata.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches metadata for up to <count> ADIs, starting from <offset> in a list sorted by
ADI order number. This data is static during runtime. Optionally, a callback may be passed to the GET-
request for JSONP output.

JSON object layout:

[
{
 "instance": 1,
 "name": "Temperature threshold",
 "numelements": 1,
 "datatype": 0,
 "min": "00",
 "max": "FF",
 "access": 0x03
}
{
 nine more...
}
]

Name Data Type Note

instance Number -

name String May be NULL if no name is present.

numelements Number -

datatype Number -

min String Minimum value. May be NULL if no minimum value is
present.

max String Maximum value. May be NULL of no maximum value is
present.

access Number Bit 0: Read access
Bit 1: Write access

JSON 53

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

enum.json

GET adi/enum.json?inst=<instance>[&value=<element>][&callback=<function>].

This object call fetches enum strings for the instance <instance>. If an <element> is specified, only the
enum string for that value is returned. If no enum strings are available, an empty list is returned. Option-
ally, a callback may be passed to the GET-request for JSONP output.

JSON object layout:

[
 {
 "string": "String for value 1",
 "value": 1
 },
 {
 "string": "String for value 2",
 "value": 2
 },
 ...
]

update.json

POST adi/update.json - form data:
inst=<instance>&value=<data>[&elem=<element>][&callback=<function>].

Updates the value of an ADI for the specified ADI instance <instance>. The value, <data>, shall be
hex formatted (see “Hex Format Explained” on page 59 for more information). If <element> is spec-
ified, only the value of the specified element is updated. In this case, <data> shall only update that single
element value. When <element> is not specified, <data> shall represent the entire array value. Option-
ally, a callback may be passed to the request for JSONP output.

POST adi/update.json - form data: inst=15&value=FF01

{
 "result" : 0
}

Name Data Type Note

string String -

value Number -

Name Data Type Note

result Number 0 = success

JSON 54

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

7.2.2 Module

info.json

GET module/info.json.

JSON object layout:

{
 "modulename": "ABCC M40",
 "serial": "ABCDEF00",
 "fwver": [1, 5, 0],
 "uptime": [5, 123456],
 "cpuload": 55
}

Name Data Type Note

modulename String -

serial String 32 bit hex ASCII

fwver Array of Number (major, minor, build)

uptime Array of Number [high, low] milliseconds (ms)

cpuload Number CPU load in %

JSON 55

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

7.2.3 Network

ethstatus.json

GET network/ethstatus.json.

“comm2” is not present if Ethernet port 2 is inactivated.

Comm Object Definition:

JSON object layout:
{
 "mac": "003011FF0201",
 "comm1": {
 "link": 1,
 "speed": 1,
 "duplex": 1
 }
 "comm2": {
 "link": 0,
 "speed": 0,
 "duplex": 0
 }
}

Name Data Type Note

mac String 6 byte hex

comm1 Object See object definition in the table below

comm2 Object See object definition in the table below

Name Data Type Note

link Number 0: No link
1: Link

speed Number 0: 10 Mbit
1: 100 Mbit

duplex Number 0: Half
1: Full

JSON 56

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

ipstatus.json & ipconf.json

These two object share the same data format. The object ipconf.json returns the configured IP settings,
and ipstatus.json returns the actual values that are currently used. ipconf.json can also be used to alter
the IP settings.

GET network/ipstatus.json, or GET network/ipconf.json.

{
 "dhcp": 0,
 "addr": "192.168.0.55",
 "subnet": "255.255.255.0",
 "gateway": "192.168.0.1",
 "dns1": "10.10.55.1",
 "dns2": "10.10.55.2"
 "hostname": "<hostname>",
 "domainname": "hms.se"
}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the list
above. Values should be in the same format.

Example:

GET ipconf.json?dhcp=0&addr=10.11.32.2&hostname=abcc123&domainname=hms.se

ethconf.json

GET network/ethconf.json.

“comm2” is not present if Ethernet port 2 is inactivated.

The values of "comm1" and "comm2" comes from the Network Configuration object (04h) instance 7
and instance 8. See “Instance Attributes (Instance #7, Ethernet Communication Settings 1)” on page
101 for more information.

Name Data Type Note

dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

Name Data Type Note

comm1 Number -

comm2 Number -

JSON 57

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

ifcounters.json

GET network/ifcounters.json?port=<port>. The argument <port> is either 1 or 2.

Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Note

inoctets Number IN: bytes

inucast Number IN: unicast packets

innucast Number IN: broadcast and multicast packets

indiscards Number IN: discarded packets

inerrors Number IN: errors

inunknown Number IN: unsupported protocol type

outoctets Number OUT: bytes

outucast Number OUT: unicast packets

outnucast Number OUT: broadcast and multicast packets

outdiscards Number OUT: discarded packets

outerrors Number OUT: errors

JSON 58

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

mediacounters.json

GET network/mediacounters.json?port=<port>. The argument <port> is either 1 or 2.

Port number 2 option is only valid if two Ethernet ports are activated in the module.

nwstats.json

GET network/nwstats.json.

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eip", "title": "EtherNet/IP Statistics" }]
or
[
 { "identifier": "bacnet", "title": "BACnet/IP Statistics" },
 { "identifier": "bacnetae", "title": "BACnet Alarm and Event" },
 { "identifier": "bacnetapl", "title": "BACnet APL Statistics" }
]

Get network specific statistics:

GET network/nwstats.json?get=<ID>. <ID> is an “identifier” value returned from the previous
command (“eip”, for example)

[
 { "name": "Established Class1 Connections", "value": 0 },
 { "name": "Established Class3 Connections", "value": 1 }
]

Name Data Type Note

align Number Frames received that are not an integral number of octets in
length

fcs Number Frames received that do not pass the FCS check

singlecoll Number Successfully transmitted frames which experienced exactly
one collision

multicoll Number Successfully transmitted frames which experienced more
than one collision

latecoll Number Number of collisions detected later than 512 bit times into
the transmission of a packet

excesscoll Number Frames for which transmissions fail due to excessive colli-
sions

sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal MAC
sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted when
attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted frame
size

tooshort Number Frames received that are shorter than the lowest permitted
frame size

JSON 59

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

7.2.4 Services

smtp.json

GET services/smtp.json.

Note: Password is not returned when retrieving the settings.

7.2.5 Hex Format Explained

The metadata max and min fields and the ADI values are ABP data encoded in a hex format. If the data
type is an integer, the endianness used is determined by the data format field found in adi/info.json (see
“info.json” on page 51).

Examples:
The value “5” encoded as a UINT16, with data format = 0 (little endian):

 0500

The character array “ABC” encoded as CHAR[3] (data format is not relevant for CHAR):

 414243

Name Data Type Note

server String -

user String -

JSON 60

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

7.3 Example

This example shows how to create a web page that fetches Module Name and CPU load from the mod-
ule and presents it on the web page.

The example below is built using the following libraries:

• jQuery JavaScript Library v1.9.1 (http://jquery.com)

• JavaScript Templates 2.2.0 (https://github.com/blueimp/JavaScript-Templates)

The file, containing this code, has to be stored in the built-in file system, see “File System” on page 20,
and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

 Chapter 8

8. CIP Objects

8.1 General Information

This chapter specifies the CIP-object implementation in the module. These objects can be accessed
from the network, but not directly by the host application.

Mandatory Objects:

• “Identity Object (01h)” on page 63

• “Message Router (02h)” on page 66

• “Assembly Object (04h)” on page 67

• “Connection Manager (06h)” on page 70

• “Parameter Object (0Fh)” on page 74

• “DLR Object (47h)” on page 77

• “QoS Object (48h)” on page 78

• “TCP/IP Interface Object (F5h)” on page 87

• “Ethernet Link Object (F6h)” on page 90

CIP Energy Objects:

• “Base Energy Object (4Eh)” on page 79

• “Power Management Object (53h)” on page 81

Optional Objects:

• “Port Object (F4h)” on page 85 (Optional)

Vendor Specific Objects:

• “ADI Object (A2h)” on page 83

It is possible to implement additional CIP-objects in the host application using the CIP forwarding func-
tionality, see “EtherNet/IP Host Object (F8h)” on page 161 and “Command Details: Process_CIP_-
Object_Request” on page 166.

Unconnected CIP routing is supported, which means that a message can be sent to a device without first
setting up a connection.

CIP Objects 62

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.2 Translation of Status Codes

If an error occurs when an object is requested from the application, an error code is returned. These
Anybus CompactCom 40 error codes are translated to CIP status codes according to the table below.

For further information about the Anybus CompactCom error codes, please consult the Anybus Com-
pactCom 40 Software Design Guide.

Anybus CompactCom 40 Error Code CIP Status Code

Value Error Value Status

00h Reserved 1Eh Embedded service error

01h Reserved 1Eh Embedded service error

02h Invalid message format 1Eh Embedded service error

03h Unsupported object 05h Path destination unknown

04h Unsupported instance 05h Path destination unknown

05h Unsupported Command 08h Service not supported

06h Invalid CmdExt(0) 14h Depending on Anybus CompactCom Service return-
ing this reply, e.g. attribute not supported

07h Invalid CmdExt(1) - Depending on Anybus CompactCom Service return-
ing this reply

08h Attribute not settable 0Eh Attribute not settable

09h Attribute not gettable 2Ch Attribute not gettable

0Ah Too Much Data 15h Too much data

0Bh Not Enough Data 13h Not enough data

0Ch Out of range 09h Invalid attribute value

0Dh Invalid state 0Ch Object state conflict

0Eh Out of resources 02h Resource unavailable

0Fh Segmentation failure 1Eh Embedded service error

10h Segmentation buffer overflow 23h Buffer overflow

11h Value too high 09h Invalid attribute value

12h Value too low 09h Invalid attribute value

13h Attribute controlled 0Fh A permission/privilege check failed

14h Message channel too small 11h Reply data too large

FFh Object Specific Error 1Fh Vendor specific error. No additional error codes will
be sent on EtherNet/IP

Other - 1Eh Embedded service error

CIP Objects 63

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.3 Identity Object (01h)

Category

Extended

Object Description

The Identity Object provides identification of and general information about the module.

The object supports multiple instances. Instance 1, which is the only mandatory instance, describes the
whole product. It is used by applications to determine what nodes are on the network and to match an
EDS file with a product on the network. The other (optional) instances describe different parts of the
product, e.g. the software.

If modular device functionality is enabled, a list of the modules in the slots can be retrieved and made
available to the network master by sending a get request to class attribute 100.

Instance attributes 1 - 7 can be customized by implementing the EtherNet/IP Host Object.

Additional identity instances can be registered by implementing the CIP Identity Host Object (host ap-
plication object).

See also

• “EtherNet/IP Host Object (F8h)” on page 161

• “CIP Identity Host Object (EDh)” on page 158

Supported Services

Class: Get_Attribute_Single
Get_Attributes_All

Instance: Get_Attribute_Single
Set_Attribute_Single
Get_Attributes_All
Reset

CIP Objects 64

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Class Attributes

Instance Attributes

Extended

Name Access Type Value

1 Revision Get UINT 0001h (Object revision)

2 Max instance Get UINT Maximum instance number

3 Number of
instances

Get UINT Number of instances

100 Module ID List Get Array of UINT32 If modular device functionality is enabled, a request to this attribute
will generate a Get_List request to the Modular Device Object in
the host application.

Name Access Type Value

1 Vendor ID Get UINT 005Ah (HMS Industrial Networks AB)a

a. Can be customized by implementing the EtherNet/IP Host Object, see “EtherNet/IP Host Object (F8h)” on page
161

2 Device Type Get UINT 002Bh (Generic Device)a

3 Product Code Get UINT 0037h (Anybus CompactCom 40 EtherNet/IP)a

4 Revision Get Struct of:
USINT
USINT

Major and minor firmware revisiona

5 Status Get WORD See “Device Status” on page 65

6 Serial Number Get UDINT Unique serial number (assigned by HMS)a

7 Product Name Get SHORT_STRING “Anybus CompactCom 40 EtherNet/IP (TM)” a

11 Active language Set Struct of:
USINT
USINT
USINT

Requests sent to this instance are forwarded to the Application
Object. If the request is accepted, the module will update the lan-
guage accordingly.

12 Supported Lan-
guage List

Get Array of: List of languages supported by the host application. The list is read
from the Application Object and translated to CIP standard. By
default the only supported language is English. The application has
to implement the corresponding attributes in the application object to
enable more languages.

Struct of:
USINT
USINT
USINT

CIP Objects 65

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Device Status

Service Details: Reset Service

Note: This service is not supported if safety is enabled in the Functional Safety Object (E8h).

The module forwards reset requests from the network to the host application. For more information
about network reset handling, consult the general Anybus CompactCom 40 Software Design Guide.

There are two types of network reset requests on EtherNet/IP:

• Type 0: ‘Power Cycling Reset’

This service emulates a power cycling of the module, and corresponds to Anybus reset type 0
(Power cycling). For further information, consult the general Anybus CompactCom 40 Software
Design Guide.

• Type 1: ‘Out of box reset’

This service sets a “out of box” configuration and performs a reset, and corresponds to Anybus
reset type 2 (Power cycling + factory default). For further information, consult the general Any-
bus CompactCom 40 Software Design Guide.

bit(s) Name

0 Module Owned

1 (reserved)

2 Configureda

a. This bit shows if the product has other settings than “out-of-box”. The value is set to true if the configured attribute
in the Application Object is set and/or the module’s NV storage is changed from default.

3 (reserved)

4... 7 Extended Device Status:

Value:Meaning:
0000b Unknown
0010b Faulted I/O Connection
0011b No I/O connection established
0100b Non volatile configuration bad
0101b Major fault
0110b Connection in Run mode
0111b Connection in Idle mode
(other) (reserved)

8 Set for minor recoverable faultsb

b. See “Diagnostic Object (02h)” on page 97.

9 Set for minor unrecoverable faultsb

10 Set for major recoverable faultsb

11 Set for major unrecoverable faultsb

12... 15 (reserved)

CIP Objects 66

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.4 Message Router (02h)

Category

Extended

Object Description

The Message Router Object provides a messaging connection point through which a client may address
a service to any object class or instance residing in the physical module.

In the Anybus CompactCom 40 module it is used internally to direct object requests.

Supported Services

Class: -

Instance: -

Class Attributes

-

Instance Attributes

-

CIP Objects 67

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.5 Assembly Object (04h)

Category

Extended

Object Description

The Assembly object uses static assemblies and holds the Process Data sent/received by the host appli-
cation. It allows data to and from each object to be sent or received over a single connection. The default
assembly instance IDs used are in the vendor specific range.

It is possible for the application to create and support up to six consuming and six producing instances
if the Assembly Mapping Object is implemented.

The terms “input” and “output” are defined from the network’s point of view. An input will produce
data on the network and an output will consume data from the network.

See also...

• “Process Data” on page 19

• “EtherNet/IP Host Object (F8h)” on page 161

• Assembly Mapping Object (see Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single
Set_Attribute_Single

Class Attributes

Instance 03h Attributes (Heartbeat, Input-Only)

Extended

This instance is used as heartbeat for Input-Only connections. The data size of the Heartbeat instance
in the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

2 Max Instance Get UINT (Highest instance number)

Name Access Type Value

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

CIP Objects 68

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance 04h Attributes (Heartbeat, Listen-Only)

Extended

This instance is used as heartbeat for listen-only connections. The data size of the Heartbeat instance in
the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

Instance 05h Attributes (Configuration Data)

Extended

Configuration Data that is sent through the ‘Forward_Open’-service will be written to this instance.

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

See also...

• “Command Details: Set_Configuration_Data” on page 167

• “Command Details: Get_Configuration_Data” on page 170

Instance 06h Attributes (Heartbeat, Input-Only Extended)

Extended

This instance is used as heartbeat for input-only extended connections, and does not carry any attributes.
The state of connections made to this instance does not affect the state of the Anybus CompactCom 40
module, i.e. if the connection times out, the module does not switch to the Error state. The data size of
the Heartbeat instance in the Forward_Open-request should be 0 bytes, however other values are also
permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

Name Access Type Value

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

Name Access Type Value

3 Data Set N/A - (Configuration data written to the application when the forward
open command has the configuration data included)

4 Size Get UINT Number of bytes in attribute 3

Name Access Type Value

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

CIP Objects 69

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance 07h Attributes (Heartbeat, Listen-Only Extended)

Extended

This instance is used as heartbeat for listen-only extended connections, and does not carry any attributes.
The state of connections made to this instance does not affect the state of the Anybus CompactCom 40
module, i.e. if the connection times out, the module does not switch to the Error state. The data size of
the Heartbeat instance in the Forward_Open-request should be 0 bytes, however other values are also
permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

Instance 64h Attributes (Producing Instance)

Extended

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

See also...

• “Network Data Exchange” on page 19

• “EtherNet/IP Host Object (F8h)” on page 161 (Instance attribute #7)

Instance 96h Attributes (Consuming Instance)

Extended

The instance number for this instance can be changed by implementing the corresponding attribute in
the EtherNet/IP Host Object.

See also...

• “Network Data Exchange” on page 19

• “EtherNet/IP Host Object (F8h)” on page 161 (Instance attribute #8)

Name Access Type Value

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

Name Access Type Value

3 Produced Data Get Array of BYTE This data corresponds to the Write Process Data.

4 Size Get UINT Number of bytes in attribute 3

Name Access Type Value

3 Consumed Data Set Array of BYTE This data corresponds to the Read Process Data.

4 Size Get UINT Number of bytes in attribute 3

CIP Objects 70

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.6 Connection Manager (06h)

Category

Extended

Object Description

This object is used for connection and connectionless communications, including establishing connec-
tions across multiple subnets.

Supported Services

Class: -

Instance: Get Attribute All
Get Attribute Single
Set Attribute Single
Large_Forward_Open
Forward_Open
Forward_Close
Unconnected Send (when unconnected routing is enabled)

Class Attributes

(No supported class attributes)

Instance Attributes

Extended

Name Access Type Description

1 Open Requests Set UINT Number of Forward Open service requests received.

2 Open Format Rejects Set UINT Number of Forward Open service requests which were rejected due
to bad format.

3 Open Resource Rejects Set UINT Number of Forward Open service requests which were rejected due
to lack of resources.

4 Open Other Rejects Set UINT Number of Forward Open service requests which were rejected for
reasons other than bad format or lack of resources.

5 Close Requests Set UINT Number of Forward Close service requests received.

6 Close Format Rejects Set UINT Number of Forward Close service requests which were rejected due
to bad format.

7 Close Other Rejects Set UINT Number of Forward Close service requests which were rejected for
reasons other than bad format.

8 Connection Timeouts Set UINT Total number of connection timeouts that have occurred in connec-
tions controlled by this Connection Manager.

CIP Objects 71

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Class 0 Connection Details

General

Class 0 connections are only supported for safety connections. The CompactCom device will act as a
transparent bridge for safety connections, meaning that open and close requests for safety connections
and safety I/O data will be forwarded to the safety module. Class 0 connections use UDP transport.

Class 1 Connection Details

General

Class 1 connections are used to transfer I/O data, and can be established to instances in the Assembly
Object. Each Class 1 connection will establish two data transports; one consuming and one producing.
The heartbeat instances can be used for connections that shall only access inputs. Class 1 connections
use UDP transport. Null forward open is supported.

- Total number of supported class 0 connections: 2

- Max input connection size: 241 bytesa

a. Including the Mode Byte, Actual, Complement and Time stamp sections

- Max output connection size: 239 bytesa

- Supported RPIb:

b. Requested packet interval

1... 20000 ms

- Total number of supported class 1 connections: 4

- Max input connection size: 1448 bytes with Large_Forward_Open, 509 bytes with For-
ward_Open

- Max output connection size: 1448 bytes with Large_Forward_Open, 505 bytes with For-
ward_Open

- Supported RPIa:

a. Requested packet interval

1... 3200 ms

- Tb->Oc Connection type:

b. Target, in this case the module
c. Origin, in this case the master

Point-to-point, Multicast, Null

- O->T Connection type: Point-to-point, Null

- Supported trigger types: Cyclic, CoS (Change of State)

- Supported priorities: Low, High, Scheduled, Urgent

CIP Objects 72

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Connection Types

• Exclusive-Owner connection

This type of connection controls the outputs of the Anybus module and does not depend on oth-
er connections.

- Max. no. of Exclusive-Owner connections: 1

- Connection point O  T: Assembly Object, instance 96h (Default)

- Connection point T  O: Assembly Object, instance 64h (Default)

• Input-Only connection

This type of connection is used to read data from the Anybus module without controlling the
outputs. It does not depend on other connections.

- Max. no. of Input-Only connections: Up to 41

- Connection point O  T: Assembly Object, instance 03h (Default)

- Connection point T  O: Assembly Object, instance 64h (Default)

Note: If an Exclusive-Owner connection has been opened towards the module and times out,
the Input-Only connection times out as well. If the Exclusive-Owner connection is properly
closed, the Input-Only connection remains unaffected.

• Input-Only Extended connection

This connections functionality is the same as the standard Input-Only connection. However
when this connection times out it does not affect the state of the application.

- Connection point O  T: Assembly Object, instance 06h (Default)

- Connection point T  O: Assembly Object, instance 64h (Default)

• Listen-Only connection

This type of connection requires another connection in order to exist. If that connection (Exclu-
sive-Owner or Input-Only) is closed, the Listen-Only connection will be closed as well.

- Max. no. of Input-Only connections: Up to 42

- Connection point O  T: Assembly Object, instance 04h (Default)

- Connection point T  O: Assembly Object, instance 64h (Default)

• Listen-Only Extended connection

This connections functionality is the same as the standard Listen-Only connection. However
when this connection times out it does not affect the state of the application.

- Connection point O  T: Assembly Object, instance 07h (Default)

- Connection point T  O: Assembly Object, instance 64h (Default)

• Redundant-Owner connection

This connection type is not supported by the module.

1. Shared with Exclusive-Owner and Listen-Only connections
2. Shared with Exclusive-Owner and Input-Only connections

CIP Objects 73

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Class 3 Connection Details

• Explicit message connection

Class 3 connections are used to establish connections towards the message router. Thereafter,
the connection is used for explicit messaging. Class 3 connections use TCP transport.

- No. of simultaneous Class 3 connections: 6

- Supported RPI: 100 - 10000 ms

- T->O Connection type: Point-to-point

- O->T Connection type: Point-to-point

- Supported trigger type: Application

- Supported connection size: 1448 bytes

- Supported priorities: Low

CIP Objects 74

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.7 Parameter Object (0Fh)

Category

Extended

Object Description

The Parameter Object provides an interface to the configuration data of the module. It can provide all
the information necessary to define and describe each of the module configuration parameters, as well
as a full description of each parameter, including minimum and maximum values and a text string de-
scribing the parameter. Configuration tools, such as RSNetworx, can extract information about the Ap-
plication Data Instances (ADIs) and present them with their actual name and range to the user.

Since this process may be somewhat time consuming, especially when using the serial host interface, it
is possible to disable support for this functionality in the EtherNet/IP Host Object.

Each parameter is represented by one instance. Instance numbers start at 1, and are incremented by one,
with no gaps in the list. Due to limitations imposed by the CIP standard, ADIs containing multiple ele-
ments (i.e. arrays etc.) cannot be represented through this object. In such cases, default values will be
returned, see “Default Values” on page 76.

See also...

• “ADI Object (A2h)” on page 83 (CIP Object)

• “EtherNet/IP Host Object (F8h)” on page 161 (Host Application Object)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single
Set_Attribute_Single
Get_Attributes_All
Get_Enum_String

Class Attributes

Name Access Type Value

1 Revision Get UINT 0001h (Revision of the object)

2 Max Instance Get UINT Maximum created instance number = class attribute 3 in

the Application Data Objecta

a. Consult the general Anybus CompactCom 40 Software Design Guide for further information.

8 Parameter Class
Descriptor

Get WORD Default: 0000 0000 0000 1011b

Bit:Contents:
0 Supports parameter instances
1 Supports full attributes
2 Must do non-volatile storage save command
3 Parameters are stored in non-volatile storage

9 Configuration Assembly
Instance

Get UINT 0000h (Application does not support configuration data)
0005h (If the application supports configuration data,
unless the configuration instance number has been
changed using attribute 15 in the EtherNet/IP Host
Object.)

CIP Objects 75

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes

Extended

Name Access Type Value

1 Parameter Value Get/Set Specified in attrib-
utes 4, 5 & 6.

Actual value of parameter
This attribute is read-only if bit 4 of Attribute #4 is true

2 Link Path Size Get USINT 0007h (Size of link path in bytes)

3 Link Path Get Packed EPATH 20 A2 25 nn nn 30 05h
(Path to the object from where this parameter’s value is
retrieved, in this case the ADI Object)

4 Descriptor Get WORD Bit:Contents:
0 Supports Settable Path (N/A)
1 Supports Enumerated Strings
2 Supports Scaling (N/A)
3 Supports Scaling Links (N/A)
4 Read only Parameter
5 Monitor Parameter (N/A)
6 Supports Extended Precision Scaling (N/A)

5 Data Type Get USINT Data type code

6 Data Size Get USINT Number of bytes in parameter value

7 Parameter Name String Get SHORT_STRING Name of the parameter, truncated to 16 chars

8 Units String Get SHORT_STRING “” (default string)

9 Help String Get SHORT_STRING

10 Minimum Value Get (Data Type)a

a. The Data Type is defined in attribute 5.

Minimum value of parameter

11 Maximum Value Get (Data Type)a Maximum value of parameter

12 Default Value Get (Data Type)a Default value of parameter

13 Scaling Multiplier Get UINT 0001h

14 Scaling Divisor Get UINT

15 Scaling Base Get UINT

16 Scaling Offset Get INT 0000h

17 Multiplier Link Get UINT

18 Divisor Link Get UINT

19 Base Link Get UINT

20 Offset Link Get UINT

21 Decimal Precision Get USINT 00h

CIP Objects 76

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Default Values

In case of ADIs containing several elements, that cannot be represented through this object, default val-
ues will be returned, according to the table below.

Name Value Comments

1 Parameter Value 0 -

2 Link Path Size 0 Size of link path in bytes.

3 Link Path - NULL Path

4 Descriptor 0010h Read only Parameter

5 Data type C6h USINT

6 Data size 1 -

7 Parameter Name String “Reserved” -

8 Units String “” -

9 Help String “” -

10 Minimum value N/A 0

11 Maximum value N/A 0

12 Default value N/A 0

13 Scaling Multiplier N/A 1

14 Scaling Divisor N/A 1

15 Scaling Base N/A 1

16 Scaling Offset N/A 0

17 Multiplier Link N/A 0

18 Divisor Link N/A 0

19 Base Link N/A 0

20 Offset Link N/A 0

21 Decimal Precision N/A 0

CIP Objects 77

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.8 DLR Object (47h)

Category

Extended

Object Description

The Device Level Ring (DLR) Object provides the status information interface for the DLR protocol.
This protocol enables the use of an Ethernet ring topology, and the DLR Object provides the CIP ap-
plication-level interface to the protocol.

Supported Services

Class: Get_Attribute_Single
Get_Attributes_All

Instance: Get_Attribute_Single

Class Attributes

Instance Attributes

Extended

Name Access Type Value

1 Revision Get UINT 0003h (Object revision)

Name Access Type Value

1 Network Topol-
ogy

Get USINT Bit:Contents:
0 “Linear”
1 “Ring”

2 Network Status Get USINT Bit:Contents:
0 “Normal” (N/A)
1 “Ring Fault”
2 “Unexpected Loop Detected”
3 “Partial Network Fault”
4 “Rapid Fault/Restore Cycle”

10 Active
Supervisor
Address

Get Struct of:
 UDINT
 Array of:
 6 USINTs

This attribute holds the IP address (IPv4) and/or the Ethernet Mac
address of the active ring supervisor

12 Capability Flags Get DWORD 82h (Beacon-based ring node, Flush_Table frame capable)

CIP Objects 78

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.9 QoS Object (48h)

Category

Extended

Object Description

Quality of Service (QoS) is a general term that is applied to mechanisms used to treat traffic streams with
different relative priorities or other delivery characteristics. Standard QoS mechanisms include IEEE
802.1D/Q (Ethernet frame priority) and Differentiated Services (DiffServ) in the TCP/IP protocol
suite.

The QoS Object provides a means to configure certain QoS related behaviors in EtherNet/IP devices.

The object is required for devices that support sending EtherNet/IP messages with nonzero DiffServ
code points (DSCP), or sending EtherNet/IP messages in 802.1Q tagged frames.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single
Set_Attribute_Single

Class Attributes

Instance Attributes

Extended

Name Access Type Value

1 Revision Get UINT 0001h (Object revision)

Name Access Type Value

1 802.1Q Tag
Enable

Set USINT Enables or disables sending 802.1Q frames.
Bit:Contents:

0 Disabled (Default)
1 Enabled

4 DSCP Urgent Set USINT CIP transport class 1 messages with priority Urgent
Default: 55

5 DSCP
Scheduled

Set USINT CIP transport class 1 messages with priority Scheduled
Default: 47

6 DSCP High Set USINT CIP transport class 1 messages with priority High
Default: 43

7 DSCP Low Set USINT CIP transport class 1 messages with priority Low
Default: 31

8 DSCP Explicit Set USINT CIP UCMM and CIP class 3
Default: 27

CIP Objects 79

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.10 Base Energy Object (4Eh)

Category

Extended

Object Description

The Base Energy Object acts as an “Energy Supervisor” for CIP Energy implementations. It is respon-
sible for providing a time base for energy values, provides energy mode services, and can provide aggre-
gation services for aggregating energy values up through the various levels of an industrial facility. It also
provides a standard format for reporting energy metering results. The object is energy type independent
and allows energy type specific data and functionality to be integrated into an energy system in a standard
way. The Anybus CompactCom 40 EtherNet/IP module supports one instance of the Base Energy Ob-
ject. For instance, an electric power monitor may count metering pulse output transitions of a separate
metering device. The count of such transitions, represented by a Base Energy Object instance, would
reflect the energy consumption measured by the separate metering device. An instance of the Base En-
ergy Object may exist as a stand-alone instance, or it may exist in conjunction with an Electrical and/or
Non-Electrical Energy Object instance1. If an instance of any of these objects is implemented in a de-
vice, it must be associated with a Base Energy Object instance in the device.

For this object to be able to access the network, the Energy Reporting Object (E7h) must be implement-
ed in the host application, see the Anybus CompactCom 40 Software Design Guide for more informa-
tion.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Class Attributes

1. These objects are not implemented in the Anybus CompactCom 40 EtherNet/IP

Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

CIP Objects 80

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes

Extended

Name Access Type Value/Description

1 Energy/
Resource Type

Get UINT Type of energy managed by this instance
Always 0 (Generic)

2 Base Energy
Object Capabili-
ties

Get UINT Always 0 (Energy measured)

3 Energy Accu-
racy

Get UINT Specifies the accuracy of power and energy metering results, either
in 0.01 percent of reading (default) or 0.01 of other units specified in
attribute #4. If 0, unknown.

4 Energy Accu-
racy Basis

Get UINT Always 0 (Percent of reading)

7a

a. Depending on whether the instance reports consumed or generated energy, either attribute #7 or attribute #8 is
required.

Consumed
Energy Odome-
ter

Get ODOMETERb

b. This struct data type makes it possible to represent very large values, for more information please consult the CIP
specification Volume 1 (CIP Common).

The value of the consumed energy.

8a Generated
Energy Odome-
ter

Get ODOMETERb The value of the generated energy.

12 Energy Type
Specific Object
Path

Get Struct of:
UINT (Path size)
padded EPATH
(Path)

NULL path

CIP Objects 81

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.11 Power Management Object (53h)

Category

Extended

Object Description

The Power Management Object provides standardized attributes and services to support the control of
devices into and out of paused or sleep states. The Energy Control Object (F0h) has to be implemented
for this object to gain access to the network.

See also ..

• Energy Control Object (F0h) (Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single
Power_Management
Set_Pass_Code
Clear_Pass_Code

Class Attributes

Instance Attributes

Extended

Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

Name Access Type Value/Description

1 Power Manage-
ment Command

Get DWORD Collection of bit fields comprising the most recent power manage-
ment request.

2 Power Manage-
ment Status

Get DWORD Collection of bit fields providing Power Management status informa-
tion.

3 Client Path Get Struct of: Specifies the EPATH from this instance (server) to its current owner
(client).

UINT (Path Size) Size of path (in words

Padded EPATH
(Path)

4 Number of
Power Manage-
ment Modes

Get UINT Number of Power Management Mode array entries in attribute 5.

CIP Objects 82

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

5 Power Manage-
ment Nodes

Get Array of: Array of low power modes

Struct of: Modes (Array of mode structures)

USINT Minimum Pause Units (Specifies the unit of Minimum Pause Time)

UINT Minimum Pause Time

USINT Resume Units (Specifies the unit of Resume Time)

UINT Resume Time (Required time to transition from the paused stated to
the owned state.

REAL Power Level (Power in kW for this mode)

BOOL Availability (Specifies whether this mode can be entered given the
current device state)

6 Sleeping State
Support

Get BOOL 0 (Sleeping state not supported)

Name Access Type Value/Description

CIP Objects 83

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.12 ADI Object (A2h)

Category

Extended

Object Description

This object maps instances in the Application Data Object to EtherNet/IP. All requests to this object
will be translated into explicit object requests towards the Application Data Object in the host applica-
tion; the response is then translated back to CIP-format and sent to the originator of the request.

The ADI Object can be disabled using attribute 30 in the EtherNet/IP Host Object (F8h). This attribute
can also be used to change the ADI Object number.

See also...

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

• “Parameter Object (0Fh)” on page 74 (CIP Object)

• “EtherNet/IP Host Object (F8h)” on page 161

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single
Set_Attribute_Single

Class Attributes

Name Access Type Value

1 Revision Get UINT Object revision (Current value = 0002h)

2 Max Instance Get UINT Equals attribute #4 in the Application Data Objecta

a. Consult the general Anybus CompactCom 40 Software Design Guide for further information.

3 Number of instances Get UINT Equals attribute #3 in the Application Data Objecta

CIP Objects 84

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instances Attributes

Each instance corresponds to an instance within the Application Data Object (for more information,
consult the general Anybus CompactCom 40 Software Design Guide).

Extended

Name Access Type Description

1 Name Get SHORT_STRING Parameter name (Including length)

2 ABCC Data type Get Array of USINT Data type of instance value

3 No. of Elements Get USINT Number of elements of the specified data type

4 Descriptor Get Array of USINT Bit field describing the access rights for this instance

Bit:Meaning:
0 Set = Get Access
1 Set = Set Access

5 Valuea

a. Converted to/from CIP standard by the module

Get/Set Determined by
attribute #2

Instance value

6 Max Valuea Get The maximum permitted parameter value.

7 Min Valuea Get The minimum permitted parameter value.

8 Default Valuea Get The default parameter value.

9 Number of subelements Get UINT Number of subelements in the ADI. Default value is 1
unless implemented in the application.

CIP Objects 85

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.13 Port Object (F4h)

Category

Extended

Object Description

The Port Object describes the CIP ports present on the device. Each routable CIP port is described in
a separate instance. Non-routable ports may be described. Devices with a single CIP port are not re-
quired to support this object.

The object exists only if enabled in the EtherNet/IP Host Object (Instance Attribute #17).

See also...

• “EtherNet/IP Host Object (F8h)” on page 161 (Anybus Module Object)

• “CIP Port Configuration Object (0Dh)” on page 153 (Host Application Object)

Supported Services

Class: Get_Attributes_All
Get_Attribute_Single

Instance: Get_Attributes_All
Get_Attribute_Single

Class Attributes

Name Access Type Value

1 Revision Get UINT Object revision (Current value = 0001h)

2 Max Instance Get UINT Max. instance number

3 Number of Instances Get UINT Number of ports currently created.

8 Entry Port Get UINT Returns the instance of the Port Object that describes the port
through which this request entered the device.

9 Port Instance Info Get Array of: Array of structures containing instance attributes 1 and 2 from
each instance. The array is indexed by instance number, up to
the maximum number of instances. The value at index 1 (off-
set 0) and any non-instantiated instances will be zero.

Struct of:
UINT (Type)
UINT (Number)

Enumerates the type of port (see instance attribute #1)
CIP port number associated with this port (see instance attrib-
ute #2)

CIP Objects 86

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instances Attributes (Instance #1)

Extended

This instance reflects the properties associated with the Ethernet interface.

See also...

• “CIP Port Configuration Object (0Dh)” on page 153

Instances Attributes (Instances #2... #8)

Extended

See also...

• “CIP Port Configuration Object (0Dh)” on page 153 (“Instance Attributes” on page 154)

Name Access Type Value

1 Port Type Get UINT 0h (default)
4h (if the application registers a port)

2 Port Number Get UINT 2h

3 Link Object Get Struct of:
UINT
Padded EPATH

-
2h (Path Length)
20 F5 24 01h (Link Path)

4 Port Name Get SHORT_STRING “EtherNet/IP”

5 Port Type Name Get SHORT_STRING “”

6 Port Description Get SHORT_STRING “”

7 Node Address Get Padded EPATH -

Name Access Type Value

1 Port Type Get UINT Enumerates the type of port

2 Port Number Get UINT CIP port number associated with this port

3 Link Object Get Struct of:
UINT
Padded EPATH

-
Path length (number of 16-bit words)
Logical path segments which identify the object for this port.
The path must consist of one logical class segment and one
logical instance segment. The maximum size is 12 bytes.

4 Port Name Get SHORT_STRING Name of port, e.g. “Port A”. Max. 64 characters.

5 Port Type Name Get SHORT_STRING “”

6 Port Description Get SHORT_STRING “”

7 Node Address Get Padded EPATH Node number of this device on port. The range within this data
type is restricted to a Port Segment.

8 Port Node Range Get Struct of:
UINT (Min.)
UINT (Max.)

-
Min. node number on port
Max. node number on port

CIP Objects 87

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.14 TCP/IP Interface Object (F5h)

Category

Extended

Object Description

This object provides the mechanism to configure the TCP/IP network interface of the module. It
groups the TCP/IP-related settings in one instance for each TCP/IP capable communications interface.

See also...

• “Communication Settings” on page 16

• “Network Configuration Object (04h)” on page 99 (Anybus Module Object)

Supported Services

Class services: Get_Attribute_All
Get_Attribute_Single

Instance services: Get_Attribute_All
Get_Attribute_Single
Set_Attribute_Single

Class Attributes

Name Access Type Value

1 Revision Get UINT 0004h (Object revision)

2 Max instance Get UINT 1 (Maximum instance number)

3 Number of
instances

Get UINT 1 (Number of instances)

6 Maximum ID
Number Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute)

7 Maximum ID
Number
Instance Attrib-
utes

Get UINT 13 (The attribute number of the last implemented instance attribute)

CIP Objects 88

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes

Extended

Name Access Type Value Comments

1 Status Get DWORD - Bit #:
0-3:

4:
5:

6:

7
8 - 31:

Meaning:
When set to h, attribute #5 contains valid
configuration from DHCP or non-volatile
storage. When set to 2h, attribute #5 con-
tains valid configuration from hardware
settings. Remaining values are reserved
for future use.
Multicast pending if set to 1.
Interface configuration pending if set to 1.
A new configuration will be loaded at the
next reset.
AcdStatus. Set to 1 if an address conflict is
detected. Address conflict detection is
enabled/disabled in attribute #10.
AcdFault
(reserved, set to 0)

2 Configuration
Capability

Get DWORD 0000 0084h
 - or -
0000 0094h
 - or -
0000 00A4h
 - or -
0000 00B4h

Bit #:
0-3:

4:

5:

6:

7:

8 - 31:

Meaning:
Always 4. For more information, consult
the CIP specifications.
The ‘Configuration Settable’-bit reflects the
value of instance attribute #9 in the “Ether-
Net/IP Host Object (F8h)” on page 161.
The module is hardware configurable
when this bit is set to 1. The bit will be set if
any of the address attributes is set in the
Network Configuration Object (04h) during
setup or if attribute #6 (Hardware configu-
rable address) in the Application Object
(FFh) is set.
Always 0. For more information, consult
the CIP specifications.
Always 1, the device is capable of detect-
ing address conflicts.
(reserved, set to 0)

3 Configuration

Controla
Get/Seta DWORD - Value:

0:
2:

Meaning:
Configuration from non-volatile memory
Configuration from DHCP

4 Physical Link
Object

Get Struct of:
UINT (Path size)
Padded EPATH

-
0002h
20 F6 24 03h

-
-
Path to Ethernet Link Object, Instance #3

5 Interface

Configurationa
Get/Seta Struct of:

UDINT (IP)
UDINT (Mask)
UDINT (GW)
UDINT (DNS1)
UDINT (DNS2)
STRING (Domain)

-
IP address
Subnet mask
Default gateway
Primary DNS
Secondary DNS
Default domain

6 Host Name Get/Set STRING - Host name of Anybus module

8 TTL Value Get/Set USINT 1 TTL value for EtherNet/IP multicast packets

CIP Objects 89

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9 Mcast Config Get/Set Struct of: IP multicast configuration.

Alloc Control USINT 0 Value:
0:

1:

Meaning:
Use default allocation algorithm to gener-
ate multicast addresses
Allocate multicast addresses according to
the values in the ‘Num Mcast’- and ‘Mcast
Start Addr’-fields.

(reserved) USINT 0 Set to zero. Do not change.

Num Mcast UINT 1 Number of multicast addresses to allocate for Eth-
erNet/IP

Mcast Start
Addr

UDINT - Starting multicast address from which to begin allo-
cation

10b SelectAcd Set Bool 1 Value:
0:
1:

Meaning:
Disable ACD
Enable ACD (Default)
If ACD (address conflict detection) is
enabled, bit 6 in attribute #1 will be set if an
ACD conflict is detected. The Network Sta-
tus LED will also indicate a detected con-
flict, see “Network Status LED” on page
193.

11b LastConflictDe-
tected

Set Struct of: ACD Diagnostic parameters Related to the last
conflict detected.

AcdActiviity USINT - State of ACD activity when last conflict
detected.

RemoteMAC ARRAY of 6 USINT - MAC address of remote node form the
ARP PDU in which a conflict was detected.

ArpPdu ARRAY of 28 USINT - Copy of the raw ARP PDU in which a con-
flict was detected.

12 EIP QuickCon-

nectc,d
Set Bool 0 Value:

0:
1:

Meaning:
Disable EIP QuickConnect (Default)
Enable EIP QuickConnect
If EIP QuickConnect is enabled, the Quick-
Connect feature will direct EtherNet/IP tar-
get devices to quickly power up and join an
EtherNet/IP network.

13 Encapsulation
inactivity time-
out

Set UINT 0 - 3600 Number of seconds of inactivity before a TCP con-
nection is closed.
0: Disabled

a. Support for configuring network settings from the network can be disabled by implementing attribute #9 in the Eth-
erNet/IP Host Object, see “Instance Attributes (Instance #1)” on page 162.

b. Attributes #10 and #11 will not be available if ACD is disabled using attribute #11 in the Ethernet Host Object
(F9h).

c. If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As the EDS file
is changed, the identity of the module has to be changed and the module will require certification, see “Conform-
ance Test Guide” on page 12.

d. This attribute exists if attribute #26 in the EtherNet/IP Host Object is implemented, see “Instance Attributes
(Instance #1)” on page 162.

Name Access Type Value Comments

CIP Objects 90

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

8.15 Ethernet Link Object (F6h)

Category

Extended

Object Description

This object maintains link specific counters and status information for an IEEE 802.3 communications
interface. Exactly one instance for each communications interface on the module is supported. Instances
for internally accessible interfaces can also be supported.

See also...

• “Communication Settings” on page 16

• “Network Configuration Object (04h)” on page 99 (Anybus Module Object)

Supported Services

Class services: Get_Attribute_All
Get_Attribute_Single

Instance services: Get_Attribute_All
Get_Attribute_Single
Set_Attribute_Single
Get_And_Clear

Class Attributes

By default, three instances (port 1, port 2 and the internal port) are implemented, meaning that two ports
are activated.

If port 2 is inactivated in the Port 2 State attribute of the Ethernet Host Object (F9h), only one instance
(port 1) should be implemented.

Name Access Type Value

1 Revision Get UINT 0004h (Object revision)

2 Max instance Get UINT 1 or 3 (Maximum instance number)

3 Number of
instances

Get UINT 1 or 3 (Number of instances)

6 Maximum ID
Number Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute.)

7 Maximum ID
Number
Instance Attrib-
utes

Get UINT 11 (The attribute number of the last implemented instance attribute.)

CIP Objects 91

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes

Extended

Access Name Type Value Comments

1 Get Interface Speed UDINT 10 or 100 Actual Ethernet interface speed.

2 Get Interface Flags DWORD - See “Interface Flags” on page 92.

3 Get Physical Address Array of 6 USINTs (MAC ID) Physical network address, i.e. assigned MAC
address.

4 Get Interface Counters Struct of:

In Octets UDINT N/A Octets received on the interface

In Ucast Packets UDINT N/A Unicast packets received on the interface

In NUcast Packets UDINT N/A Nonunicast packets received on the interface

In Discards UDINT N/A Inbound packets with unknown protocol

In Errors UDINT N/A Inbound packets that contain errors (does not
include In discards)

In Unknown Protos UDINT N/A Inbound packets with unknown protocol

Out Octets UDINT N/A Octets sent on the interface

Out Ucast Packets UDINT N/A Unicast packets sent on the interface

Out NUcast Packets UDINT N/A Nonunicast packets sent on the interface

Out Discards UDINT N/A Outbound packets with unknown protocol

Out Errors UDINT N/A Outbound packets that contain errors (does
not include Out discards)

5 Get Media Counters Struct of: Media specific counters

Alignment Errors UDINT N/A Frames received that are not an integral num-
ber of octets in length

FCS Errors UDINT N/A Frames received that do not pass the FCS
check

Single Collisions UDINT N/A Successfully transmitted frames that have
experienced exactly one collision

Multiple Collisions UDINT N/A Successfully transmitted frames that have
experienced more than one collision

SQE Test Errors UDINT 0 The number of times the SQE test error mes-
sage is generated
(Counter not provided with current PHY inter-
face)

Deferred
Transmissions

UDINT N/A Frames for which the first transmission attempt
is delayed because the medium is busy

Late Collisions UDINT N/A The number of times a collision is detected
later than 512 bit-times into the transmission of
a packet

Excessive Collisions UDINT N/A Frames for which a transmission fails due to
excessive collisions

MAC Transmit
Errors

UDINT N/A Frames for which a transmission fails due to
an internal MAC sublayer receive error

Carrier Sense
Errors

UDINT N/A The number of times that the carrier sense
condition was lost or never asserted when
attempting to transmit a frame

Frame Too Long UDINT N/A Frames received that exceed the maximum
permitted frame size

MAC Receive Errors UDINT N/A Frames for which reception on an interface
fails due to an internal MAC sublayer receive
error

CIP Objects 92

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Interface Flags

6a Get/Set Interface Control Struct of:

Control Bits WORD - Interface control bits

Forced Interface
Speed

UINT - Speed at which the interface shall be forced to
operate. Returns ‘Object state Conflict’ if auto-
negotiation is enabled

7 Get Interface Type USINT - See “Interface State” on page 93

8 Get Interface State USINT - See “Interface State” on page 93

9b Get/Set Admin State USINT - See “Admin State” on page 93

10 Get Interface Label SHORT_STRING - See “Interface Label” on page 93

11 Get Interface Capability Struct of: - Indication of the capabilities of the interface

Capability Bits DWORD - Interface capabilities, other than speed/duplex
See “Interface Capability” on page 94

Speed/Duplex
Options

Struct of: - Indicates speed/duplex pairs supported in the
Interface Control Attribute

USINT - Speed/duplex array count

Array of Struct of: - Speed/duplex array

UINT - Interface speed

USINT - Interface Duplex Mode
0 = half duplex
1 = full duplex
2 - 255 = Reserved

a. Support for this attribute can be disabled by implementing attribute #9 in the EtherNet/IP Host Object (F8h).
b. Support for this attribute can be disabled by implementing the port state attributes (#12 or #13) in the Ethernet

Host object (F9h).

Bit Name Description

0 Link status Indicates whether or not the Ethernet 802.3 communications interface is con-
nected to an active network.

Value:Meaning:
0 Inactive link
1 Active link

1 Half/full duplex Indicates the duplex mode currently in use.

Value:Meaning:
0 Half duplex
1 Full duplex

2 - 4 Negotiation Status Indicates the status of link auto-negotiation.

Value:Meaning:
0 Auto-negotiation in progress.

1 Auto-negotiation and speed detection failed (using default valuesa)
2 Auto negotiation failed but detected speed (using default duplex value)
3 Successfully negotiated speed and duplex.
4 Auto-negotiation not attempted. Forced speed and duplex.

a. Recommended default values are 10 Mbps, half duplex.

5 Manual Setting requires Reset Value:Meaning:
0 Interface can activate changes to link parameters during runtime
1 Reset is required in order for changes to have effect

6 Local Hardware Fault Value:Meaning:
0 No local hardware fault detected
1 Local hardware fault detected

7-31 (reserved) Set to 0.

Access Name Type Value Comments

CIP Objects 93

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Interface State

This attribute indicates the current operational state of the interface.

Admin State

This attribute controls the administrative setting of the interface state.

Interface Label

Interface Type

Value Description

0 Unknown interface state.

1 The interface is enabled and is ready to send and receive data.

2 The interface is disabled.

3 The interface is testing.

Value Description

0 (reserved)

1 Enable the interface.

2 Disable the interface.

3-255 (reserved)

Instance Value

1 Port 1

2 Port 2

3 Internal

Instance Value Description

1 2 Twisted-pair

2 2 Twisted-pair

3 1 Internal interface

CIP Objects 94

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Interface Capability

Bit Name Description Implementation

0 Manual setting
requires reset

Indicates whether or not the device requires a reset to apply changes
made to the Interface Control attribute (#6).
0 = Indicates that the device automatically applies changes made to the
Interface Control attribute (#6) and, therefore, does not require a reset
in order for changes to take effect. This bit shall have this value when
the Interface Control attribute (#6) is not implemented.
1 = Indicates that the device does not automatically apply changes
made to the Interface Control attribute (#6) and, therefore, will require a
reset in order for changes to take effect.
Note: this bit shall also be replicated in the Interface Flags attribute
(#2), in order to retain backwards compatibility with previous object
revisions.

Return 0

1 Auto-negotiate 0 = Indicates that the interface does not support link auto-negotiation
1 = Indicates that the interface supports link auto-negotiation

0 for internal interface,
1 for external interfaces

2 Auto-MDIX 0 = Indicates that the interface does not support auto MDIX operation
1 = Indicates that the interface supports auto MDIX operation

0 for internal interface,
1 for external interfaces

3 Manual
speed/duplex

0 = Indicates that the interface does not support manual setting of
speed/duplex. The Interface Control attribute (#6) shall not be sup-
ported.
1 = Indicates that the interface supports manual setting of speed/duplex
via the Interface Control attribute (#6)

0 for internal interface,
1 for external interfaces

4 - 31 Reserved Shall be set to 0 Return 0

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 9

9. Anybus Module Objects

9.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to the func-
tionality in the Anybus CompactCom 40 EtherNet/IP.

Standard Objects:

• “Anybus Object (01h)” on page 96

• “Diagnostic Object (02h)” on page 97

• “Network Object (03h)” on page 98

• “Network Configuration Object (04h)” on page 99

Network Specific Objects:

• “Socket Interface Object (07h)” on page 109

• “SMTP Client Object (09h)” on page 126

• “Anybus File System Interface Object (0Ah)” on page 131

• “Network Ethernet Object (0Ch)” on page 19

• “CIP Port Configuration Object (0Dh)” on page 153

• “Functional Safety Module Object (11h)” on page 149

 96

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.2 Anybus Object (01h)

Category

Basic

Object Description

This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)

Basic

Extended

Name Access Type Value

1 Module type Get UINT16 0403h (Standard Anybus 40 CompactCom)

2... 11 - - - Consult the general Anybus CompactCom 40
Software Design Guide for further information.

12 LED colours Get struct of:
UINT8(LED1A)
UINT8(LED1B)
UINT8(LED2A)
UINT8(LED2B)

Value:Colour:
01h Green
02h Red
01h Green
02h Red

13... 16 - - - Consult the general Anybus CompactCom 40
Software Design Guide for further information.

Name Access Type Value

17 Virtual attributes Get/Set - Consult the general Anybus CompactCom 40
Software Design Guide for further information.18 Black list/White list Get/Set

19 Network Time Get UINT64 Not used (Always 0)

 97

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.3 Diagnostic Object (02h)

General Information

Basic

Object Description

This object provides a standardised way of handling host application events & diagnostics, and is thor-
oughly described in the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute
Create
Delete

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes

Basic

In this implementation, the severity level of all instances are combined (using logical ‘OR’) and repre-
sented on the network through the CIP Identity Object.

See also...

• “Diagnostics” on page 18

• “Identity Object (01h)” on page 63 (CIP-object)

Name Access Data Type Value

1... 4 - - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

11 Max no. of instances Get UINT16 5+1 (One instance is reserved for major diagnostic
events.)

12 Supported functionality Get BITS32 00 00 00 00h (Latching events are not supported.)

Name Access Type Value

1 Severity Get UINT8 Consult the general Anybus CompactCom 40 Software
Design Guide for further information.2 Event Codea

a. This attribute can not be represented on the network and is thus ignored by the module.

Get UINT8

3 - - - Not implemented in product.

4 Slota Get UINT16 Consult the general Anybus CompactCom 40 Software
Design Guide for further information.5 ADIa Get UINT16

6 Elementa Get UINT8

7 Bita Get UINT8

 98

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.4 Network Object (03h)

Category

Basic

Object Description

For more information regarding this object, consult the general Anybus CompactCom 40 Software De-
sign Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String
Map_ADI_Write_Area
Map_ADI_Read_Area
Map_ADI_Write_Ext_Area
Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)

Basic

Name Access Type Value

1 Network type Get UINT16 009Bh

2 Network type string Get Array of CHAR ‘Ethernet/IP(TM)”

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes)

Updated on every successful Map_ADI_Write_Areaa

a. Consult the general Anybus CompactCom 40 Software Design Guide for further information.

6 Read process data size Get UINT16 Current read process data size (in bytes)

Updated on every successful Map_ADI_Read_Areaa

7 Exception Information Get UINT8 ValueMeaning
0: No information available
1: Invalid assembly instance mapping

 2: Missing MAC addressb

b. Exception information only available to Anybus IP

 99

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.5 Network Configuration Object (04h)

Category

Extended

Object Description

This object holds network specific configuration parameters that may be set by the end user. A reset
command (factory default) issued towards this object will result in all instances being set to their default
values.

If the settings in this object do not match the configuration used, the Module Status LED will flash red
to indicate a minor error.

The object is described in further detail in the Anybus CompactCom 40 Software Design Guide.

See also...

• “Communication Settings” on page 16

• “TCP/IP Interface Object (F5h)” on page 87 (CIP-object)

• “Ethernet Link Object (F6h)” on page 90 (CIP-object)

• “E-mail Client” on page 32

Supported Commands

Object: Get_Attribute
Reset

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network Configuration’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 000Fh (15)

4 Highest instance no. Get UINT16 0013h (19)

 100

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #3, IP Address)

Extended

Instance Attributes (Instance #4, Subnet Mask)

Extended

Instance Attributes (Instance #5, Gateway Address)

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘IP address’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Subnet mask’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Gateway’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

 101

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #6, DHCP Enable)

Extended

Instance Attributes (Instance #7, Ethernet Communication Settings 1)

Changes have immediate effect.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘DHCP’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Any change is valid after reset.
Value:Enum. String:Meaning:

00h ‘Disable’ DHCP disabled
01h ‘Enable’ DHCP enabled (default)

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Value:Enum. String:Meaning:

00h ‘Disable’ DHCP disabled
01h ‘Enable’ DHCP enabled (default)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Comm 1’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

 102

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #8, Ethernet Communication Settings 2)

Changes have immediate effect.

Extended

Instance Attributes (Instance #9, DNS1)

This instance holds the address to the primary DNS server.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Comm 2’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valuea Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ Auto negotiation (default)
01h ‘10 HDX’ 10Mbit, half duplex
02h ‘10 FDX’ 10Mbit, full duplex
03h ‘100 HDX’ 100Mbit, half duplex
04h ‘100 FDX’ 100Mbit, full duplex

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘DNS1’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

 103

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #10, DNS2)

This instance holds the address to the secondary DNS server.

Extended

Instance Attributes (Instance #11, Host name)

This instance holds the host name of the module.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘DNS2’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Host name’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Host name, 64 characters

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Host name, 64 characters

 104

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #12, Domain name)

This instance holds the domain name.

Extended

Instance Attributes (Instance #13, SMTP Server)

This instance holds the SMTP server address.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘Domain name’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 30h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Domain name, 48 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
Host name, 48 characters

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘SMTP Server’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP server address, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP server address, 64 characters

 105

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #14, SMTP User)

This instance holds user name for the SMTP account.

Extended

Instance Attributes (Instance #15, SMTP Password)

This instance holds the password for the SMTP account. Changes are valid after reset.

Extended

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘SMTP User’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account user name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP account user name , 64 characters

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 107.

Get Array of CHAR ‘SMTP Pswd’

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account password, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute
#5 after the module has been reset.
SMTP account password, 64 characters

 106

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #16, MDI 1 settings)

This instance holds the settings for MDI/MDIX 1. Changes have immediate effect.

Extended

Instance Attributes (Instance #17, MDI 2 settings)

This instance holds the settings for MDI/MDIX 2. Changes have immediate effect.

Extended

Instance Attributes (Instances #18 and #19)

These instances are reserved for future attributes.

Name Access Type Description

1 Name Get Array of CHAR ‘MDI 1’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

Name Access Type Description

1 Name Get Array of CHAR ‘MDI 2’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value:Enum. String:Meaning:
00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value:Enum. String:Meaning:

00h ‘Auto’ (default)
01h ‘MDI’
02h ‘MDIX’

 107

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Instance #20, QuickConnect)

This instance enables or disables the QuickConnect functionality from the application. Changes are valid
after reset or power cycle. The value of the QuickConnect attribute (#12) in the TCP/IP Interface ob-
ject (F5h), will change immediately.

QuickConnect has to be enabled in the Ethernet Host object (F9h) for this instance to be available.

See also ...

• “TCP/IP Interface Object (F5h)” on page 87

• “Ethernet Host Object (F9h)” on page 171

Extended

Multilingual Strings

The instance names and enumeration strings in this object are multi-lingual, and are translated based on
the current language settings as follows:

Name Access Type Description

1 Name Get Array of CHAR ‘QuickConnect’

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value Meaning:
00h Disable (default)
01h Enable

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute
#5.
Value Meaning:

00h Disable (default)
01h Enable

Instance English German Spanish Italian French

3 IP address IP-Adresse Dirección IP Indirizzo IP Adresse IP

4 Subnet mask Subnetzmaske Masac. subred Sottorete Sous-réseau

5 Gateway Gateway Pasarela Gateway Passerelle

6 DHCP DHCP DHCP DHCP DHCP

Enable Einschalten Activado Abilitato Activé

Disable Ausschalten Desactivado Disabilitato Désactivé

7 Comm 1 Komm 1 Comu 1 Connessione 1 Comm 1

Auto Auto Auto Auto Auto

10 HDX 10 HDX 10 HDX 10 HDX 10 HDX

10 FDX 10 FDX 10 FDX 10 FDX 10 FDX

100 HDX 100 HDX 100 HDX 100 HDX 100 HDX

100 FDX 100FDX 100 FDX 100 FDX 100 FDX

 108

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

 8 Comm 2 Komm 2 Comu 2 Connessione 2 Comm 2

Auto Auto Auto Auto Auto

10 HDX 10 HDX 10 HDX 10 HDX 10 HDX

10 FDX 10 FDX 10 FDX 10 FDX 10 FDX

100 HDX 100 HDX 100 HDX 100 HDX 100 HDX

100 FDX 100FDX 100 FDX 100 FDX 100 FDX

9 DNS1 DNS 1 DNS Primaria DNS1 DNS1

10 DNS2 DNS 2 DNS Secundia. DNS2 DNS2

11 Host name Host name Nombre Host Nome Host Nom hôte

12 Domain name Domain name Nobre Domain Nome Dominio Nom Domaine

13 SMTP Server SMTP Server Servidor SMTP Server SMTP SMTP serveur

14 SMTP User SMTP User Usuario SMTP Utente SMTP SMTP utilisa.

15 SMTP Pswd SMTP PSWD Clave SMTP Password SMTP SMTP mt passe

Instance English German Spanish Italian French

 109

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.6 Socket Interface Object (07h)

Category

Extended

Object Description

This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to
be sent over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. For more
information, see “Message Segmentation” on page 189.

IMPORTANT: The use of functionality provided by this object should only be attempted by users who are already fa-
miliar with socket interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute
Create (See “Command Details: Create” on page 111)
Delete (See “Command Details: Delete” on page 112)

Instance: Get_Attribute
Set_Attribute
Bind (See “Command Details: Bind” on page 113)
Shutdown (See “Command Details: Shutdown” on page 114)
Listen (See “Command Details: Listen” on page 115)
Accept (See “Command Details: Accept” on page 116)
Connect (See “Command Details: Connect” on page 117)
Receive (See “Command Details: Receive” on page 118)
Receive_From (See “Command Details: Receive_From” on page 119)
Send (See “Command Details: Send” on page 120)
Send_To (See “Command Details: Send_To” on page 121)
IP_Add_membership (See “Command Details: IP_Add_Membership” on page 122)
IP_Drop_membership (See “Command Details: IP_Drop_Membership” on page 123)
DNS_Lookup (See “Command Details: DNS_Lookup” on page 124)

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Socket interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0008h

 110

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes (Sockets #1...8)

Extended

Name Access Type Description

1 Socket type Get UINT8 Value:Socket Type:
00h SOCK_STREAM, NON-BLOCKING (TCP)
01h SOCK_STREAM, BLOCKING (TCP)
02h SOCK_DGRAM, NON-BLOCKING (UDP)
03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to

3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected

4 Host port Get UINT16 Host port number, or 0 (zero) if not connected

5 TCP State Get UINT8 State (TCP sockets only):

Value:State:Description:
00h CLOSED Closed
01h LISTEN Listening for connection
02h SYN_SENT Active, have sent SYN
03h SYN_RECEIVED Have sent and received SYN
04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close
06h FIN_WAIT_1 Have closed, sent FIN
07h CLOSING Closed exchanged FIN; await FIN ACK
08h LAST_ACK Have FIN and close; await FIN ACK
09h FIN_WAIT_2 Have closed, FIN is acknowledged
0Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)

7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)

8 Reuse address Get/Set BOOL Socket can reuse local address

Value:Meaning:
1 Enabled
0 Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only)

Value:Meaning:
1 Enabled
0 Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only).
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)a

a. Must belong to group in order to get the loop backed message

Value:Meaning:
1 Enable (default)
0 Disable

12 Ack delay time Get/Set UINT16 Time for delayed ACKs in ms (TCP sockets only)

Default = 200msb

b. Resolution is 50ms, i.e. 50...99 = 50ms, 100...149 = 100ms, 199 = 150ms etc.

13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP).

Value:Meaning:
1 Don’t delay (turn off Nagle’s algorithm on socket)
0 Delay (default)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

 111

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object Instance

Description

This command creates a socket.

Note: This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

• Response Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:Socket Type:
00h SOCK_STREAM, NON-BLOCKING (TCP)
01h SOCK_STREAM, BLOCKING (TCP)
02h SOCK_DGRAM, NON-BLOCKING (UDP)
03h SOCK_DGRAM, BLOCKING (UDP)

Field Contents Comments

Data[0] Instance number (low) Instance number of the created socket.

Data[1] Instance number (high)

 112

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with
the RST-flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command
(see “Command Details: Shutdown” on page 114) before deleting the socket, causing the con-
nection to be closed with the FIN-flag instead.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.

CmdExt[1] Instance number to delete (high)

 113

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Bind

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.

CmdExt[1] Requested port number (high)

Field Contents Comments

CmdExt[0] Bound port number (low) Actual port that the socket was bound to.

CmdExt[1] Bound port number (high)

 114

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Shutdown

Category

Extended

Details

Command Code.: 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate
if the connection actually shut down, which means that this command cannot be used to poll non-block-
ing sockets, nor will it block for blocking sockets.

• Command Details

• Response Details

(no data)

The recommended sequence, performed by the application, to gracefully shut down a TCP connection
is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the
send channel, note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EDESTADDRREQ (14)) is
received, indicating that the host closed the receive channel. If host does not close the receive chan-
nel use a timeout and progress to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

A remote host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel
of the socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the
receive channel.

4. Delete the socket instance.

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:Mode:
00h Shutdown receive channel
01h Shutdown send channel
02h Shutdown both receive- and send channel

 115

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Listen

Category

Extended

Details

Command Code.: 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] (reserved) -

 116

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Accept

Category

Extended

Details

Command Code.: 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is cre-
ated for each accepted connection. The new socket is connected with the host and the response returns
its instance number.

NON-BLOCKING mode:

This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode:

This command will block until a connection request has been detected.

Note: This command will only be accepted if there is a free instance to use for accepted connections.
For blocking connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents

Data[0] Instance number for the connected socket (low)

Data[1] Instance number for the connected socket (high)

Data[2] Host IP address byte 3 (low)

Data[3] Host IP address byte 2

Data[4] Host IP address byte 1

Data[5] Host IP address byte 0 (high)

Data[6] Host port number (low)

Data[7] Host port number (high)

 117

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Connect

Category

Extended

Details

Command Code.: 14h

Valid for: Instance

Description

For SOCK_DGRAM-sockets, this command specifies the peer with which the socket is to be associated
(to which datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use
this service multiple times to change their association. SOCK_DGRAM-sockets may dissolve their as-
sociation by connecting to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode:

This command must be issued repeatedly (polled) until a connection is connected, rejected or
timed out. The first connect-attempt will be accepted, thereafter the command will return error
code 22 (EINPROGRESS) on poll requests while attempting to connect.

BLOCKING mode:

This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

• Response Details

(no data)

Field Contents Contents

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Host IP address byte 3 (low) -

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

 118

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Receive

Category

Extended

Details

Command Code.: 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up
to 1472 bytes (see “Message Segmentation” on page 189).

For SOCK_DGRAM-sockets, the module will return the requested amount of data from the next re-
ceived datagram. If the datagram is smaller than requested, the entire datagram will be returned in the
response message. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received
data stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode:

If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode:

The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the
connection. The send channel may however still be valid and must be closed using ‘Shutdown’ and/or
‘Delete’.

• Command Details

• Response Details

Note: The data in the response may be segmented (see “Message Segmentation” on page 189).

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Command Segmentation” on page 190

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Response Segmentation” on page 191

Data[0...n] Received data -

 119

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Receive_From

Category

Extended

Details

Command Code.: 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation
may be used to receive up to 1472 bytes (see “Message Segmentation” on page 189).

The module will return the requested amount of data from the next received datagram. If the datagram
is smaller than requested, the entire datagram will be returned in the response message. If the datagram
is larger than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode:

If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode:

The module will not issue a response until the operation has finished.

• Command Details

• Response Details

Note: The data in the response may be segmented (see “Message Segmentation” on page 189).

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Command Segmentation” on page 190

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits see “Response Segmentation” on page 191

Data[0] Host IP address byte 3 (low) The host address/port information is only included
in the first segment. All data thereafter will start at
Data[0]

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

Data[6...n] Received data

 120

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Send

Category

Extended

Details

Command Code.: 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (see “Message Segmentation” on page 189).

NON-BLOCKING mode:

If there isn’t enough buffer space available in the send buffers, the module will respond with er-
ror code 0006h (EWOULDBLOCK)

BLOCKING mode:

If there isn’t enough buffer space available in the send buffers, the module will block until there
is.

• Command Details

Note: To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be

segmented (see “Message Segmentation” on page 189).

• Response Details

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control see “Command Segmentation” on page 190

Data[0...n] Data to send -

Field Contents Notes

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

 121

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Send_To

Category

Extended

Details

Command Code.: 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK_DGRAM-socket. Message seg-
mentation may be used to send up to 1472 bytes (see “Message Segmentation” on page 189).

• Command Details

Note: To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be
segmented (see “Message Segmentation” on page 189).

• Response Details

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control see “Command Segmentation” on page 190

Data[0] Host IP address byte 3 (low) The host address/port information shall only be
included in the first segment. All data thereafter
must start at Data[0]

Data[1] Host IP address byte 2

Data[2] Host IP address byte 1

Data[3] Host IP address byte 0 (high)

Data[4] Host port number (low)

Data[5] Host port number (high)

Data[6...n] Data to send

Field Contents Notes

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

 122

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: IP_Add_Membership

Category

Extended

Details

Command Code.: 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the ‘All
hosts group’ automatically, however this command may be used to specify up to 20 additional member-
ships.

• Command Details

• Response Details

(no data)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Group IP address byte 3 (low) -

Data[1] Group IP address byte 2

Data[2] Group IP address byte 1

Data[3] Group IP address byte 0 (high)

 123

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: IP_Drop_Membership

Category

Extended

Details

Command Code.: 1Ah

Valid for: Instance

Description

This command removes the socket from an IP multicast group membership.

• Command Details

• Response Details

(no data)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] Group IP address byte 3 (low) -

Data[1] Group IP address byte 2

Data[2] Group IP address byte 1

Data[3] Group IP address byte 0 (high)

 124

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: DNS_Lookup

Category

Extended

Details

Command Code.: 1Bh

Valid for: Object Instance

Description

This command resolves the given host name and returns the IP address.

• Command Details

• Response Details (Success)

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0... N] Host name Host name to resolve

Field Contents Notes

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] IP address byte 3 (low) IP address of the specified host

Data[1] IP address byte 2

Data[2] IP address byte 1

Data[3] IP address byte 0 (high)

 125

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Socket Interface Error Codes (Object Specific)

The following object specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning

1 ENOBUFS No internal buffers available

2 ETIMEDOUT A timeout event occurred

3 EISCONN Socket already connected

4 EOPNOTSUPP Service not supported

5 ECONNABORTED Connection was aborted

6 EWOULDBLOCK Socket cannot block because unblocking socket type

7 ECONNREFUSED Connection refused

8 ECONNRESET Connection reset

9 ENOTCONN Socket is not connected

10 EALREADY Socket is already in requested mode

11 EINVAL Invalid service data

12 EMSGSIZE Invalid message size

13 EPIPE Error in pipe

14 EDESTADDRREQ Destination address required

15 ESHUTDOWN Socket has already been shutdown

16 (reserved) -

17 EHAVEOOB Out of band data available

18 ENOMEM No internal memory available

19 EADDRNOTAVAIL Address is not available

20 EADDRINUSE Address already in use

21 (reserved) -

22 EINPROGRESS Service already in progress

28 ETOOMANYREFS Too many references

101 Command aborted If a command is blocking on a socket, and that socket is closed using the
Delete command, this error code will be returned to the blocking command.

102 DNS name error Failed to resolve the host name (name error response from DNS server)

103 DNS timeout Timeout when performing a DNS lookup

104 DNS command
failed

Other DNS error

 126

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.7 SMTP Client Object (09h)

Category

Extended

Object Description

This object groups functions related to the SMTP-client.

See also...

• “File System” on page 20

• “E-mail Client” on page 32

• “Instance Attributes (Instance #13, SMTP Server)” on page 104

• “Instance Attributes (Instance #14, SMTP User)” on page 105

• “Instance Attributes (Instance #15, SMTP Password)” on page 105

Supported Commands

Object: Get_Attribute
Create
Delete
Send email from file(“Command Details: Send Email From File” on page 129)

Instance: Get_Attribute
Set_Attribute
Send email(“Command Details: Send Email” on page 130)

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘SMTP Client’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h

12 Success count Get UINT16 Reflects the no. of successfully sent messages

13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

 127

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Instance Attributes

Extended

Instances are created dynamically by the application.

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object

Description

This command creates an email instance.

• Command Details

• Response Details

Name Access Type Description

1 From Get/Set Array of CHAR e.g. “someone@somewhere.com”

2 To Get/Set Array of CHAR e.g. “someone.else@anywhere.net”

3 Subject Get/Set Array of CHAR e.g. “Important notice”

4 Message Get/Set Array of CHAR e.g. “Duck and cover”

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 128

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object

Description

This command deletes an email instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

 129

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Send Email From File

Category

Extended

Details

Command Code.: 11h

Valid for: Object

Description

This command sends an email based on a file in the file system.

File format:

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
email subject

[Headers]
extra headers, optional

[Message]
actual email message

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + filename of message file -

 130

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Send Email

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command sends the specified email instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes

Error Codes Meaning

1 SMTP server not found

2 SMTP server not ready

3 Authentication error

4 SMTP socket error

5 SSI scan error

6 Unable to interpret email file

255 Unspecified SMTP error

(other) (reserved)

 131

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.8 Anybus File System Interface Object (0Ah)

Category

Extended

Object Description

This object provides an interface to the built-in file system. Each instance represents a handle to a file
stream and contains services for file system operations. This provides the host application with access
to the built-in file system of the module, e.g. when application specific web pages are to be installed.

Instances are created and deleted dynamically during runtime.

The object is structurally identical to the “Application File System Interface Object (EAh)” on page 174.

Supported Commands

Object: Get_Attribute
Create(“Command Details: Create” on page 133)
Delete(“Command Details: Delete” on page 134)
Format Disc(“Command Details: Format Disc” on page 143)

Instance: Get_Attribute
File Open(“Command Details: File Open” on page 134)
File Close(“Command Details: File Close” on page 135)
File Delete(“Command Details: File Delete” on page 135)
File Copy(“Command Details: File Copy” on page 136)
File Rename(“Command Details: File Rename” on page 137)
File Read(“Command Details: File Read” on page 138)
File Write(“Command Details: File Write” on page 139)
Directory Open(“Command Details: Directory Open” on page 139)
Directory Close(“Command Details: Directory Close” on page 140)
Directory Delete(“Command Details: Directory Delete” on page 140)
Directory Read(“Command Details: Directory Read” on page 141)
Directory Create(“Command Details: Directory Create” on page 142)
Directory Change(“Command Details: Directory Change” on page 142)

 132

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Object Attributes (Instance #0)

Instance Attributes

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Anybus File System Interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0004h

12 Disable virtual file system Get BOOL False

13 Total disc size Get Array of UINT32 -

14 Free space Get Array of UINT32 -

15 Disc CRC Get Array of UINT32 -

Name Access Type Description

1 Instance type Get UINT8 Value:Type:
00h Reserved
01h File instance
02h Directory instance

2 File size Get UINT32 File size in bytes (zero for directories)

3 Path Get Array of CHAR Path where instance operates

 133

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Create

Category

Extended

Details

Command Code:: 03h

Valid for: Object

Description

This command creates a file operation instance.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 134

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Delete

Category

Extended

Details

Command Code: 04h

Valid for: Object

Description

This command deletes a file operation instance.

• Command Details

• Response Details

(no data)

Command Details: File Open

Category

Extended

Details

Command Code: 10h

Valid for: Instance

Description

This command opens a file for reading, writing, or appending.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Field Contents Comments

CmdExt[0] Mode Value:Mode:
00h Read mode
01h Write mode
02h Append mode

CmdExt[1] (reserved, set to zero) -

MsgData[0... n] Path + filename Relative to current path

 135

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Close

Category

Extended

Details

Command Code: 11h

Valid for: Instance

Description

This command closes a previously opened file.

• Command Details

(no data)

• Response Details

Command Details: File Delete

Category

Extended

Details

Command Code: 12h

Valid for: Instance

Description

This command permanently deletes a specified file from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] File size low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] high byte, high word

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + filename Relative to current path

 136

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Copy

Category

Extended

Details

Command Code: 13h

Valid for: Instance

Description

This command makes a copy of a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Source path + filename Relative to current path, separated by NULL

NULL

Destination path + filename

 137

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Rename

Category

Extended

Details

Command Code: 14h

Valid for: Instance

Description

This command renames or moves a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Old path + filename Relative to current path, separated by NULL

NULL

New path + filename

 138

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Read

Category

Extended

Details

Command Code: 15h

Valid for: Instance

Description

Reads data from a file previously opened for reading.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Bytes no. of bytes to read

CmdExt[1] (reserved, set to zero) -

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Data Data read from file

 139

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Write

Category

Extended

Details

Command Code: 16h

Valid for: Instance

Description

Writes data to a file previously opened for writing or appending.

• Command Details

• Response Details

Command Details: Directory Open

Category

Extended

Details

Command Code: 20h

Valid for: Instance

Description

This command opens a directory.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Data[0... n] Data Data to write to file

Field Contents Comments

CmdExt[0] Bytes no. of bytes written

CmdExt[1] (reserved, ignore) -

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Data[0... n] Path + name of directory Relative to current path

 140

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Close

Category

Extended

Details

Command Code: 21h

Valid for: Instance

Description

This command closes a previously opened directory.

• Command Details
(no data)

• Response Details
(no data)

Command Details: Directory Delete

Category

Extended

Details

Command Code: 22h

Valid for: Instance

Description

This command permanently deletes an empty directory from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 141

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Read

Category

Extended

Details

Command Code: 23h

Valid for: Instance

Description

This command reads the contents of a directory previously opened for reading.

The command returns information about a single directory entry, which means that the command must
be issued multiple times to retrieve the complete contents of a directory. When the last entry has been
read, the command returns an “empty” response (i.e. a response where the data size is zero).

• Command Details

(no data)

• Response Details

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0] Size of entry Low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] High byte, high word

MsgData[4] Flags Bit:Meaning:
0 Entry is a directory
1 Entry is read-only
2 Entry is hidden
3 Entry is a system entry

MsgData[5... n] Name of entry -

 142

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Create

Category

Extended

Details

Command Code: 24h

Valid for: Instance

Description

This command creates a directory.

• Command Details

• Response Details

(no data)

Command Details: Directory Change

Category

Extended

Details

Command Code: 25h

Valid for: Instance

Description

This command changes the current directory/path for an instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 143

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Format Disc

Category

Extended

Details

Command Code: 30h

Valid for: Object

Description

This command formats the file system.

• Command Details

• Response Details

(no data)

Object Specific Error Codes

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

Error Codes Meaning

1 Failed to open file

2 Failed to close file

3 Failed to delete file

4 Failed to open directory

5 Failed to close directory

6 Failed to create directory

7 Failed to delete directory

8 Failed to change directory

9 Copy operation failure (could not open source)

10 Copy operation failure (could not open destination)

11 Copy operation failure (write failed)

12 Unable to rename file

 144

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.8.1 Examples

In this section are presented examples for a couple of common cases where the end user would use the
File System Interface Object.

An imaginary folder structure will be used in the example, with the following files in the root folder:

Root

left (jpg)

navigation (js)

[reports]

weld_current (txt)

weld_formation (txt)

index (html)

up (jpg)

status (html)

test (txt)

right (jpg)

configuration (html)

down (jpg)

weld_info (txt)

 145

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Read a File

The following example opens weld_info.txt in the reports folder an read data from the file.

Start

InstX = Obj.Create()

InstX.File Open(R, \reports\
 weld_info.txt)

data = InstX.File Read(Size)

 EOF
(Zero bytes returned)

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open file for reading (CmdExt[0] = 0) and point
to the file to open. The instance can now be used
for file operations. Any directory operations will
be rejected.

Read Size number of bytes from the file.

Keep reading until the Read command returns
zero (0) or the desired content has been read.

Close the file.

Delete the instance.

 146

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Write a File

The following example opens up the test.txt file for writing.

Start

InstX = Obj.Create()

InstX.File Open(W, \test.txt)

InstX.File Write(data)

 Done

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open file for reading (CmdExt[0] = 1) and point
to the file to open. The instance can now be used
for file operations. Any directory operations will
be rejected.

Write the desired data to the file.

Keep writing until the desired content has been
written.

Close the file.

Delete the instance.

 147

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

List Directory Contents

The folling example lists the contents of the reports directory

Start

InstX = Obj.Create()

InstX.Directory Open(\reports\)

data = InstX.Directory Read()

Done

End

InstX.Directory Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open the report directory. The instance can now
be used for directory operations. Any file
operations will be rejected.

Read the directory entry by entry.

Keep reading until all entries have been read.
When there are no more entries, this is indicated
by a zero data size in the response.

Close the file.

Delete the instance.

 148

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.9 Network Ethernet Object (0Ch)

Category

Extended

Object Description

This object provides ethernet-specific information to the application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network Ethernet’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

Name Access Type Description

1 MAC Address Get Array of UINT8 Current MAC address.
See also “Ethernet Host Object (F9h)” on page 171)

 149

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

9.10 Functional Safety Module Object (11h)

Category

Extended

Object Description

This object contains information provided by the Safety Module connected to the Anybus Compact-
Com module. Please consult the manual for the Safety Module used, for values of the attributes below.

Supported Commands

Object: Get_Attribute
Error_Confirmation

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Functional Safety Module’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name
Acce
ss

Type Description

1 State Get UINT8 Current state of the Safety Modulea

2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.a
E.g. 0001h (HMS Industrial Networks)

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Module is

equipped with.a

4 Firmware version Get Struct of

 UINT8 (Major)
 UINT8 (Minor)
 UINT8 (Build)

Safety Module firmware version.
Version 2.18.3 would be represented as:
 first byte: 02h
 second byte: 12h
 third byte: 03h

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at production.a

6 Output data Get Array of UINT8 Current value of the Safety Module output data, i.e. data
FROM the network
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

 150

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

7 Input data Get Array of UINT8 Current value of the Safety Module input data, i.e. data sent
TO the network.
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

8 Error counters Get Struct of
 UINT16 (ABCC DR)
 UINT16 (ABCC SE)
 UINT16 (SM DR)
 UINT16 (SM SE)

Error counters (each counter stops counting at FFFFh)

ABCC DR: Responses (unexpected) from the Safety Mod-
ule, discarded by the Anybus CompactCom
module.

ABCC SE: Serial reception errors detected by the Anybus
CompactCom module.

SM DR: Responses (unexpected) from the Anybus
CompactCom module, discarded by the Safety
Module.

SM SE: Serial reception errors detected by the Safety
Module.

9 Event log Get Array of UINT8 Latest Safety Module event information (if any) is logged to
this attribute. Any older event information is erased when a
new event is logged.
For evalutation by HMS support.

10 Exception information Get UINT8 If the Exception Code in the Anybus object is set to “Safety
communication error” (09h), additional exception information
is presented here, see table below.

11 Bootloader version Get Struct of
 UINT8 Major
 UINT8 Minor

Safety Module bootloader version.
Format: version “2.12” would be represented as:
 First byte = 0x02
 Second byte = 0x0C

a. Values depend on which Safety Module is used.

Name
Acce
ss

Type Description

 151

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

Exception Information

If Exception Code 09h is set in the Anybus object, there is an error regarding the functional safety mod-
ule in the application. Exception information is available in instance attribute #10 according to this table:

Value Exception Information

00h No information

01h Baud rate not supported

02h No start message

03h Unexpected message length

04h Unexpected command in response

05h Unexpected error code

06h Safety application not found

07h Invalid safety application CRC

08h No flash access

09h Answer from wrong safety processor during boot loader communication

0Ah Boot loader timeout

0Bh Network specific parameter error

0Ch Invalid IO configuration string

0Dh Response differed between the safety microprocessors (e.g. different module types)

0Eh Incompatible module (e.g. supported network)

0Fh Max number of retransmissions performed (e.g. due to CRC errors)

10h Firmware file error

11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used with the current
baud rate

12h Invalid SPDU input size in start-up telegram

13h Invalid SPDU output size in start-up telegram

14h Badly formatted input SPDU

15h Anybus CompactCom to safety module initialization failure

 152

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

Command Details: Error_Confirmation

Category

Extended

Details

Command Code: 10h

Valid for: Object Instance

Description

When the Safety Module has entered the safe state, for any reason, it must receive an error confirmation
from the application, before it can leave the safe state. The application sends this command to the
Anybus CompactCom module, that forwards it to the Safety Module.

• Command Details

(No data)

• Response Details

(No data)

Object Specific Error Codes

Error Code Description Comments

0x01 The safety module rejected a message. Error code sent by safety module is found in MsgData[2]
and MsgData[3].

0x02 Message response from the safety module
has the wrong format (for example, wrong
length).

-

 153

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9.11 CIP Port Configuration Object (0Dh)

Category

Extended

Object Description

This object is used to populate and enumerate the CIP Port Object (see “Port Object (F4h)” on page
85) on the network side. Basically, this is a matter of creating and updating instances and attributes which
shall represent a CIP Port within the host application. This process is necessary in case support for Un-
connected CIP Routing has been enabled (see “EtherNet/IP Host Object (F8h)” on page 161, Instance
Attribute #17).

Each instance within this object corresponds to an instance in the CIP Port Object. The object supports
up to 8 instances, where instance #1 is dedicated to the local TCP port, enabling the host application to
implement up to 7 additional ports. Instance #1 will automatically be populated with default values,
however it is possible for the host application to customize instance attributes #2 and #4.

Apart from attribute #7, it is possible to write to the instance attributes only during setup. The host ap-
plication is responsible for keeping instance attribute #7 updated for all ports located within the host
application.

See also...

• “Port Object (F4h)” on page 85 (CIP)

• “EtherNet/IP Host Object (F8h)” on page 161 (Instance Attribute #17)

IMPORTANT: Note that the module does not take over the host application responsibility for error control; the module
will not verify that the data set by the host application is correct.

Supported Commands

Object: Get_Attribute
Create
Delete

Instance: Get_Attribute
Set_Attribute

 154

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Object Attributes (Instance #0)

Instance Attributes

Extended

See also...

• “Port Object (F4h)” on page 85 (“Instances Attributes (Instance #1)” on page 86)

• “Port Object (F4h)” on page 85 (“Instances Attributes (Instances #2... #8)” on page 86)

Name Access Data Type Value

1 Name Get Array of CHAR ‘CIP Port Configuration’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0008h

Name Access Type Description

1 Port Type Set UINT16 Enumerates the porta

a. See CIP specification, available from www.odva.org.

2 Port Number Set UINT16 CIP port number associated with this port

3 Link Path Set Array of UINT8 Logical path segments which identify the object for this port.

4 Port Name Set Array of CHAR String (max. no. of characters is 64) which names the port.

5 - - - (reserved)

6 - - - (reserved)

7 Node Address Set Array of UINT8 Node number of this device on port. The data type restricts
the range to a Port Segment. The encoded port number
must match the value specified in attribute #2.
A device which does not have a node number on the port
can specify a zero length node address within the Port Seg-
ment (i.e. 10h 00h).
In case the node address changes during runtime, the host
application is responsible for updating this attribute as well.

8 Port Node Range Set Struct of:
UINT16 (Min)
UINT16 (Max)

Minimum and maximum node number on port.
Support for this attribute is conditional; the attribute shall be
supported provided that the node number can be reported
within the range of the data type (e.g. DeviceNet). If not (as
is the case with networks such as EtherNet/IP which uses a
4 byte IP address), the attribute shall not be supported.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Chapter 10

10. Host Application Objects

10.1 General Information

This chapter specifies the host application object implementation in the module. The objects listed here
may optionally be implemented within the host application firmware to expand the EtherNet/IP imple-
mentation.

Standard Objects:

• Application Object (FFh) - (see Anybus CompactCom 40 Software Design Guide)

• Application Data Object (FEh) - (see Anybus CompactCom 40 Software Design Guide)

• Energy Control Object (F0h) - (see Anybus CompactCom 40 Software Design Guide)

• Assembly Mapping Object (EBh) - (see Anybus CompactCom 40 Software Design Guide)

• Modular Device Object (ECh) - (see Anybus CompactCom 40 Software Design Guide)

• “Sync Object (EEh)” on page 160

Network Specific Objects:

• “CIP Identity Host Object (EDh)” on page 158

• “EtherNet/IP Host Object (F8h)” on page 161

• “Ethernet Host Object (F9h)” on page 171

• “Application File System Interface Object (EAh)” on page 174

• “Functional Safety Host Object (E8h)” on page 156

 156

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

10.2 Functional Safety Host Object (E8h)

Category

Extended

Object Description

Important: Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is to be
supported and a safety module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Functional Safety’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

 157

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.4

Instance Attributes (Instance #1)

Extended

Name Access Type Description

1 Safety enabled Get BOOL When TRUE, communication with the safety module is ena-
bled.

Note: If functional safety is not supported, this attribute must
be set to FALSE.

2 Baud Rate Get UINT32 Optional attributea. Sets the baud rate for the communication
between the Anybus CompactCom module and the safety
module.
Valid values:

• 625000 (625 kbit/s)
• 1000000 (1000 kbit/s)
• 1020000 (1020 kbit/s)

If not implemented, the default value 1020 kbit/s will be used.

If other values are set in this attribute the Anybus Compact-
Com module will go into Exception state.

a. The host application shall never implement this attribute when using the IXXAT Safe T100.

3 IO Configuration Get Array of UINT8 Optional attribute. Manufacturer specific settings of the digital
I/O of the safety module.

See the manual of the safety module used for information.

4 Cycle Time Get UINT8 Optional attributea. Communication cycle time between the
Anybus CompactCom and the safety module in milliseconds.

Valid values:
• 2 ms
• 4 ms
• 8 ms
• 16 ms

If another value is set, the CompactCom will enter Exception
state.

If not implemented, the minimum cycle time for the chosen
baud rate will be used:

• 2 ms for 1020 kbit/s
• 2 ms for 1000 kbit/s
• 4 ms for 625 kbit/s

The CompactCom validates the cycle time according to the
minimum values above. If e.g. baud rate is 625 kbit/s and the
cycle time is set to 2 ms the CompactCom will enter Exception
state. If the cycle time is set to 8 ms or 16 ms, any baud rate is
valid.

 158

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

10.3 CIP Identity Host Object (EDh)

Category

Extended

Object Description

This object allows for applications to support additional CIP identity instances. It is used to provide ad-
ditional product identity information, e.g. concerning the software installed.

The first instance in the CIP identity object will not change its behavior. When implementing instances
in the CIP identity host object, they will be mapped to the CIP identity object starting at instance 2. In-
stance no. 1 in the CIP identity host object will be mapped to instance no. 2 in the CIP identity object
and so on.

See also...

• “Identity Object (01h)” on page 63 (CIP)

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Get_Attribute_All

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Extended

Name Access Data Type Value Description

1 Name Get STRING ‘CIP Identity’ Object name

2 Revision Get UINT8 01h Object revision

3 Number of instances Get UINT16 Depends on application Supported number of instances

4 Highest instance no. Get UINT16 Depends on application Highest implemented instance

Name Access Type Default Value Comment

1 Vendor ID Get UINT16 - These values replace the values for the CIP
identity object instance #2 and upwards.
See also...

- “Identity Object (01h)” on page 63 (CIP-
object)

2 Device Type Get UINT16 -

3 Product Code Get UINT16 -

4 Revision Get struct of:
UINT8 Major
UINT8 Minor

-

5 Status Get UNIT16 -

6 Serial Number Get UINT32 -

7 Product Name Get Array of CHAR -

 159

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Get_Attribute_All

Category

Extended

Details

Command Code: 10h

Valid for: Object Instance

Description

This service must be implemented by the application for all instances that exist in the CIP identity host
object. If identity data is requested from the network the Anybus module will issue this command to the
application. The application will then respond with a message containing a struct of all attributes in the
requested instance.

• Command Details

(no data)

• Response Details

Field Contents Notes

MsgData[0, 1] Vendor ID ABCC CIP identity data

MsgData[2,3] Device type

MsgData[4,5] Product code

MsgData[6] Major revision

MsgData[7] Minor revision

MsgData[8,9] Status

MsgData[10 .. .13] Serial number

MsgData[14 n] Product name

 160

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

10.1 Sync Object (EEh)

Category

Extended

Object Description

The Anybus CompactCom 40 EIP does not support CIP Sync. This object is only used to store the cycle
time for the last established IO connection that consumes data.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)

Extended

The attributes are represented on EtherNet/IP as follows:

Name Access Type Default Value Comment

1 Cycle time Get/Set UINT32 The RPI for the last established IO connec-
tion that consumes data (O->T RPI)

2-8 (not implemented)

 161

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

10.2 EtherNet/IP Host Object (F8h)

Category

Basic, extended

Object Description

This object implements EtherNet/IP specific features in the host application. Note that this object must
not be confused with the Ethernet Host Object, see “Ethernet Host Object (F9h)” on page 171.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during start-
up; if an attribute is not implemented in the host application, simply respond with an error message (06h,
“Invalid CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

Note that some of the commands used when accessing this object may require segmentation. For more
information, see “Message Segmentation” on page 189.

If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As
the EDS file is changed, the identity of the module has to be changed and the module will require cer-
tification, see “Conformance Test Guide” on page 12.

See also...

• “Identity Object (01h)” on page 63 (CIP)

• “Assembly Object (04h)” on page 67 (CIP)

• “Port Object (F4h)” on page 85 (CIP)

• “CIP Port Configuration Object (0Dh)” on page 153 (Anybus Module Object)

• Anybus CompactCom 40 Software Design Guide, “Error Codes”

Supported Commands

Object: Get_Attribute
Process_CIP_Object_Request

(See “Command Details: Process_CIP_Object_Request” on page 166)

Set_Configuration_Data
(See “Command Details: Set_Configuration_Data” on page 167)

Process_CIP_Routing_Request
(See “Command Details: Process_CIP_Routing_Request” on page 169)

Get_Configuration_Data
(See “Command Details: Get_Configuration_Data” on page 170)

Instance: Get_Attribute

 162

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘EtherNet/IP’

2 Revision Get UINT8 02h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Default Value Comment

1 Vendor ID Get UINT16 005Ah These values are set in the Identity Object
(CIP) at startup.

See also...
- “Device Customization” on page 13
- “Identity Object (01h)” on page 63 (CIP-

object)

Note: Changing any of these attributes
requires a new Vendor ID.

2 Device Type Get UINT16 002Bh

3 Product Code Get UINT16 0037h

4 Revision Get struct of:
UINT8 Major
UINT8 Minor

(software revision)

5 Serial Number Get UINT32 (set at production)

6 Product Name Get Array of CHAR ‘Anybus CompactCom
40 EtherNet/IP(TM)’

Name Access Type Default Value Comment

7 Producing
Instance No.

Get Array of
UINT16

- The values in this array are the EtherNet/IP
Assembly instance numbers that matches
the host application Assembly Mapping
Ojbect instances that are listed in attribute
#11 (Write PD Instance List). If the Assembly
Mapping Object is not implemented, one
element in this array is allowed, to set the
producing instance number.
The maximum number of entries in the array
is 6.
See “Multiple Assembly Instances” on page
165 for an example.

8 Consuming
Instance No.

Get Array of
UINT16

- The values in this array are the EtherNet/IP
Assembly instance numbers that matches
the host application Assembly Mapping
Ojbect instances that are listed in attribute
#12 (Read PD Instance List). If the Assem-
bly Mapping Object is not implemented, one
element in this array is allowed, to set the
consuming instance number.
See “Multiple Assembly Instances” on page
165 for an example.
The maximum number of entries in the array
is 6.

 163

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

9 Enable communi-
cation settings
from Net

Get BOOL True Value:Meaning:
True Can be set from network
False Cannot be set from network

See also...
- “TCP/IP Interface Object (F5h)” on page

87 (CIP-object)
- “Ethernet Link Object (F6h)” on page 90

(CIP-object)
- “Network Configuration Object (04h)” on

page 99
(Anybus Module Object)

11 Enable CIP for-
warding

Get BOOL False Value:Meaning:
True Requests to unknown CIP objects

and unknown assembly object instances are
routed to the application.

False Requests to unknown CIP objects
and unknown assembly object instances are
not routed to the application.

See also...
- “Command Details: Process_CIP_Ob-

ject_Request” on page 166.

12 Enable Parame-
ter Object

Get BOOL True Value:Meaning:
True Enable CIP Parameter Object
False Disable CIP Parameter Object

13 Input-Only heart-
beat instance
number

Get UINT16 0003h See also...
- “Instance 03h Attributes (Heartbeat,

Input-Only)” on page 67 (CIP-instance)

14 Listen-Only heart-
beat instance
number

Get UINT16 0004h See also...
- “Instance 04h Attributes (Heartbeat, Lis-

ten-Only)” on page 68 (CIP-instance)

15 Assembly object
Configuration
instance number

Get UINT16 0005h See also...
- “Instance 05h Attributes (Configuration

Data)” on page 68 (CIP-instance)

16 Disable Strict IO
Match

Get BOOL False If true, the module will accept Class1 con-
nection requests that have sizes that’s less
than or equal to the configured IO sizes.

17 Enable uncon-
nected routing

Get BOOL False If true, the module enables unconnected CIP
routing. This also triggers an initial upload of
the contents of the CIP Port Mapping object.

18 Input-Only
extended heart-
beat instance
number

Get UINT16 0006h See also...
- “Instance 06h Attributes (Heartbeat,

Input-Only Extended)” on page 68 (CIP-
instance)

19 Listen-Only
extended heart-
beat instance
number

Get UINT16 0007h See also...
- “Instance 07h Attributes (Heartbeat, Lis-

ten-Only Extended)” on page 69 (CIP-
instance)

20 Interface label
port 1

Get Array of CHAR Port 1 The value of this attribute is used to change
the interface label for Ethernet Link Object
Instance #1

21 Interface label
port 2

Get Array of CHAR Port 2 The value of this attribute is used to change
the interface label for Ethernet Link Object
Instance #2

22 Interface label
internal port

Get Array of CHAR Internal The value of this attribute is used to change
the interface label for Ethernet Link Object
Instance #3

Name Access Type Default Value Comment

 164

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

26 Enable EtherNet/

IP QuickConnecta
Get BOOL False Value:Meaning:

True EtherNet/IP QuickConnect function-
ality enabled.

False EtherNet/IP QuickConnect function-
ality disabled.

29 Ignore Sequence
Count Check

Get BOOL False Setting this attribute to “true” makes the
module ignore the Sequence Count Check
for consumed Class 1 data.
This means that all data, not just changed/
new data, received from the Originator, will
be copied to the application.
Copying all data and not just changed data
is a violation of the CIP specification. It will
also affect the performance of the module.

Use precaution when setting this flag to
“true”.

HMS will do NO performance measure-
ments and states NO guarantees about how
performance will be affected when copying
all data.

30 ABCC ADI Object
Number

Get UINT16 00A2h This attribute either changes the object num-
ber of the ADI Object or disables the ADI
Object (see page 83). Valid object numbers
are within the vendor specific ranges (0064h
- 00C7h and 0300h - 04FFh). Any other
value will disable the ADI object.

31 Enable DLR Get BOOL True True = DLR functionality enabled
False= DLR functionality disabled

a. If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As the EDS file
is changed, the identity of the module has to be changed and the module will require certification, see “Conform-
ance Test Guide” on page 12.

Name Access Type Default Value Comment

 165

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Multiple Assembly Instances

The Assembly Mapping Object has two arrays on class level (Write PD Instance List and Read PD In-
stance List) listing instances defined by the application. The arrays of attributes 7 and 8 in the EtherNet/
IP host object (Producing Instance Number and Consuming Instance number) are bound to the in-
stance lists in the Assembly Mapping Object. The arrays list the corresponding CIP instance numbers
representing each assembly instance defined by the application.

The example below shows how the EtherNet/IP assembly instances are bound to host application as-
sembly instances.

The length of the arrays must match, otherwise the module enters exception.

See also ...

• Assembly Mapping Object (see Anybus CompactCom 40 Software Design Guide)

Assembly Mapping Object (EBh) Instances

1 Read PD

2 Read PD

10 Write PD

11 Write PD

100 Read PD

101 Write PD

Assembly Mapping Object Attribute Value Value EtherNet/IP Host Object Instance Atribute

11 - Write PD Instance List 1 <---> 70 7 - Producing Instance Number

2 <---> 71

100 <---> 150

12 - Read PD Instance List 10 <---> 20 8 - Consuming Instance Number

11 <---> 21

101 <---> 100

 166

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Process_CIP_Object_Request

Category

Extended

Details

Command Code: 10h

Valid for: Object Instance

Description

By setting the ‘Enable CIP Request Forwarding’-attribute (#11), all requests to unimplemented CIP-ob-
jects and unknown assembly object instances, will be forwarded to the host application through this
command. The application then has to evaluate the request and return a proper response. The module
supports one CIP-request; additional requests will be rejected by the module.

Note that since the telegram length on the host interface is limited, the request data size must not exceed
255 bytes. If it does, the module will send a ‘resource unavailable’ response to the originator of the re-
quest and the message will not be forwarded to the host application.

Note: This command is similar - but not identical - to the ‘Process_CIP_Request’-command in the An-
ybus CompactCom 40 DeviceNet.

• Command Details

• Response Details

IMPORTANT: When using this functionality, make sure to implement the common CIP Class Attribute (attribute
#1, ‘Revision’) for all objects in the host application firmware. Failure to observe this will prevent the module from success-
fully passing conformance tests.

Field Contents Notes

CmdExt[0] CIP Service Code CIP service code from original CIP request

CmdExt[1] Request Path Size Number of 16-bit words in the Request Path field

MsgData[0... m] Request Path CIP EPATH (Class, Instance, Attr. etc.)

MsgData[m... n] Request Data Service-specific data

Field Contents Notes

CmdExt[0] CIP Service Code (Reply bit set)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] General Status CIP General Status Code

MsgData[1] Size of Additional Status Number of 16-bit words in Additional Status array

MsgData[2... m] Additional Status Additional Status, if applicable

MsgData[m... n] Response data Actual response data, if applicable

 167

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Set_Configuration_Data

Category

Extended

Details

Command Code: 11h

Valid for: Object Instance

Description

If the data segment in the CIP ‘Forward_Open’ service contains Configuration Data, this will be for-
warded to the host application through this command. If implemented, the host application should eval-
uate the request and return a proper response.

Segmentation is used, see “Message Segmentation” on page 189 for more information. The maximum
total amount of configuration data that will be accepted by the module is 458 bytes.

Note: This command must be implemented in order to support Configuration Data. If not implement-
ed, the CIP ‘Forward_Open’-request will be rejected by the module.

• Command Details

• Response Details (Success)

• Response Details (Error)

Field Contents Notes

CmdExt[0] - (reserved, ignore)

CmdExt[1] Segmentation Control bits See “Message Segmentation” on page 189

MsgData[0 - 1]a

a. MsgData[0 - 1]and MsgData[2 - 3] can both be 0. Normally, the Set_Configuration_Data command is sent to the
application when an I/O connection is setup on the network. Producing connection point and consuming connec-
tion point are available and will be forwarded with the command. But if the configuration data originates from a set
attribute single request or a not matching NULL forward open request, there is no information on the connection
points and 0 (zero) will be forwarded to the application.

Producing connection point Producing connection point, requested by the originator.

MsgData[2 - 3]a Consuming connection point Consuming connecition point, requested by the originator.

MsgData[0... n] Data Actual configuration data

Field Contents Notes

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

Field Contents Notes

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] Error code Anybus error code

MsgData[1] Extended error code If the Anybus error code is set to FFh, the extended error
code shall be translated as shown in “Extended Error
Code” on page 168.

MsgData[2 - 3] Index If the Extended error code is set to 02h (invalid configura-
tion), this parameter points to the attribute that failed.

 168

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Extended Error Code

If the Error code equals FFh (Object specific error), the extended code will be translated as below:

See also...

• “Connection Manager (06h)” on page 70 (CIP)

• “Message Segmentation” on page 189

Code Contents CIP no. CIP status code Additional Information

01h Ownership con-
flict

01h Connection failure The configuration data was supplied in a forward open
request.

10h Device State con-
flict

The configuration data was supplied in a set request
to the Assembly object.

02h Invalid configura-
tion

09h Bad attribute data CIP extended error code: Use value from MsgData[2 -
3]. The extended error code shall only be used if the
request originated from a Forward Open request, not
for explicit set requests.

 169

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Process_CIP_Routing_Request

Category

Extended

Details

Command Code: 12h

Valid for: Object Instance

Description

The module will strip the first path within the Unconnected_Send service and evaluate whether or not
it’s possible to continue with the routing (e.g. check that the requested port exists within the port object).
If the stripped path was the last path the contents delivered to the application will be the CIP request
sent to the destination node, otherwise it will be an Unconneced_Send service with updated route path
information.

The module supports one pending request. Additional requests will be rejected by the module.

Note: Since the telegram length on the host interface is limited, the data must not exceed 255 bytes in
length. If it does, the module will reject the originator of the request (‘Resource unavailable’), and this
command will not be issued towards the host application.

• Command Details

• Response Details

See also...

• “Port Object (F4h)” on page 85 (CIP)

• “CIP Port Configuration Object (0Dh)” on page 153

Field Contents Notes

CmdExt[0] - (reserved, ignore)

CmdExt[1] - (reserved, ignore)

MsgData[0... n] Destination Path Destination path encoded as an EPATH.

MsgData[n+1] Time_tick Valid after timeout parameters have been updated

MsgData[n+2] Time-out_ticks Valid after timeout parameters have been updated

MsgData[n+3... m] CIP message CIP message to route

Field Contents Notes

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] CIP Service Actual CIP service code, response bit set

MsgData[1] 00h (reserved, set to zero)

MsgData[2] General Status Actual CIP General status code

MsgData[3] Size of Additional Status No. of 16-bit words in Additional Status Array

MsgData[4... n] Additional Status Array Additional status, if applicable

MsgData[n+1... m] Response Data Actual response data

 170

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Get_Configuration_Data

Details

Command Code: 13h

Valid for: Object Instance

Description

If the configuration data is requested from the network, the Anybus will issue this command to the ap-
plication. The application shall send the stored configuration data in the response message.

Segmentation is used since the telegram length on the host interface is limited. The maximum total
amount of configuration data that will be accepted by the module is 458 bytes.

Note: This command must be implemented in order to support Configuration Data. If not implement-
ed, the request will be rejected by the Anybus module.

• Command Details

• Response Details (Success)

• Response Details (Error)

See also...

 “Message Segmentation” on page 189

Field Contents Notes

CmdExt[0] 00h -

CmdExt[1] 00h -

MsgData[0... n] - No extended message data

Field Contents Notes

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] Segmentation Control bits See “Message Segmentation” on page 189

MsgData[0 - n] Status Configuration data from the application

Field Contents Notes

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] Segmentation Control bits See “Message Segmentation” on page 189

MsgData[0] Status Anybus protocol error code

 171

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

10.3 Ethernet Host Object (F9h)

Category

Basic, extended

Object Description

This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Name Access Data Type Value

1 Name Get Array of CHAR ‘Ethernet’

2 Revision Get UINT8 02h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Defaulta

a. If an attribute is not implemented, the module will use this value instead

Comment

1 MAC addressb

b. The module is pre-programmed with a valid Mac address. To use that address, do not implement this attribute.

Get Array of UINT8 - 6 byte physical address value; overrides the
pre-programmed Mac address. Note that the
new Mac address value must be obtained from
the IEEE.

 172

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Extended

Name Access Type Defaulta

a. If an attribute is not implemented, the module will use this value instead

Comment

2 Enable HICP Get BOOL True Value:Meaning:
True HICP enabled
False HICP disabled

(see “Secure HICP (Secure Host IP Configu-
ration Protocol)” on page 192)

3 Enable Web Server Get BOOL True Value:Meaning:
True web server enabled
False web server disabled

(see “Web Server” on page 24)

5 Enable Web ADI access Get BOOL True Value:Meaning:
True web ADI access enabled
False web ADI access disabled

(see “Web Server” on page 24)

6 Enable FTP server Get BOOL True Value:Meaning:
True FTP server enabled
False FTP server disabled

(see “FTP Server” on page 22)

7 Enable admin mode Get BOOL False Value:Meaning:
True FTP Admin mode enabled
False FTP Admin mode disabled

(see “FTP Server” on page 22)

8 Network Status Set UINT16 - See “Network Status” on page 173

9 Port 1 MAC address Get Array of UINT8 - MAC address for Ethernet port 1, 6 bytes

10 Port 2 MAC address Get Array of UINT8 - MAC address for Ethernet port 2, 6 bytes

11b

b. If ACD functionality is disabled using this attribute, the ACD attributes in the CIP TCP/IP object (F5h) are not avail-
able.

Enable ACD Get BOOL True Value:Meaning:
True ACD enabled
False ACD disabled

12 Port 1 State Get ENUM Enable State of Ethernet port 1, see “Port State” on
page 173

13 Port 2 State Get ENUM Enable State of Ethernet port 2, see “Port State” on
page 173

14 Reserved

15 Enable reset from HICP Get BOOL False Value:Meaning:
True Possible to reset the module from

HICP
False Not possible to reset the module from

HICP

16 IP configuration Set Struct of:
UINT32
 (IP address)
UINT32
 (Subnet mask)
UINIT32
 (Gateway)

N/A The Anybus CompactCom writes the IP con-
figuration (IP address, Subnet mask, Gateway)
to this attribute whenever the configuration is
assigned or changed.

17 IP address byte 0 - 2 Get Array of
UINT8[3]

[0] : 192
[1] : 168
[2] : 0

This attributes holds the first three bytes of the
IP address. The attribute is used in Shift Reg-
ister Mode if the configuration switch value is
set to 1 - 245. The first three bytes of the IP
address will be given by the values in the
attribute and the last byte will be given by the
configuration switch value.

 173

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Network Status

This attribute holds a bit field which indicates the overall network status as follows:

Port State

The attributes Port 1 State and Port 2 State tells whether the corresponding port is enabled, disabled or
inactivated.

If any of these attributes are implemented, the admin state attribute (#9) in the CIP Ethernet Link object
(F6h) will not be available, see page 90.

Bit Contents Description

0 Link Value:Meaning:
True Link detected
False No link

1 IP in use Value:Meaning:
True IP address in use (no address conflict detected)
False No IP address in use

2 IP conflict Value:Meaning:
True IP address conflict detected
False No IP address conflict detected

3 Link port 1 Value:Meaning:
True Valid link on port 1
False No valid link on port 1

4 Link port 2 Value:Meaning:
True Valid link on port 2
False No valid link on port 2

5... 15 (reserved) (mask off and ignore)

Value State Description

00h Enable The Ethernet port is enabled.

01h Disable The Ethernet port is disabled.
The port will be treated as existing, i.e. references to the port can exist (in net-
work protocol, website etc.).

02h Inactivate The Ethernet port is inactivated
The port will be treated as non-existing, i.e. no references to the port will exist
(in network protocol, website etc.).
Modules with two ports will disable functionality requiring two ports if one port is
set to this state.

NOTE: This state is only valid to use for Port 2 State (attribute #13). The mod-
ule will enter exception with exception code 0x07 (Invalid application response),
if Port 1 State is configured to this state.

NOTE: A port shall only be configured to this state if it does not exist physically.
If using an M40 module with two Ethernet ports, use state 01h (Disable)
instead.

 174

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

10.4 Application File System Interface Object (EAh)

Category

Extended

Object Description

This object provides an interface to the built-in file system. Each instance represents a handle to a file
stream and contains services for file system operations. This allows the user to download software
through the FTP server to the application. The application decides the available memory space.

Instances are created and deleted dynamically during runtime.

The object is structurally identical to the “Anybus File System Interface Object (0Ah)” on page 131.

Supported Commands

Object: Get_Attribute
Create(“Command Details: Create” on page 176)
Delete(“Command Details: Delete” on page 177)

Instance: Get_Attribute
File Open(“Command Details: File Open” on page 177)
File Close(“Command Details: File Close” on page 178)
File Delete(“Command Details: File Delete” on page 178)
File Copy(“Command Details: File Copy” on page 179)
File Rename(“Command Details: File Rename” on page 180)
File Read(“Command Details: File Read” on page 181)
File Write(“Command Details: File Write” on page 182)
Directory Open(“Command Details: Directory Open” on page 182)
Directory Close(“Command Details: Directory Close” on page 183)
Directory Delete(“Command Details: Directory Delete” on page 183)
Directory Read(“Command Details: Directory Read” on page 184)
Directory Create(“Command Details: Directory Create” on page 185)
Directory Change(“Command Details: Directory Change” on page 185)

 175

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Object Attributes (Instance #0)

Instance Attributes

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘Application File System Interface’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 Max number of instances supported by the application.

13 Total disc size Get Array of UINT32 -

14 Free space Get Array of UINT32 -

Name Access Type Description

1 Instance type Get UINT8 Value:Type:
00h Reserved
01h File instance
02h Directory instance

2 File size Get UINT32 File size in bytes (zero for directories)

3 Path Get Array of CHAR Path where instance operates

 176

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Create

Category

Extended

Details

Command Code.: 03h

Valid for: Object

Description

This command creates a file operation instance.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0] Instance number low byte

MsgData[1] high byte

 177

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Delete

Category

Extended

Details

Command Code.: 04h

Valid for: Object

Description

This command deletes a file operation instance.

• Command Details

• Response Details

(no data)

Command Details: File Open

Category

Extended

Details

Command Code.: 10h

Valid for: Instance

Description

This command opens a file for reading, writing, or appending.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Field Contents Comments

CmdExt[0] Mode Value:Mode:
00h Read mode
01h Write mode
02h Append mode

CmdExt[1] (reserved, ignore) -

MsgData[0... n] Path + filename Relative to current path

 178

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Close

Category

Extended

Details

Command Code.: 11h

Valid for: Instance

Description

This command closes a previously opened file.

• Command Details

(no data)

• Response Details

Command Details: File Delete

Category

Extended

Details

Command Code.: 12h

Valid for: Instance

Description

This command permanently deletes a specified file from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, se to zero) -

CmdExt[1]

MsgData[0] File size low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] high byte, high word

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + filename Relative to current path

 179

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Copy

Category

Extended

Details

Command Code.: 13h

Valid for: Instance

Description

This command makes a copy of a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Source path + filename Relative to current path, separated by NULL

NULL

Destination path + filename

 180

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Rename

Category

Extended

Details

Command Code.: 14h

Valid for: Instance

Description

This command renames or moves a file.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Old path + filename Relative to current path, separated by NULL

NULL

New path + filename

 181

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Read

Category

Extended

Details

Command Code.: 15h

Valid for: Instance

Description

Reads data from a file previously opened for reading.

• Command Details

• Response Details

Field Contents Comments

CmdExt[0] Bytes no. of bytes to read

CmdExt[1] (reserved, ignore) -

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0... n] Data Data read from file

 182

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: File Write

Category

Extended

Details

Command Code.: 16h

Valid for: Instance

Description

Writes data to a file previously opened for writing or appending.

• Command Details

• Response Details

Command Details: Directory Open

Category

Extended

Details

Command Code.: 20h

Valid for: Instance

Description

This command opens a directory.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Data[0... n] Data Data to write to file

Field Contents Comments

CmdExt[0] Bytes no. of bytes written

CmdExt[1] (reserved, set to zero) -

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

Data[0... n] Path + name of directory Relative to current path

 183

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Close

Category

Extended

Details

Command Code.: 21h

Valid for: Instance

Description

This command closes a previously opened directory.

• Command Details
(no data)

• Response Details
(no data)

Command Details: Directory Delete

Category

Extended

Details

Command Code.: 22h

Valid for: Instance

Description

This command permanently deletes an empty directory from the file system.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 184

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Read

Category

Extended

Details

Command Code.: 23h

Valid for: Instance

Description

This command reads the contents of a directory previously opened for reading.

The command returns information about a single directory entry, which means that the command must
be issued multiple times to retrieve the complete contents of a directory. When the last entry has been
read, the command returns an “empty” response (i.e. a response where the data size is zero).

• Command Details

(no data)

• Response Details

Field Contents Comments

CmdExt[0] (reserved, set to zero) -

CmdExt[1]

MsgData[0] Size of entry Low byte, low word

MsgData[1] -

MsgData[2] -

MsgData[3] High byte, high word

MsgData[4] Flags Bit:Meaning:
0 Entry is a directory
1 Entry is read-only
2 Entry is hidden
3 Entry is a system entry

MsgData[5... n] Name of entry -

 185

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Command Details: Directory Create

Category

Extended

Details

Command Code.: 24h

Valid for: Instance

Description

This command creates a directory.

• Command Details

• Response Details

(no data)

Command Details: Directory Change

Category

Extended

Details

Command Code.: 25h

Valid for: Instance

Description

This command changes the current directory/path for an instance.

• Command Details

• Response Details

(no data)

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

Field Contents Comments

CmdExt[0] (reserved, ignore) -

CmdExt[1]

MsgData[0... n] Path + name of directory Relative to current path

 186

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Object Specific Error Codes

Error Codes Meaning

1 Failed to open file

2 Failed to close file

3 Failed to delete file

4 Failed to open directory

5 Failed to close directory

6 Failed to create directory

7 Failed to delete directory

8 Failed to change directory

9 Copy operation failure (could not open source)

10 Copy operation failure (could not open destination)

11 Copy operation failure (write failed)

12 Unable to rename file

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix A

A. Categorization of Functionality

The objects, including attributes and services, of the Anybus CompactCom and the application are di-
vided into two categories: basic and extended.

A.1 Basic

This category includes objects, attributes and services that are mandatory to implement or to use. They
will be enough for starting up the Anybus CompactCom and sending/receiving data with the chosen
network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this category.

A.2 Extended

Use of the objects in this category extends the functionality of the application. Access is given to the
more specific characteristics of the industrial network, not only the basic moving of data to and from
the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the available net-
work functionality is enabled and accessible, access to the specification of the industrial network may be
required.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix B

B. Implementation Details

B.1 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another network de-
vice. In the case of EtherNet/IP, this means that the SUP-bit is set when one or more CIP (Class 1 or
Class 3) connections has been opened towards the module.

B.2 Anybus Statemachine

The table below describes how the Anybus Statemachine relates to the EtherNet/IP network.

B.3 Application Watchdog Timeout Handling

Upon detection of an application watchdog timeout, the module will cease network participation and
shift to state ‘EXCEPTION’. No other network specific actions are performed.

Anybus State Implementation Comment

WAIT_PROCESS The module stays in this state until a Class 1
connection has been opened.

-

ERROR 1. Class 1 connections errors
2. Duplicate IP address detected

-

PROCESS_ACTIVE Error free Class 1 connection active (RUN-bit set
in the 32-bit Run/Idle header of an Exclusive-
Owner connection)

Only valid for consuming connections.

IDLE Class 1 connection idle.

EXCEPTION Unexpected error, e.g. watchdog timeout etc. MS LED turns red (to indicate a major fault)
NS LED is off

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix C

C. Message Segmentation

C.1 General

Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is 1524 bytes. If the host appli-
cation implements a data message size of 1524 bytes, a message will always fit into one segment. The
host application can implement a shorter data message size (255 bytes for backwards compatibility with
the 30-series).

No service requires messages larger than what is supported by the Anybus CompactCom 40 series 1524
bytes messaging interface. If this interface is used by the application, it allows very basic segmentation
handling. The first segment bit (FS) and the last segment bit (LS) shall always be set in each segmented
command or response. In the Anybus CompactCom 40 series, some commands in the Socket Interface
Object (page 109) and in the EtherNet/IP Host Object (161) use segmentation.

If a shorter message size is implemented, segmentation has to be used, setting the FS bit in the first seg-
ment of the message sent, and setting the LS bit in the last segment sent.

The segmentation protocol is implemented in the message layer and must not be confused with the frag-
mentation used on the serial host interface. Consult the general Anybus CompactCom 40 Software De-
sign Guide for further information.

The module supports 20 simultaneous segmented messages.

Message Segmentation 190

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

C.2 Command Segmentation

When a command message is segmented, the command initiator sends the same command header mul-
tiple times. For each message, the data field is exchanged with the next data segment.

Please note that some commands cannot be used concurrently on the same instance, since they both
need access to the segmentation buffer for that instance.

Command segmentation is used for the following commands:

• Set_Configuration_Data (see “Command Details: Set_Configuration_Data” on page 167)

• Send (see “Command Details: Send” on page 120)

• Send To (see “Command Details: Send_To” on page 121)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LS-bit must be set.

• For single segment commands (i.e. size less or equal to 255 bytes), both FS and LS must be set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the cur-
rent segmentation message is discarded. Note however that this only applies to the current seg-
ment; previously transmitted segments are still valid.

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero).

Bit Contents Meaning

0...7 (reserved) Ignore.

Message Segmentation 191

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

C.3 Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands:

• Receive (object specific, see “Command Details: Receive” on page 118)

• Receive From (object specific, see “Command Details: Receive_From” on page 119)

• Get_Configuration_Data (see “Command Details: Get_Configuration_Data” on page 170)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set

• In all subsequent segment, both FS and LS are cleared

• In the last segment, LS is set

• For single segment responses (i.e. size less or equal to 255 bytes), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Bit Contents Meaning

0 (reserved) (set to zero)

1

2 AB Set if the segmentation shall be aborted

3...7 (reserved) (set to zero)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) (set to zero)

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix D

D. Secure HICP (Secure Host IP Configuration
Protocol)

D.1 General

The module supports the Secure HICP protocol used by the Anybus IPconfig utility for changing set-
tings, e.g. IP address, Subnet mask, and enable/disable DHCP. Anybus IPconfig can be downloaded
free of charge from the HMS website, www.anybus.com. This utility may be used to access the network
settings of any Anybus product connected to the network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix E

E. Technical Specification

E.1 Front View

Ethernet Connector

Network Status LED

Note: A test sequence is performed on this LED during startup.

Module Status LED

Note: A test sequence is performed on this LED during startup.

LINK/Activity LED 3/4

Ethernet Interface

The Ethernet interface supports 10/100Mbit, full or half duplex operation.

Item

1 Network Status LEDa

a. Test sequences are performed on the Network and Module Status LEDs during
startup

2 Module Status LEDa

3 Link/Activity LED (port 1)

4 Link/Activity LED (port 2)

LED State Description

Off No power or no IP address

Green Online, one or more connections established (CIP Class 1 or 3)

Green, flashing Online, no connections established

Red Duplicate IP address, FATAL error

Red, flashing One or more connections timed out (CIP Class 1 or 3)

LED State Description

Off No power

Green Controlled by a Scanner in Run state

Green, flashing Not configured, or Scanner in Idle state

Red Major fault (EXCEPTION-state, FATAL error etc.)

Red, flashing Recoverable fault(s). Module is configured, but stored parameters differ from currently
used parameters.

LED State Description

Off No link, no activity

Green Link (100 Mbit/s) established

Green, flickering Activity (100 Mbit/s)

Yellow Link (10 Mbit/s) established

Yellow, flickering Activity (10 Mbit/s)

1 2

3 4

Technical Specification 194

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

E.2 Protective Earth (PE) Requirements

In order to ensure proper EMC behaviour, the module must be properly connected to protective earth
via the PE pad / PE mechanism described in the general Anybus CompactCom 40 Hardware Design
Guide.

HMS Industrial Networks does not guarantee proper EMC behaviour unless these PE requirements are
fulfilled.

E.3 Power Supply

Supply Voltage

The module requires a regulated 3.3V power source as specified in the general Anybus CompactCom 40
Hardware Design Guide.

Power Consumption

The Anybus CompactCom 40 EtherNet/IP is designed to fulfil the requirements of a Class B module.
For more information about the power consumption classification used on the Anybus CompactCom
40 platform, consult the general Anybus CompactCom 40 Hardware Design Guide.

The current hardware design consumes up to 360 mA1.

Note: It is strongly advised to design the power supply in the host application based on the power con-
sumption classifications described in the general Anybus CompactCom Hardware Design Guide, and
not on the exact power requirements of a single product.

E.4 Environmental Specification

Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

E.5 EMC Compliance

Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

1. Note that in line with HMS policy of continuous product development, we reserve the right to change the
exact power requirements of this product without prior notification. Note however that in any case, the
Anybus CompactCom 40 EtherNet/IP will remain as a Class B module.

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix F

F. Timing & Performance

F.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for the
Anybus CompactCom 40 EtherNet/IP.

The following timing aspects are measured:

For further information, please consult the Anybus CompactCom 40 Software Design Guide.

F.2 Internal Timing

F.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is released
to the point where the specified event occurs.

F.2.2 NW_INIT Handling

This test measures the time required by the Anybus CompactCom 40 EtherNet/IP module to perform
the necessary actions in the NW_INIT-state.

Category Parameters Page

Startup Delay T1, T2 195

NW_INIT Handling T100 195

Event Based WrMsg Busy Time T103 196

Event Based Process Data Delay T101, T102 196

Parameter Description Max. Unit.

T1 The Anybus CompactCom 40 EtherNet/IP module generates the first application inter-
rupt (parallel mode)

64 ms

T2 The Anybus CompactCom 40 EtherNet/IP module is able to receive and handle the
first application telegram (serial mode)

64 ms

Parameter Conditions

No. of network specific commands Max.

No. of ADIs (single UINT8) mapped to Process Data in each direction 32a

a. Or maximum amount in case the network specific maximum is less.

Event based application message response time > 1 ms

Ping-pong application response time > 10 ms

No. of simultaneously outstanding Anybus commands that the application can handle 1

Parameter Description Communication Max. Unit.

T100 NW_INIT handling Event based modes 58 ms

Timing & Performance 196

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

F.2.3 Event Based WrMsg Busy Time

The Event based WrMsg busy time is defined as the time it takes for the module to return the
H_WRMSG area to the application after the application has posted a message.

F.2.4 Event Based Process Data Delay

“Read process data delay” is defined as the time from when the last bit of the network frame has been
received by the network interface, to when the RDPDI interrupt is asserted to the application.

“Write process data delay” is defined as the time from when the application exchanges write process
data buffers, to when the first bit of the new process data frame is sent out on the network.

The test was run in 16-bit parallel event mode, with interrupts triggered only for new process data events.

The delay added by the PHY circuit has not been included, as this delay is insignificant compared to the
total process data delay.

Parameter Description Min. Max. Unit.

T103 H_WRMSG area busy time 6 9 μs

Parameter Descriptiona

a. Measured at an IO size of 32 bytes

Delay (min.) Delay (typ.) Delay (max.) Unit

T101 Read process data delay 45 50 84 μs

T102 Write process data delay 66 69 106 μs

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Read process data delay

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Write process data delay

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

Appendix G

G. Copyright Notices

lwIP is licenced under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software with-
out specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DA-
TA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

--

Print formatting routines

Copyright (C) 2002 Michael Ringgaard. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors may be used to endorse or promote prod-
ucts derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

Copyright Notices 198

Doc.Id. HMSI-27-212
Anybus CompactCom 40 EtherNet/IP
Doc.Rev. 1.5

MD5 routines

Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable
for any damages arising from the use of this software. Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restric-
tions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original soft-
ware. If you use this software in a product, an acknowledgment in the product documentation would be appre-
ciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the
original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch

ghost@aladdin.com

--

Copyright 2013 jQuery Foundation and other contributors

http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated doc-
umentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit per-
sons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE ANDNONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

--

rsvp.js

Copyright (c) 2013 Yehuda Katz, Tom Dale, and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated doc-
umentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit per-
sons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

	Important User Information
	Liability
	Intellectual Property Rights
	Trademark Acknowledgements

	Table of Contents
	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.4 Abbreviations
	P.5 Support

	1. About the Anybus CompactCom 40 EtherNet/IP
	1.1 General
	1.2 Features
	1.3 Beacon Based DLR (Device Level Ring)

	2. Basic Operation
	2.1 General Information
	2.1.1 Software Requirements

	2.2 Device Customization
	2.2.1 Network Identity
	2.2.2 Electronic Data Sheet (EDS)
	2.2.3 EtherNet/IP & CIP Implementation
	2.2.4 Web Interface
	2.2.5 Socket Interface (Advanced Users Only)
	2.2.6 Modular Device Functionality
	2.2.7 QuickConnect
	2.2.8 CIP Safety

	2.3 Communication Settings
	2.3.1 Communication Settings in Stand Alone Shift Register Mode

	2.4 Diagnostics
	2.5 Network Data Exchange
	2.5.1 Application Data
	2.5.2 Process Data
	2.5.3 Translation of Data Types

	2.6 File System
	2.6.1 Overview
	2.6.2 General Information
	2.6.3 System Files

	3. FTP Server
	3.1 General Information
	3.2 User Accounts
	3.3 Session Example

	4. Web Server
	4.1 General Information
	4.2 Default Web Pages
	4.2.1 Network Configuration
	4.2.2 Ethernet statistics page

	4.3 Server Configuration
	4.3.1 General Information
	4.3.2 Index Page
	4.3.3 Default Content Types
	4.3.4 Authorization

	5. E-mail Client
	5.1 General Information
	5.2 How to Send E-mail Messages

	6. Server Side Include (SSI)
	6.1 General Information
	6.2 Include File
	6.3 Command Functions
	6.3.1 General Information
	6.3.2 GetConfigItem()
	6.3.3 SetConfigItem()
	6.3.4 SsiOutput()
	6.3.5 DisplayRemoteUser
	6.3.6 ChangeLanguage()
	6.3.7 IncludeFile()
	6.3.8 SaveDataToFile()
	6.3.9 printf()
	6.3.10 scanf()

	6.4 Argument Functions
	6.4.1 General Information
	6.4.2 ABCCMessage()

	6.5 SSI Output Configuration

	7. JSON
	7.1 General Information
	7.2 JSON Objects
	7.2.1 ADI
	7.2.2 Module
	7.2.3 Network
	7.2.4 Services
	7.2.5 Hex Format Explained

	7.3 Example

	8. CIP Objects
	8.1 General Information
	8.2 Translation of Status Codes
	8.3 Identity Object (01h)
	8.4 Message Router (02h)
	8.5 Assembly Object (04h)
	8.6 Connection Manager (06h)
	8.7 Parameter Object (0Fh)
	8.8 DLR Object (47h)
	8.9 QoS Object (48h)
	8.10 Base Energy Object (4Eh)
	8.11 Power Management Object (53h)
	8.12 ADI Object (A2h)
	8.13 Port Object (F4h)
	8.14 TCP/IP Interface Object (F5h)
	8.15 Ethernet Link Object (F6h)

	9. Anybus Module Objects
	9.1 General Information
	9.2 Anybus Object (01h)
	9.3 Diagnostic Object (02h)
	9.4 Network Object (03h)
	9.5 Network Configuration Object (04h)
	9.6 Socket Interface Object (07h)
	9.7 SMTP Client Object (09h)
	9.8 Anybus File System Interface Object (0Ah)
	9.8.1 Examples

	9.9 Network Ethernet Object (0Ch)
	9.10 Functional Safety Module Object (11h)
	9.11 CIP Port Configuration Object (0Dh)

	10. Host Application Objects
	10.1 General Information
	10.2 Functional Safety Host Object (E8h)
	10.3 CIP Identity Host Object (EDh)
	10.1 Sync Object (EEh)
	10.2 EtherNet/IP Host Object (F8h)
	10.3 Ethernet Host Object (F9h)
	10.4 Application File System Interface Object (EAh)

	A. Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B. Implementation Details
	B.1 SUP-Bit Definition
	B.2 Anybus Statemachine
	B.3 Application Watchdog Timeout Handling

	C. Message Segmentation
	C.1 General
	C.2 Command Segmentation
	C.3 Response Segmentation

	D. Secure HICP (Secure Host IP Configuration Protocol)
	D.1 General

	E. Technical Specification
	E.1 Front View
	E.2 Protective Earth (PE) Requirements
	E.3 Power Supply
	E.4 Environmental Specification
	E.5 EMC Compliance

	F. Timing & Performance
	F.1 General Information
	F.2 Internal Timing
	F.2.1 Startup Delay
	F.2.2 NW_INIT Handling
	F.2.3 Event Based WrMsg Busy Time
	F.2.4 Event Based Process Data Delay

	G. Copyright Notices

