
HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
Web: www.anybus.com

Host Application Implementation Guide

Anybus® CompactCom
Doc.Id. HMSI-27-334

Doc. Rev. 1.10

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Preface About This Document

Related Documents...4

Document History ..4

Conventions & Terminology...4

Support..4

Glossary ..5

Chapter 1 Introduction

Overview...7

Preparations..8

Chapter 2 Step One

System Adaptation and Application Development..9

System Set-up...9
Big- or Little-endian.. 9
16-bit Char System... 9
Data Types ...10

Anybus CompactCom Set-up..10
Communication Interfaces and Operating Modes..10
Parallel Operating Mode Specifics..11
SPI Operating Mode Specifics ...12
Module ID and Module Detect Settings ..12
Message and Process Data Settings..12
Interrupt Handling ...13
Communication Watchdog Settings..13
ADI Settings..13
Debug Event Print Settings...13
Startup Time ..14
Sync Settings ...14

System Adaptation Functions ...14
General Functions...15
SPI Operating Mode...15
Parallel Operating Mode ...17
Serial Operating Mode ..18

Object Configuration..18

Example Application ..19
ADIs and Process Data Mapping ..19
Main Loop ...19
Compile and Run..21

Table of Contents

Table of Contents

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Chapter 3 Step Two

Adaptations and Customizations ..22
Anybus CompactCom Setup ...22
System Adaptation Functions ...25
Network Identification ..26
Software Platform Porting ...27
Example Application ...30

Appendix A Software Overview

Files and Folders ...40

Root Files..40

CompactCom Driver Interface (Read Only) ...40

Internal Driver Files (Read Only) ...41

System Adaptation Files ...42

Appendix B API

API Documentation ...43

Appendix C Host Application State Machine

About This Document 4

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documents

P.2 Document History

Summary of Recent Changes (1.00... 1.10)

Revision List

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘CompactCom’ refers to the Anybus CompactCom 40 device.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus device.

• Hexadecimal values are either written in the format NNNNh or the format 0xNNNN, where
NNNN is the hexadecimal value.

P.4 Support

For general contact information and technical support, please refer to the contact and support
pages at www.anybus.com.

Anybus CompactCom 40 Software Design Guide HMS

Anybus CompactCom 40 Hardware Design Guide HMS

Anybus CompactCom 40 Network Guides HMS

Change Page(s)
Revised document All

Revision Date Author Chapter(s) Description
1.00 2015-11-20 KaD All New Document

1.10 2016-02-05 KaD All Fully revised revision

About This Document 5

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

P.5 Glossary

Item Description
ADI Application Data Instance

For more information, see the Anybus CompactCom 40 Software Design Guide

API Application Programming Interface

Communication Interface The communication interface defines the way of communication in the code. Available
interfaces are Serial, Parallel 30, Parallel, SPI

Operating Mode The operating mode configured with the OM-pins in the host application interface.

Introduction 6

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Chapter 1

1. Introduction

When starting an implementation of the Anybus CompactCom 30 or the Anybus CompactCom 40, host
application example code is available to speed up the development process. The host application exam-
ple code includes a driver, which acts as glue between the Anybus CompactCom module and the host
application. The driver has an API (Application Programming Interface), which defines a common in-
terface to the driver. Also included in the example code is an example application which makes use of
the API to form a simple application that can be used as a base for the final product.

The driver is fully OS independent and it can even be used without an operating system, if required. Fur-
thermore, it can be used for Anybus CompactCom 30 modules as well as Anybus CompactCom 40
modules. The driver supports multiple operating modes, where selection of one of the implemented
modes can be made at runtime.

The host application example code is available in different versions for different platforms. When writ-
ing this guide, the platforms depicted below are available.

Each folder contains all files for a specific platform.

• Generic - Can be ported to any platform

• Xilinx, Zynq - Optimized for the MicroZed evaluation platform

• STMicroelectronics, STM32 - Optimized for the STM3240-EVAL evaluation platform

• Freescale - Optimized for the Freescale TWRP1025 evaluation platform

• Windows - Optimized for HMS starterkit hardware (USB board)

This guide is developed to describe a step-by-step implementation of the Anybus Compact-
Com driver and example application. The programmer is requested to have basic knowledge
in the Anybus CompactCom object model and the communication protocol before starting
the implementation. See “Related Documents” on page 4 for suggested reading.

The guide is divided into two steps:

Step One: The adaptations needed for the target hardware are done here and a simple appli-
cation is developed. The goal with this step is to make sure that the hardware specific code is
working and that it is possible to connect to the network and exchange a limited amount of
data.

Step Two: The code is adapted to the target product. The goal with this step is to customize
the code and add to it, to configure the data that will be sent on the network. The application
can then be extended further if needed.

Introduction 7

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

1.1 Overview

Parts of the driver code need to be adapted to the host application platform. This generally includes
functions which access the Anybus host interface, or functions which need to be adapted to integrate
the driver into the host system. The figure below shows the different parts of the host application
example code.

The host application example code is divided into five different folders depending on the functionality
and whether the files need to be adapted or not by the user.

• /abcc_abp (part of the driver - read only)

- Contains all Anybus object and communication protocol definitions.

- Files may be updated when new Anybus CompactCom 40 releases are available.

- These files are read only and must not be changed in any way by the user.

• /abcc_drv (part of the driver - read only)

- Contains source and header files for the driver.

- Files may be updated when new Anybus CompactCom 40 releases are available.

- These files are read only and must not be changed in any way by the user.

• /abcc_adapt

- Contains configuration files.

- These files must be modified by the user to adapt the driver and the example code to the sys-
tem environment. Note: If using example code adjusted to a specific platform, most of the
adaptations needed in this folder are already completed.

• /abcc_obj

- Includes all Anybus host application object implementations.

- These files can be modified if needed, for optimization and/or additional features.

• /example_app

Example application including:

- Main state machine to handle initialization, restart, normal and error states.

- State machine patterns to show how to send Anybus CompactCom messages.

- Implementation of callbacks required by the driver.

- Definition of ADIs, Application Data Instances, and default process data mapping setup.

- These files have to be adapted to the application by the programmer. Additionally they may
be modified for optimization and/or additional features.

API

Introduction 8

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

1.2 Preparations

Before continuing, try to answer as many of the questions below as possible. This will make the later
decisions during implementation easier. It is also good to have access to the hardware schematics of the
target hardware during the implementation.

Step One

Consider the following questions:

• What operating mode, or modes, i.e. interfaces to the Anybus CompactCom, shall be used in the
design?

• What networks shall be used in the design?

• Are the networks available in the CompactCom 40 series or is there also a need to use Compact-
Com 30 series modules?

• Are the Module Identification pins connected to the host processor?

• Are the Module Detection pins connected to the host processor?

Step Two

Consider the following questions:

• Is the interrupt signal implemented in the hardware?

• What parameters/data shall be communicated on the network in the final product?

- Name

- Data Type

- Length

- Read/Write access

- Acyclic access, Cyclic access

- Max/Min/Default

• Which events (diagnostics) shall be reported on the network?

• What network identification parameters are available? E.g. Vendor ID, Product Code, Id number
etc.

Step One 9

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Chapter 2

2. Step One

2.1 System Adaptation and Application Development

When this step is completed you have...

• ...implemented the system specific functions needed to communicate with the Anybus Compact-
Com.

• ...compiled the host application example code with default settings.

• ...exchanged data between the host application and the network master/scanner.

2.2 System Set-up

These defines can be found in abcc_adapt/abcc_td.h.

General settings for the system environment, to be used in the driver, are configured here.

2.2.1 Big- or Little-endian

Configure if the host application is a big-endian system or a little-endian system. Define the ABCC_SYS-
_BIG_ENDIAN if it is a big-endian system. Do not define (leave as default) if the host application is a little-
endian system.

#define ABCC_SYS_BIG_ENDIAN /* Big-endian host application */

/* #define ABCC_SYS_BIG_ENDIAN */ /* Little-endian host application */

2.2.2 16-bit Char System

Configure if the host application is a 16-bit char system or an 8-bit char system (i.e. if the smallest ad-
dressable type is 8-bit or 16-bit). Define the ABCC_SYS_16BIT_CHAR if it is a 16-bit char system. Do not
define (leave as default) if it is an 8-bit char system. Configuring of 16-bit char for an 8-bit char system
is not recommended.

#define ABCC_SYS_16_BIT_CHAR /* 16 bit char system */

/* #define ABCC_SYS_16_BIT_CHAR */ /* 8 bit char system */

Step One 10

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.2.3 Data Types

Define the Data Types for the current system. For 16-bit char systems, all 8-bit types shall be typed to
16-bit types. The following data types must be defined:

• BOOL Standard boolean data type.

• BOOL8 Standard boolean data type, 8-bit.

• INT8 Standard signed 8-bit data type.

• INT16 Standard singed 16-bit data type.

• INT32 Standard signed 32-bit data type.

• UINT8 Standard unsigned 8-bit data type.

• UINT16 Standard unsigned 16-bit data type.

• UINT32 Standard unsigned 32-bit data type.

• FLOAT32 Float (according to IEC 60559).

2.3 Anybus CompactCom Set-up

These defines and functions are found in abcc_adapt/abcc_drv_cfg.h. Detailed read-only descrip-
tions are available in abcc_drv/inc/abcc_cfg.h

Settings for how to use and communicate with the Anybus CompactCom. Operating mode, interrupt
handling, memory handling etc., are configured here.

2.3.1 Communication Interfaces and Operating Modes

Define the communication interfaces and the operating mode between the host application and the
CompactCom (Parallel, SPI, Serial), that will be used in the implementation. There are several possibil-
ities to set the operating mode depending on how the host application is intended to communicate with
the Anybus and also depending on how the operating mode is selected by the user.

• First, define all communication interfaces that will be supported by the implementation. All in-
terfaces that will be used must be defined here, otherwise an error will be reported later on. Only
define the interfaces that will really be used, since every enabled interface will increase the com-
piled code size.

Only for 40-series.
#define ABCC_CFG_DRV_PARALLEL (TRUE) /* Parallel, 8/16-bit, event mode */

#define ABCC_CFG_DRV_SPI (FALSE) /* SPI */

For both 30-series and 40-series.
#define ABCC_CFG_DRV_SERIAL (FALSE) /* Serial */

#define ABCC_CFG_DRV_PARALLEL_30(TRUE) /* Parallel, 8-bit, half duplex */

ABCC_CFG_DRV_SERIAL and ABCC_CFG_DRV_PARALLEL_30 are only recommended for imple-
mentations with the Anybus CompactCom 30-series. Not recommended for new designs with
the Anybus CompactCom 40-series.

Step One 11

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• Get the operating mode from external hardware - If the operating mode is set e.g. via a dip-
switch connected to the host application processor or via an HMI controller, define the ABC-
C_CFG_OP_MODE_GETTABLE and implement the function ABCC_SYS_GetOpmode() in abcc_-
adapt/abcc_sys_adapt.c.

#define ABCC_CFG_OP_MODE_GETTABLE (TRUE)

If not defined, the operating mode defines must be explicitly defined for the specific module
type. (See ABCC_CFG_ABCC_OP_MODE_30 and ABCC_CFG_ABCC_OP_MODE_40 on page 11).

• If the operating mode pins on the CompactCom host connector can be controlled by the host
processor, define ABCC_CFG_OP_MODE_SETTABLE and implement the function
ABCC_SYS_SetOpmode() in abcc_adapt/abcc_sys_adapt.c.

#define ABCC_CFG_OP_MODE_SETTABLE (TRUE)

If not defined, it is assumed that the operating mode signals of the CompactCom host connector
are fixed or controlled by external hardware, e.g. a dip-switch.

• If only one operating mode per module type (CompactCom 30 and CompactCom 40) is used,
define the operating mode with ABCC_CFG_ABCC_OP_MODE_30 and ABCC_CFG_ABCC_OP_-
MODE_40. The available operating modes (ABP_OP_MODE_X) can be found in abcc_abp/abp.h.

#define ABCC_CFG_ABCC_OP_MODE_30 ABP_OP_MODE_8_BIT_PARALLEL

#define ABCC_CFG_ABCC_OP_MODE_40 ABP_OP_MODE_16_BIT_PARALLEL

If none of these defines are set, ABCC_SYS_GetOpmode() must be implemented to retrieve the
operating mode from external hardware. See ABCC_CFG_OP_MODE_GETTABLE on page 11.

2.3.2 Parallel Operating Mode Specifics

If parallel operating mode (8-bit or 16-bit) is not used, this section can be ignored.

If direct access to the CompactCom memory is available (the host controller provides dedicated signals
to access external SRAM), define ABCC_CFG_MEMORY_MAPPED_ACCESS to TRUE and define the base ad-
dress with ABCC_CFG_PARALLEL_BASE_ADR (this address must be defined to suit the host platform).

#define ABCC_CFG_MEMORY_MAPPED_ACCESS (TRUE)

#define ABCC_CFG_PARALLEL_BASE_ADR (0x00000000)

If direct access to the CompactCom memory is not available, several functions to read and write data
must be implemented in abcc_adapt/abcc_sys_adapt.c (described in abcc_drv/inc/abcc_sys_-
adapt_par.h). See “Parallel Operating Mode” on page 17

The recommendation is to have direct access to the CompactCom memory if possible for a
simpler and most often faster implementation.

Step One 12

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.3.3 SPI Operating Mode Specifics

Only for 40-series. If SPI operating mode is not used, this section can be ignored.

The length of an SPI message fragment in bytes per SPI transaction is defined with
ABCC_CFG_SPI_MSG_FRAG_LEN.

If the ABCC_CFG_SPI_MSG_FRAG_LEN value is less than the largest message to be transmitted, the sending
or receiving of a message may be fragmented and take several SPI transactions to be completed. Each
SPI transaction will have a message field of this length regardless if a message is present or not. If mes-
sages are important the fragment length should be set to the largest message to avoid fragmentation. If
IO data are important the message fragment length should be set to a smaller value to speed up the SPI
transaction.

For high message performance a fragment length up to 1524 octets is supported. The message header
is 12 octets, so 16 or 32 octets will be enough to support small messages without fragmentation.

#define ABCC_CFG_SPI_MSG_FRAG_LEN (16)

2.3.4 Module ID and Module Detect Settings

• If the Module Identification pins (MI) on the CompactCom host connector are not connected
to the host processor, ABCC_CFG_ABCC_MODULE_ID must be defined to the correct CompactCom
module ID that corresponds to the module ID of the used device. If defined, it shall be set to
the correct ABP_MODULE_ID_X definition from abcc_abp/abp.h.

If not defined, the function ABCC_SYS_ReadModuleId() in abcc_adapt/abcc_sys_adapt.c
must be implemented.

/* #define ABCC_CFG_ABCC_MODULE_ID ABP_MODULE_ID_ACTIVE_ABCC40 */

• If the Module Detect pins (MD) in the host application connector are connected to the host pro-
cessor, the ABCC_CFG_MOD_DETECT_PINS_CONN shall be set to TRUE and the ABCC_SYS_Module-
Detect() function in abcc_adapt/abcc_sys_adapt.c must be implemented.
#define ABCC_CFG_MOD_DETECT_PINS_CONN (TRUE)

2.3.5 Message and Process Data Settings

Leave the following defines with the default values for now. For more information, see “Step Two” on
page 22.

#define ABCC_CFG_MAX_NUM_APPL_CMDS (2)

#define ABCC_CFG_MAX_NUM_ABCC_CMDS (2)

#define ABCC_CFG_MAX_MSG_SIZE (255)

#define ABCC_CFG_MAX_PROCESS_DATA_SIZE (512)

#define ABCC_CFG_REMAP_SUPPORT_ENABLED (FALSE)

The recommendation is to connect the Module ID pins on the application connector directly
to GPIO-pins on the host processor and implement the ABCC_SYS_ReadModuleId() func-
tion.

Step One 13

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.3.6 Interrupt Handling

If the IRQ pin is connected the driver can be configured to check if an event has occurred even if the
interrupt is disabled. It can be used e.g. to detect the CompactCom power up event. Define ABCC_CF-
G_POLL_ABCC_IRQ_PIN to enable this functionality, and implement the function ABCC_SYS_IsAbccIn-
terruptActive() in abcc_adapt/abcc_sys_adapt.c.

#define ABCC_CFG_POLL_ABCC_IRQ_PIN (TRUE)

In this step, we will not use the interrupt functionality, which means that we will define ABCC_CF-
G_INT_ENABLED as FALSE. For more information, see “Step Two” on page 22.

If the IRQ pin is not connected, this define must be set to false.

#define ABCC_CFG_INT_ENABLED (FALSE)

2.3.7 Communication Watchdog Settings

The timeout for the CompactCom communication watchdog is configured with ABCC_CFG_WD_TIME-
OUT_MS. If a timeout occurs, the callback function ABCC_CbfWdTimeout() is called.

#define ABCC_CFG_WD_TIMEOUT_MS (1000)

2.3.8 ADI Settings

Leave the following defines with the default values for now. For more information, see “Step Two” on
page 22.

#define ABCC_CFG_STRUCT_DATA_TYPE (FALSE)

#define ABCC_CFG_ADI_GET_SET_CALLBACK (FALSE)

#define ABCC_CFG_64BIT_ADI_SUPPORT (FALSE)

2.3.9 Debug Event Print Settings

For development purposes, a number of debug functions are available for the developer. The following
defines affects debug printouts from the driver. If additional printouts are needed from the application
code, use the ported function ABCC_PORT_DebugPrint() in abcc_adapt/abcc_sw_port.h.

• Enable or disable the error reporting callback function ABCC_CbfDriverError() with ABC-
C_CFG_ERR_REPORTING_ENABLED. The function is described in abcc_drv/inc/abcc.h.
#define ABCC_CFG_ERR_REPORTING_ENABLED (TRUE)

• Enable or disable driver support for print out of debug events within the driver with ABCC_CF-
G_DEBUG_EVENT_ENABLED. ABCC_PORT_DebugPrint() in abcc_adapt/abcc_sw_port.h will be
used to print debug information.
#define ABCC_CFG_DEBUG_EVENT_ENABLED (TRUE)

NOTE: Currently the watchdog functionality is only supported by the SPI-, serial- and
parallel30 (half duplex) operating modes.

Step One 14

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• Enable or disable printout of debug information, such as file name and line number, when ABC-
C_CbfDriverError() is called with ABCC_CFG_DEBUG_ERR_ENABLED.
#define ABCC_CFG_DEBUG_ERR_ENABLED (TRUE)

• Enable or disable printout of received and sent messages with ABCC_CFG_DEBUG_MESSAGING. Re-
lated events such as buffer allocation and queuing information is also printed.
#define ABCC_CFG_DEBUG_MESSAGING (FALSE)

2.3.10 Startup Time

If the CompactCom IRQ pin is connected, ABCC_CFG_STARTUP_TIME_MS will be used as a timeout while
waiting for the CompactCom to become ready for communication. An error will be reported if the start-
up interrupt is not received within this time. If the interrupt pin is not available ABCC_CFG_STARTUP_-
TIME_MS will serve as time to wait before starting to communicate with the CompactCom. If not defined,
the default value is 1500 ms.

#define ABCC_CFG_STARTUP_TIME_MS (1500)

2.3.11 Sync Settings

Only for 40-series.

Leave the following defines with the default values for now. For more information, see “Step Two” on
page 22.

#define ABCC_CFG_SYNC_ENABLE (FALSE)

#define ABCC_CFG_SYNC_MEASUREMENT_IP (FALSE)

#define ABCC_CFG_SYNC_MEASUREMENT_OP (FALSE)

2.4 System Adaptation Functions

A number of functions must be implemented for the driver to be able to access the Anybus Compact-
Com. The functions shall be implemented in abcc_adapt/abcc_sys_adapt.c. The functions are de-
scribed per operating mode in the files specified below.

• General functions: abcc_drv/inc/abcc_sys_adapt.h

• SPI operating mode: abcc_drv/inc/abcc_sys_adapt_spi.h

• Parallel operating mode: abcc_drv/inc/abcc_sys_adapt_par.h

• Serial operating mode: abcc_drv/inc/abcc_sys_adapt_ser.h

If possible, the recommendation is to use the startup interrupt.

Step One 15

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.4.1 General Functions

These functions can be found in abcc_drv/inc/abcc_sys_adapt.h.

ABCC_SYS_HwInit()

This function can be used to initiate the hardware required to communicate with the CompactCom de-
vice (e.g. configuring the direction and initial values of used host processor port pins). This function shall
be called once during the power up initialization.

Note: Make sure that the CompactCom is kept in reset when returning from this function.

ABCC_SYS_Init()

This function is called by the driver at start-up and restart of the driver (see ABCC_StartDriver() in
“API Functions” on page 43 for more information). If needed, any hardware or system dependent ini-
tialization shall be done here. If not used, leave the function empty.

ABCC_SYS_Close()

Called from the driver if the driver is terminated (see ABCC_ShutDown() in “API Functions” on page 43
for more information). If resources were allocated in ABCC_SYS_Init() it is recommended to close or
free them in this function. If not used, leave the function empty.

ABCC_SYS_HWReset()

This function must be implemented to pull the reset pin on the Anybus CompactCom interface to low.

ABCC_SYS_HWReleaseReset()

This function must be implemented to set the reset pin on the Anybus CompactCom interface to high.

ABCC_SYS_AbccInterruptEnable()

For now, interrupt will be disabled. Leave this function empty for now.

ABCC_SYS_AbccInterruptDisable()

For now, interrupts will be disabled. Leave this function empty for now.

ABCC_SYS_IsAbccInterruptActive()

If the interrupt pin (IRQ) is connected to the host processor, this function shall read the interrupt signal
from the CompactCom and return TRUE if the interrupt pin is low (i.e. interrupt is active). It is used to
enable polling of the interrupt pin of the CompactCom interface if interrupts are not enabled.

2.4.2 SPI Operating Mode

Only for 40-series. If SPI operating mode is not used, the functions below are never called, and
this section can be ignored.

These functions can be found in abcc_drv/inc/abcc_sys_adapt_spi.h.

Step One 16

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

ABCC_SYS_SpiRegDataReceived()

Registers the callback function that shall be called when new data is received (MISO received).

ABCC_SYS_SpiSendReceive()

Handles sending and receiving of data in SPI mode.

Step One 17

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.4.3 Parallel Operating Mode

These functions can be found in abcc_drv/inc/abcc_sys_adapt_par.h.

If parallel operating mode is not used, the functions below are never called, and this section can
be ignored.

If parallel operating mode is used and ABCC_CFG_MEMORY_MAPPED_ACCESS is defined, this section
can be ignored. See “Parallel Operating Mode Specifics” on page 11 for more information about
ABCC_CFG_MEMORY_MAPPED_ACCESS.

ABCC_SYS_ParallelRead()

Reads an amount of octets from the CompactCom memory.

ABCC_SYS_ParallelRead8()

Only used for half duplex parallel operating mode.

Reads an octet from the CompactCom memory.

ABCC_SYS_ParallelRead16()

Reads a word from the CompactCom memory.

ABCC_SYS_ParallelWrite()

Writes an amount of octets to the CompactCom memory.

ABCC_SYS_ParallelWrite8()

Only used for half duplex parallel operating mode.

Writes an octet to the CompactCom memory.

ABCC_SYS_ParallelWrite16()

Writes a word to the CompactCom memory.

ABCC_SYS_ParallelGetRdPdBuffer()

Get the address to the received read process data.

ABCC_SYS_ParallelGetWrPdBuffer()

Get the address to store the write process data.

Step One 18

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.4.4 Serial Operating Mode

These functions can be found in abcc_drv/inc/abcc_sys_adapt_ser.h.

If serial operating mode is not used, the functions below are never called, and this section can
be ignored.

ABCC_SYS_SerRegDataReceived()

Registers a callback function that shall indicate that a new RX telegram has been received on the serial
channel.

ABCC_SYS_SerSendReceive()

Send TX telegram and prepare for RX telegram reception.

ABCC_SYS_SerRestart()

Restart the serial driver. Typically used when a telegram has timed out.

2.5 Object Configuration

For this step, the default settings in the CompactCom will be used. No host application objects are en-
abled in the file abcc_adapt/abcc_obj_cfg.h.

In “Step Two” on page 22, the network identification attributes will be customized to fit the target prod-
uct.

Step One 19

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.6 Example Application

An API layer that defines a common interface for all network applications to the Anybus CompactCom
driver is available. The API is found in abcc_drv/inc/abcc.h. See “API” on page 43 for more infor-
mation. The example application is provided to give an example of how a standard application imple-
ments the CompactCom driver using the API. It can be used as it is to be able to test the CompactCom
concept and can also be used as a base when implementing the driver into the final application.

For step 1, no changes in the example application are needed.

2.6.1 ADIs and Process Data Mapping

Process data is an integral part of the application. Process data is added to the application by creating
ADIs (Application Data Instances) and mapping them to the desired process data areas (read or write).

For now, the mapping described in appl_adimap_simple16.c shall be used. This means that
APPL_ACTIVE_ADI_SETUP in /example_app/appl_adi_config.h is defined as
APPL_ADI_SETUP_SIMPLE_16.

• example_app/appl_adimap_simple16.c - This map loops 32 16-bit words.

- ADI 1: 32 element array of UINT16

- ADI 2: 32 element array of UINT16

- The ADIs are mapped in each direction.

- The data is looped since both ADIs refer to the same data place holder.

- No structures or callbacks are used.

2.6.2 Main Loop

The main loop is where the execution of the application starts. In the generic project, it is located in the
file named main.c. Below are some guidelines how to implement the main loop.

• ABCC_HwInit() - this function will initiate the hardware required to communicate with the Com-
pactCom, and shall be called once during the power-up initialization. It must also make sure that
the CompactCom is kept in reset when returning from the function. The driver can be restarted
without calling this function again. ABCC_HwInit() will trigger the function ABCC_SYS_HwIn-
it() in abcc_adapt/abcc_sys_adapt.c, which shall be customized to fit the current system.
Make sure this function is one of the first functions called in the main function.

Step One 20

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• APPL_HandleAbcc() - This function will run the CompactCom state machine and take care of
reset, run, and shutdown of the driver, and it must be called periodically from the main loop. A
status from the CompactCom driver is returned every time this function is called.

APPL_MODULE_NO_ERROR The CompactCom is OK. This is the normal
response if everything is running normal.

APPL_MODULE_NOT_DETECTED No CompactCom is detected. Inform the user.

APPL_MODULE_NOT_SUPPORTED Unsupported module detected. Inform the user.

APPL_MODULE_NOT_ANSWERING Possible reasons: Wrong API selected, defect
module.

APPL_MODULE_RESET Reset requested from the CompactCom. A reset
is received from the network. The application
is responsible for restarting the system.

APPL_MODULE_SHUTDOWN Shutdown requested

APPL_MODULE_UNEXPECTED_ERROR Unexpected error occurred. Inform the user.
If necessary, put the outputs in a fail-safe
state.

See “Host Application State Machine” on page 46 for more information.

• ABCC_RunTimerSystem() - This function shall be called periodically with a known period (ms
since last call). This can be done either by having a known delay in the main loop and call the
function each iteration, or by setting up a timer interrupt.
This function is responsible for handling all timers for the CompactCom driver. It is recom-
mended to call this function on a regular basis from a timer interrupt. Without this function no
timeout and watchdog functionality will work.

int main()
{

APPL_AbccHandlerStatusType eAbccHandlerStatus = APPL_MODULE_NO_ERROR;

if(ABCC_HwInit() != ABCC_EC_NO_ERROR)
{

return(0);
}
while(eAbccHandlerStatus == APPL_MODULE_NO_ERROR)
{

eAbccHandlerStatus = APPL_HandleAbcc();
#if(!USE_TIMER_INTERRUPT)

ABCC_RunTimerSystem(APPL_TIMER_MS);
DelayMs(APPL_TIMER_MS);

#endif
switch(eAbccHandlerStatus)
{

case APPL_MODULE_RESET:
Reset();
break;

default:
break;

}
}

return(0);
}

Tip: It is recommended to use a timer interrupt with this function. However, for easier debug-
ging when implementing, skip the timer interrupt in the beginning.

Step One 21

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

2.6.3 Compile and Run

To compile the project, update the make-file to include all the Anybus CompactCom 40 example code
(all of the five folders described here) and compile.

• /abcc_abp

• /abcc_drv

• /abcc_adapt

• /abcc_obj

• /example_app

Before continuing to Step Two, make sure

• The project compiles without errors

• The host application can communicate with the Anybus CompactCom

• Data can be exchanged with the network

Step Two 22

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Chapter 3

3. Step Two

3.1 Adaptations and Customizations

When this step is completed you have…

• …customized the network identification, e.g. Vendor ID, Product Code, Product Name, etc.

• …created ADI:s for the target product.

• …mapped the ADI:s that shall be exchanged cyclically to process data.

3.1.1 Anybus CompactCom Setup

In Step One, some Anybus CompactCom settings were left at default values. We will revisit some of
those values here.

Message and Process Data Settings

• The number of message commands that can be sent without receiving a response is configured
with ABCC_CFG_MAX_NUM_APPL_CMDS. At least 2 buffers are required by the driver. Increasing
this value will of course increase the possible number of message commands, but it will also con-
sume more RAM memory. For more information about sending messages, see “Message Han-
dling” on page 37.
#define ABCC_CFG_MAX_NUM_APPL_CMDS (2)

• The number of message commands that can be received without sending a response is config-
ured with ABCC_CFG_MAX_NUM_ABCC_CMDS. At least 2 buffers are required by the driver. Increas-
ing this value will of course increase the possible number of message commands, but it will also
consume more RAM memory.
#define ABCC_CFG_MAX_NUM_ABCC_CMDS (2)

• The size of the largest message in bytes that will be used is configured with ABCC_CFG_MAX-
_MSG_SIZE.

#define ABCC_CFG_MAX_MSG_SIZE (1524)

• The maximum size of the process data in bytes that will be used in either direction is configured
with ABCC_CFG_MAX_PROCESS_DATA_SIZE. The maximum size is dependent on the type of net-
work that is used. See the corresponding network guide for the networks to be used.
#define ABCC_CFG_MAX_PROCESS_DATA_SIZE (512)

Anybus CompactCom 30 supports 255 bytes messages and Anybus CompactCom 40 supports
1524 bytes messages. ABCC_CFG_MAX_MSG_SIZE should be set to largest size that will be sent
or received. If this size is not known it recommended to set the maximum supported size.

Step Two 23

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• Enable or disable driver and Application Data object support for the remap command with ABC-
C_CFG_REMAP_SUPPORT_ENABLED. If TRUE the ABCC_CbfRemapDone() needs to be implemented
by the application. The function is described in abcc_drv/inc/abcc.h.
#define ABCC_CFG_REMAP_SUPPORT_ENABLED (FALSE)

Interrupt Handling

The Anybus CompactCom driver can be used either with the interrupt functionality enabled or disabled.

• Define if the CompactCom IRQ pin shall be used along with an interrupt routine by defining
ABCC_CFG_INT_ENABLED. The IRQ pin can be used in both parallel mode and SPI mode. The
function ABCC_ISR() shall be called from inside the CompactCom interrupt routine. If the in-
terrupt is flank triggered, the interrupt shall be acknowledged before ABCC_ISR() is called.
#define ABCC_CFG_INT_ENABLED (FALSE)

• If parallel mode is not used, this define can be ignored. Configure which interrupts that shall
be enabled when using parallel mode with the ABCC_CFG_INT_ENABLE_MASK_PAR define. The
available options are defined in abcc_abp/abp.h (INT MASK Register). If an event is not noti-
fied via the CompactCom interrupt, it must be polled by the driver function ABCC_RunDriver()
(called by example_app/APPL_HandleAbcc()). If not defined, the default mask is 0.
#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDPDIEN | ABP_INTMASK_STA-
TUSIEN | ABP_INTMASK_RDMSGIEN | ABP_INTMASK_WRMSGIEN | ABP_INTMASK_ANBRIEN)

• ABCC_CFG_HANDLE_INT_IN_ISR_MASK defines what interrupt events for the Anybus Compact-
Com that are handled in interrupt context. Events that are enabled in the interrupt enable mask
(ABCC_CFG_INT_ENABLE_MASK_X) but not configured to be handled by the ISR will be translated
to a bit field of ABCC_ISR_EVENT_X definitions (defined in abcc_drv/inc/abcc.h) and forward-
ed to the user via the ABCC_CbfEvent() callback. Only applicable for parallel 8/16-bit operating
mode.

If not defined, the value will be 0, i.e. no events are handled by the ISR.
#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDPDIEN)

See “Event Handling” on page 35 for more information.

Step Two 24

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

ADI Settings

• Enable ADI-support for structured data types with ABCC_CFG_STRUCT_DATA_TYPE. This define
will affect the AD_AdiEntryType in abcc_drv/inc/abcc_ad_if.h, used for defining the user
ADI:s. If defined, the required memory usage will increase, i.e. it should only be defined if struc-
tured data types are needed.
#define ABCC_CFG_STRUCT_DATA_TYPE (FALSE)

• Enable or disable driver support for triggering of callback notifications each time an ADI is read
or written with ABCC_CFG_ADI_GET_SET_CALLBACK. This define will affect the AD_AdiEntry-
Type in abcc_drv/inc/abcc_ad_if.h, used for defining the user ADI:s. If an ADI is read by
the network the callback is invoked before the action. If an ADI is written by the network the
callback is invoked after the action. See “Process Data Callbacks” on page 34.
#define ABCC_CFG_ADI_GET_SET_CALLBACK (FALSE)

• Enable or disable support for 64-bit data types in the Application Data object with ABCC_CF-
G_64BIT_ADI_SUPPORT.
#define ABCC_CFG_64BIT_ADI_SUPPORT (FALSE)

Sync Settings

Only for 40-series.

• Enable or disable driver support for sync. If TRUE, the abcc_CbfSyncIsr() must be implement-
ed by the application.
#define ABCC_CFG_SYNC_ENABLE (FALSE)

If sync is not used or if the code is compiled for release, the following defines shall be disabled.

The sync measurement functions are used to measuring the input processing time and the output pro-
cessing time used in a sync application.

• Enable or disable driver support for measurement of input processing time (used for sync) with
ABCC_CFG_SYNC_MEASUREMENT_IP. This define is used during development by activating it and
compiling special test versions of the product. When ABCC_CFG_SYNC_MEASUREMENT_IP is TRUE
ABCC_SYS_GpioReset() is called when the WRPD has been sent. If running in SPI operating
mode it is instead called when ABCC_SpiRunDriver() has finished sending data to the Anybus.
When ABCC_CFG_SYNC_MEASUREMENT_IP is TRUE, ABCC_GpioSet() needs to be called at the
Input Capture Point.
#define ABCC_CFG_SYNC_MEASUREMENT_IP (FALSE)

• Enable or disable driver support for measurement of output processing time (used for sync) with
ABCC_CFG_SYNC_MEASUREMENT_OP. This define is used during development by activating it and
compiling special test versions of the product. When ABCC_CFG_SYNC_MEASUREMENT_OP is
TRUE, ABCC_SYS_GpioSet() is called from the RDPDI interrupt. When ABCC_CFG_SYN-
C_MEASUREMENT_OP is TRUE ABCC_GpioReset() needs to be called at the Output Valid Point.
#define ABCC_CFG_SYNC_MEASUREMENT_OP (FALSE)

Step Two 25

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

3.1.2 System Adaptation Functions

These functions can be found in abcc_adapt/abcc_sys_adapt.c.

If interrupts will be used in Step Two, implement the following functions.

• ABCC_SYS_AbccInterruptEnable()

Enable the CompactCom HW interrupt (IRQ_N pin on the application interface). This function
will be called by the driver when the CompactCom interrupt shall be enabled.

If ABCC_CFG_INT_ENABLED is not defined, this function does not need to be implemented.

• ABCC_SYS_AbccInterruptDisable()

Disable CompactCom HW interrupt (IRQ_N pin on the application interface).

If ABCC_CFG_INT_ENABLED is not defined, this function does not need to be implemented.

Step Two 26

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

3.1.3 Network Identification

So far, all network settings have been left disabled, and the product has identified itself as an HMS prod-
uct. Now it is time to customize the network identification settings.

Host Application Objects - Networks

Define the networks to be supported by the implementation by defining their respective host application
object in the file abcc_adapt/abcc_obj_cfg.h. Further implementations of the host application ob-
jects are done in the abcc_obj folder where each object has its own c- and h-files.

Example:

#define PRT_OBJ_ENABLE (TRUE)
#define EIP_OBJ_ENABLE (FALSE)
#define EPL_OBJ_ENABLE (TRUE)

The identity related attributes for each enabled network object are parameters that must be set by the
application. They are all related to how the device is identified on the network. If the attribute is enabled
(TRUE), the value will be used. If the attribute is disabled (FALSE), the attribute's default value will be used.
These settings can be found in abcc_adapt/abcc_identification.h.

Example:

/*--

** Ethernet Powerlink (0xE9)

**--

*/

#if EPL_OBJ_ENABLE

/*

** Attribute 1: Vendor ID (UINT32 - 0x00000000-0xFFFFFFFF)

*/

#define EPL_IA_VENDOR_ID_ENABLE TRUE
#define EPL_IA_VENDOR_ID_VALUE 0xFFFFFFFF

/*

** Attribute 2: Product Code type (UINT32 - 0x00000000-0xFFFFFFFF)

*/

#define EPL_IA_PRODUCT_CODE_ENABLE TRUE
#define EPL_IA_PRODUCT_CODE_VALUE 0xFFFFFFFF

It is also possible to define a function instead of a constant to generate the value. The serial
number is a good example of where a function would be suitable. In the example below, the
serial number is set during production in a specific memory area, and here the same number is
fetched:

extern char* GetSerialNumberFromProductionArea(void);

#define PRT_IA_IM_SERIAL_NBR_ENABLE TRUE
#define PRT_IA_IM_SERIAL_NBR_VALUE GetSerialNumberFromProductionArea()

Step Two 27

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Host Application Objects - Other

In abcc_adapt/abcc_obj_cfg.h, define all other host application objects that shall be supported by
the implementation.

Example:

#define ETN_OBJ_ENABLE TRUE
#define SYNC_OBJ_ENABLE FALSE

Host Application Objects - Advanced

The file abcc_adapt/abcc_obj_cfg.h contains all attributes for all supported host objects, except for
those already defined in abcc_adapt/abcc_identification.h. All attributes in this file are disabled
by default. Network specific services are labelled "not supported" by default, and if desired they need to
be implemented in the application.

3.1.4 Software Platform Porting

These functions can be found in abcc_adapt/abcc_sw_port.h.

The driver uses a number of functions, like memory copying functions, print functions, and functions
for critical sections, which can be optimized for the current software platform. These functions can be
found in the file abcc_adapt/abcc_sw_port.h (described in abcc_drv/inc/abcc_port.h). The de-
fault example code can be used as-is, but it should be optimized (recommended) for the desired platform
later in the implementation project.

ABCC_PORT_DebugPrint()

Used by the driver for debug prints such as events or error debug information. If not defined the driver
will be silent. Debug prints can e.g. be sent to a serial terminal or be saved to a logfile.

The file abcc_adapt/abcc_platform_cfg.h can be used to override defines for objects and
attributes in the files abcc_adapt/abcc_obj_cfg.h and abcc_adapt/abcc_identifica-
tion.h.

To override a define, just add the desired defines to the abcc_adapt/abcc_platform_cfg.h
file.

If not used, leave the file empty.

Step Two 28

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Critical Section Functions

Critical sections are used when there is a risk of resource conflicts or race conditions between Compact-
Com interrupt handler context and the application thread.

Three macros are used to implement the critical sections:

• ABCC_PORT_UseCritical()

• ABCC_PORT_EnterCritical()

• ABCC_PORT_ExitCritical()

Depending on the configuration of the driver there are different requirements on the critical section im-
plementation. Please choose the most suitable implementation from the numbered list below. The first
statement that is true will choose the requirement.

1. All three macros need to be implemented if any of the statements below are true.

- Any message handling is done within interrupt context.

Requirements:

- The implementation must support that a critical section is entered from interrupt context.
ABCC_PORT_UseCritical() should be used for any declarations needed in advance by
ABCC_PORT_EnterCritical().

- When entering the critical section the required interrupts i.e. any interrupt that may lead to
driver access, must be disabled. When leaving the critical section the interrupt configuration
must be restored to the previous state.

2. ABCC_PORT_EnterCritical() and ABCC_PORT_ExitCritical() need to be implemented if
any of the statements below are true.

- ABCC_RunTimerSystem() is called from a timer interrupt.

- The application is accessing the CompactCom driver message interface from different pro-
cesses or threads without protecting the message interface on a higher level (semaphores or
similar).

Requirement:

- When entering the critical section the required interrupts i.e. any interrupt that may lead to
driver access, must be disabled. When leaving the critical section the interrupts must be ena-
bled again.

3. If none of the above is true, no implementation is required.

ABCC_PORT_UseCritical()

If any preparation is needed before calling ABCC_PORT_EnterCritical() or ABCC_PORT_ExitCriti-
cal(), this macro is used to add platform specific necessities.

ABCC_PORT_EnterCritical()

This function is called by the driver when there is a possibility of internal resource conflicts between the
CompactCom interrupt handler and the application thread or main loop. The function temporarily dis-
ables interrupts to avoid conflict. Note that all interrupts that could lead to a driver access need to be
disabled.

ABCC_PORT_ExitCritical()

Restore interrupts to the state they were before ABCC_PORT_EnterCritical() was called.

ABCC_PORT_MemCopy()

Copy a number of octets, from the source pointer to the destination pointer.

Step Two 29

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

ABCC_PORT_StrCpyToNative()

Copy a packed string to a native formatted string.

ABCC_PORT_StrCpyToPacked()

Copy a native formatted string to a packed string.

ABCC_PORT_CopyOctets()

Copy octet aligned buffer.

ABCC_PORT_Copy8()

Copy 8 bits from a source to a destination. For a 16 bit char platform octet alignment support (the octet
offset is odd) need to be considered when porting this macro.

ABCC_PORT_Copy16()

Copy 16 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to
be considered when porting this macro.

ABCC_PORT_Copy32()

Copy 32 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to
be considered when porting this macro.

ABCC_PORT_Copy64()

Copy 64 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to
be considered when porting this macro.

Step Two 30

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

3.1.5 Example Application

ADI:s and Process Data Mapping

In Step One, the example ADI mapping appl_adimap_simple16.c was used. In the example applica-
tion there are ADI mapping examples included, which exemplify different types of ADI:s.

Only one mapping can be used at a time. The map that is currently used in the application is configured
in the file example_app/appl_adi_config.h, by defining APPL_ACTIVE_ADI_SETUP to the ADI map-
ping to be used.

• example_app/appl_adimap_simple16.c - This map loops 32 16-bit words.

- The ADIs are mapped on process data in each direction.

- The data is looped since both ADIs refer to the same data place holder.

- No structures or callbacks are used.

• example_app/appl_adimap_separate16.c - Example of how get/set callbacks can be used:

- ADIs 10 and 11 are mapped on process data in each direction.

- A callback is used when the network reads ADI 11. This callback will increment the value of
ADI 12 by one.

- A callback is used when the network writes ADI 10. This callback copies the value of ADI
10 to ADI 11.

ADI Description
ADI 1 32 element array of UINT16 (mapped as input data)

ADI 2 32 element array of UINT16 (mapped as output data)

ADI Description
ADI 10 32 element array of UINT16 (mapped as output data)

ADI 11 32 element array of UINT16 (mapped as input data)

ADI 12 UINT16 (not mapped to process data)

ABCC_CFG_ADI_GET_SET_CALLBACK has to be enabled in abcc_adapt/abcc_drv_cfg.h since
callbacks are used. See “ADI Settings” on page 13.

Step Two 31

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• example_app/appl_adimap_alltypes.c - Example of how structured data types and bit data
types can be used.

ADI Description
ADI 20 UINT32 (mapped as output data)

ADI 21 UINT32 (mapped as input data)

ADI 22 SINT32 (mapped as output data)

ADI 23 SINT32 (mapped as input data)

ADI 24 UINT16 (mapped as output data)

ADI 25 UINT16 (mapped as input data)

ADI 26 SINT16 (mapped as output data)

ADI 27 SINT16 (mapped as input data)

ADI 28 BITS16 (mapped as output data)

ADI 29 BITS16 (mapped as input data)

ADI 30 UINT8 (mapped as output data)

ADI 31 UINT8 (mapped as input data)

ADI 32 SINT8 (mapped as output data)

ADI 33 SINT8 (mapped as input data)

ADI 34 PAD8 (mapped as output data, reserved space, no data)

ADI 35 PAD8 (mapped as input data, reserved space, no data)

ADI 36 BIT7 (mapped as output data)

ADI 37 BIT7 (mapped as input data)

ADI 38 Struct (mapped as output data)

ADI 39 Struct (mapped as input data)

ABCC_CFG_STRUCT_DATA_TYPE has to be enabled in abcc_adapt/abcc_drv_cfg.h since
structures are used. See “ADI Settings” on page 13.

Step Two 32

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

The examples implements the following steps that shall be customized to fit the actual implementation:

• ADI Entry List - The ADI:s (i.e. the data instances that will be used in the implementation) must
be defined as an AD_AdiEntryType in an ADI entry list. All parameters related to an ADI are
specified here.

See example of usage in abcc_drv/inc/abcc_ad_if.h.

ADI Entry Item Description
iInstance ADI instance number (1-65535). 0 is reserved for Class.

pabName Name of ADI (character string, ADI instance attribute #1). If NULL, a zero length name will be
returned.

bDataType ABP_BOOL:
ABP_SINT8:
ABP_SINT16:
ABP_SINT32:
ABP_UINT8:
ABP_UNIT16:
ABP_UINT32:
ABP_CHAR:
ABP_ENUM:
ABP_SINT64:
ABP_UINT64:
ABP_FLOAT:
ABP_OCTET
ABP_BITS8
ABP_BITS16
ABP_BITS32
ABP_BIT1
ABP_BIT2
 :
ABP_BIT7
ABP_PAD0
ABP_PAD1
 :
ABP_PAD16

Boolean
Signed 8 bit integer
Signed 16 bit integer
Signed 32 bit integer
Unsigned 8 bit integer
Unsigned 16 bit integer
Unsigned 32 bit integer
Character
Enumeration
Signed 64 bit integer
Unsigned 64 bit integer
Floating point value (32 bits)
Undefined 8 bit data (Only 40-series)
8 bit bit field (Only 40-series)
16 bit bit field (Only 40-series)
32 bit bit field (Only 40-series)
1 bit bit field (Only 40-series)
2 bit bit field (Only 40-series)
 :
7 bit bit field (Only 40-series)
0 pad bit field (Only 40-series)
1 pad bit field (Only 40-series)
 :
16 pad bit field (Only 40-series)

bNumOfElements For arrays: number of elements of the data type specified in bDataType.
For structured data types: number of elements in the structure.

bDesc Entry descriptor. Bit values according to the following configurations:
ABP_APPD_DESCR_GET_ACCESS: Get service is allowed on value attribute.
ABP_APPD_DESCR_SET_ACCESS: Set service is allowed on value attribute.
ABP_APPD_DESCR_MAPPABLE_WRITE_PD: Remap service is allowed on value attribute.
ABP_APPD_DESCR_MAPPABLE_READ_PD: Remap service is allowed on value attribute.

The descriptors can be logically OR:ed together.
In the example, ALL_ACCESS is all of the above logically OR:ed together.
Note: Ignored for structured data types

pxValuePtr Pointer to local value variable. The type is dependent on bDataType.
Note: Ignored for structured data types

pxValuePropPtr Pointer to local value properties struct, if NULL, no properties are applied (max/min/default). The
type is dependent on bDataType.
Note: Ignored for structured data types

psStruct Pointer to an AD_StructDataType. Set to NULL for non structured data types. This field is enabled
by defining ABCC_CFG_STRUCT_DATA_TYPE. (Optional, Only 40-series)

pnGetAdiValue Pointer to an ABCC_GetAdiValueFuncType called when getting an ADI value. (Optional)

pnSetAdivalue Pointer to an ABCC_SetAdiValueFuncType called when setting an ADI value. (Optional)

Step Two 33

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

• Write and Read Process Data Mapping - ADI:s that shall be mapped as process data are mapped
with AD_DefaultMapType. There is one combined list for both read process data and write pro-
cess data.

The mappings are done in the order they will show up on the network.

Note: The mapping sequence is terminated by AD_DEFAULT_MAP_END_ENTRY, which MUST be
present at the end of the list. During the setup sequence, the Anybus CompactCom driver will
ask for this information by invoking ABCC_CbfAdiMappingReq().

Example:
{ ADI instance no, direction, number of elements in ADI to be mapped, index of
starting element in ADI to be mapped }

AD_DefaultMapType AD_asDefaultMap
[

 { 3, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 5, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 6, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 1, PD_READ, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 2, PD_READ, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 500, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 501, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 502, PD_WRITE, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 4, PD_READ, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { 503, PD_READ, AD_DEFAULT_MAP_ALL_ELEM ,0 },
 { AD_DEFAULT_MAP_END_ENTRY}

];

See example of usage in abcc_drv/inc/abcc_ad_if.h.

Data Mapping Item Description
iInstance ADI number of the ADI to map (see ADI Entry List above)

eDir Direction of map. Set to PD_END_MAP to indicate end of default map list.

bNumElem Number of elements to map. Can only be > 1 for arrays or structures.
AD_DEFAULT_MAP_ALL_ELEM indicates that all elements shall be mapped.
If instance == AD_MAP_PAD_ADI, bNumElem indicates number of bits to pad with.

bElemStartIndex Element start index within an array or structure. If the ADI is not an array or structure, enter 0

Step Two 34

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Process Data Callbacks

There are two callback functions related to the update of the process data that must be implemented to
inform the host that the read process data has been received from the network or that it is time to update
the write process data. An example is available in example_app/appl_abcc_handler.c.

• ABCC_CbfUpdateWriteProcessData() - Updates the current write process data. The data must
be copied into the buffer before returning from the function.

• ABCC_CbfNewReadPd() - Called when new process data has been received from the network.
The process data needs to be copied to the application ADI:s before returning from the function.

As seen below, in the example code, they both call on a service in the Application Data object to update
the information. These functions works, in general, for any process data map, but they are also slow be-
cause of all considerations needed for the general case. For better performance, please consider writing
application specific update functions.

void ABCC_CbfNewReadPd(void* pxReadPd)

{

 /*

 ** AD_UpdatePdReadData is a general function that updates all ADI:s according
 ** to current map.
 ** If the ADI mapping is fixed there is potential for doing that in a more
 ** optimized way, for example by using memcpy.

 */

 AD_UpdatePdReadData(pxReadPd);

}

BOOL ABCC_CbfUpdateWriteProcessData(void* pxWritePd)

{

 /*

 ** AD_UpdatePdWriteData is a general function that updates all ADI:s according
 ** to current map.
 ** If the ADI mapping is fixed there is potential for doing that in a more
 ** optimized way, for example by using memcpy.

 */

 return(AD_UpdatePdWriteData(pxWritePd));

}

Step Two 35

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Event Handling

Only 40-series.

In event mode, all events can be configured to be forwarded to the user via the ABCC_CbfEvent() in-
terface using the configuration defines below, located in the file abcc_drv_cfg.h.

#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDPDIEN | ABP_INTMASK_RDMSGIEN)

#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDPDIEN)

The configuration above will enable read message and read process data interrupts, but only the read
process data callbacks will be executed in interrupt context directly by the driver. The read message event
will be forwarded to the application by calling the function ABCC_CbfEvent().

This will reduce the amount of work done in the ISR which causes jitter in the process data handling.
Other configurations will of course be possible to set by the user, to increase performance for any event.
At this point the user can trigger the handling of the event from any chosen context.

Example of how the callback event handler can trigger a task to handle an event

void ABCC_CbfEvent(UINT16 iEvents)

{

 if(iEvents & ABCC_EVENT_RDMSGI)

 {

 ABCC_fRdMsgEvent = TRUE;

 }

}

The code above illustrates how a task (below) can be triggered by the driver event callback.

volatile BOOL ABCC_fRdMsgEvent = FALSE;

void Task(void)

{

 ABCC_fRdMsgEvent = FALSE;

 while(1)

 {

 if(ABCC_fRdMsgEvent)

 {

 ABCC_fRdMsgEvent = FALSE;

 ABCC_TriggerReceiveMessage();

 }

 }

}

This code depicts a task that handles receive message events.

Note: if the messaging is fully event driven and messages are sent in an interrupt context,
please consider implementing the critical section porting in abcc_adapt/abcc_sw_port.h.
The critical section functions are described in abcc_drv/inc/abcc_port.h.

Step Two 36

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Handling Events in Interrupt Context

Only 40-series.

Handling Events Using ABCC_CbfEvent() Callback Function

Only 40-series.

CompactCom driver Anybus CompactCom module
Host application (Interrupt

context)

ReadMessage()

WriteMessage

ABCCInterrupt()

ABCC_Isr()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer)

Note that this call is
done in interrupt context.

#define ABCC_CFG_INT_ENABLED (TRUE)
#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDMSGIEN)
#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDMSGIEN)

CompactCom driver Anybus CompactCom module
Host application (Interrupt

context)

ReadMessage()

The received message can

be handled in chosen context.

Host application (other

context)

TriggerOtherContext()

ABCCInterrupt()

ABCC_Isr()

End of ISR

ABCC_CbfEvent()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer) WriteMessage()

ABCC_TriggerReceiveMessage()

#define ABCC_CFG_INT_ENABLED (TRUE)
#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDMSGIEN)
#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (0)

Step Two 37

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Message Handling

The message handling interface functions are found and described in abcc.h.

To send a command message, the user must use the function ABCC_GetCmdMsgBuffer() to retrieve a
message memory buffer. When receiving a response, the user must handle or copy needed data from the
response buffer within the context of the response handler function.

The function ABCC_GetCmdMsgBuffer() can return a NULL pointer, if no more memory buffers are
available. It is the responsibility of the user to resend the message later or treat it as a fatal error.

Note: the buffer resources are configured in the file abcc_drv_cfg.h.

Note: The CompactCom 40-series modules handle up to 1524 bytes of messaging data, whereas the 30-
series only handle 255 bytes. The message header supporting 1524 byte messages differs from the 30-
series format since the size field need to be 16 bits instead of 8 bits. The driver supports communication
with 30-series modules as well as 40-series modules, but only supports the new message format in the
driver API. If a 30-series module is used, the driver will internally convert to the legacy message format.
The figure below shows the two message formats.

Example 1: Sending a command and receiving a response

When sending the command the driver will connect the source id to the response function, in this case
appl_HandleResp().

The function appl_HandleResp() is called by the driver when a response with the matching source ID
is received.

Note that the received message buffer does not need be freed, this is done internally in the driver after
return from appl_HandleResp().

void appl_HandleResp(ABP_MsgType* psMsg)

{

 HandleResponse(psMsg);

}

UINT8 bSourceId

UINT8 bDestObj

UINT16 iInstance

UINT8 bCmd

UINT8 bDataSize

UINT8 bCmdExt0
UINT8 bCmdExt1

UINT16 iDataSize

UINT16 iReserved

UINT8 bSourceId

UINT8 bDestObj

UINT16 iInstance

UINT8 bCmd

UINT8 bReserved

UINT8 bCmdExt0
UINT8 bCmdExt1

255 byte message header 1524 byte message
header

Step Two 38

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

CompactCom driver Anybus CompactCom moduleHost application

psMsg = ABCC_GetCmdMsgBuffer();

if(psMsg != NULL)

{

ABCC_GetAttribute(psMsg, ABP_OBJ_NUM_ANB, 1,

ABP_ANB_IA_EXCEPTION, ABCC_GetNewSourceId());

if(ABCC_SendCmdMsg(psMsg, msgRespHandler) != ABCC_EC_NO_ERROR)

{

APPL_UnexpectedError();

}

}

The user defined message response

handler function is passed

as argument in the send function.

static void msgRespHandler(ABP_MsgType* psMsg)

{

if(ABCC_VerifyMessage(psMsg) != ABCC_EC_NO_ERROR)

{

APPL_UnexpectedError();

return;

}

/*
** Handle response data

*/

}

ReadMessage()

WriteMessage()

msgBuffer:=ABCC_GetCmdMsgBuffer()

ABCC_SendCmdMsg(msgBuffer, msgRespHandler)

ABCC_RunDriver()

ABCC_RunDriver()

msgRespHandler(msgBuffer)

Sending a command to the

CompactCom

Step Two 39

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Example 2: Receiving a command and sending a response

Note: the received command buffer is reused for the response.

void appl_ProcessCmdMsg(ABP_MsgType* psNewMessage)

{

 /* Reuse command buffer for response */

 ABP_SetMsgResponse(psNewMessage, ABP_UINT8_SIZEOF);

 eErr = ABCC_SendRespMsg(psNewMessage);

}

The driver uses non-blocking Anybus CompactCom message handling. This means that a state machine
must be used to keep track of commands and responses.

In example_app/appl_abcc_handler.c, there are two examples of state machines that can be used as
templates.

Example 1: When ABCC_CbfUserInitReq() is called, the IP address or node address is set before
ABCC_UserInitComplete() is called.

Example 2: When the Anybus CompactCom device indicates exception state, the exception codes are
read.

CompactCom driver Anybus CompactCom moduleHost application

ReadMessage()
void ABCC_CbfReceiveMsg(ABP_MsgType* msgBuffer)

{

/*

** Process command message

*/

/*
** Reuse command buffer for response

*/

ABP_SetMsgResponse(msgBuffer , ABP_UINT8_SIZEOF);

eErr = ABCC_SendRespMsg(msgBuffer);

}

WriteMessage()

ABCC_RunDriver()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer)

Handling of command

received from CompactCom

Software Overview 40

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Appendix A

A. Software Overview

A.1 Files and Folders

A.2 Root Files

A.3 CompactCom Driver Interface (Read Only)

Folders Description
$(ROOT)\abcc_abp This folder includes all Anybus protocol files. It may be updated when new

Anybus CompactCom software releases are available, but is otherwise read
only. The included files are considered read only.

$(ROOT)\abcc_drv\inc .h files published to the application. The folder contains driver configuration
files for the application as well as for the system dependent part of the driver.
The included files are considered read only.

$(ROOT)\abcc_drv\src Anybus CompactCom driver implementation.The included files are consid-
ered read only.

$(ROOT)\abcc_adapt This folder includes all adaptation and configuration files for the driver and the
objects.The files must be modified by the user to configure and adapt the
driver and the example code.

$(ROOT)\abcc_obj This folder includes all Anybus host object implementations.The files may be
modified by the user.

$(ROOT)\example_app Example application. The files may be modified by the user.

Folders Description
$(ROOT)\main.c Main file for the example application.

$(ROOT)\abcc_versions.h Contains version defines for example code, driver and abp.

File Name Description
\abcc_drv\inc\abcc.h The public interface for the Anybus CompactCom Driver.

\abcc_drv\inc\abcc_ad_if.h Type definitions for ADI mapping.

\abcc_drv\inc\abcc_cfg.h Configuration parameters of the driver.

\abcc_drv\inc\abcc_port.h Definitions for porting thee Anybus CompactCom to different platforms.

\abcc_drv\inc\abcc_sys_adapt.h Interface for target dependent functions common to all operating modes.

\abcc_drv\inc\abcc_sys_adapt_spi.h Interface for target dependent functions needed by abcc_spi_drv.c.

\abcc_drv\inc\abcc_sys_adapt_par.h Interface for target dependent functions needed by abcc_par_drv.c.

\abcc_drv\inc\abcc_sys_adapt_ser.h Interface for target dependent functions needed by abcc_ser_drv.c.

Software Overview 41

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

A.4 Internal Driver Files (Read Only)

The contents of the files in the /abcc_drv/src folder should not be changed.

8/16 Bit Parallel Event Specific Files

SPI Specific Files

8 Bit Parallel Ping/Pong Specific Files

Serial Specific Files

File Name Description
\abcc_drv\src\abcc_drv_if.h Interface for low level driver implementing the specific operating mode.

\abcc_drv\src\abcc_debug_err.h
\abcc_drv\src\abcc_debug_err.c

Help macros for debugging and error reporting.

\abcc_drv\src\abcc_link.c
\abcc_drv\src\abcc_link.h

Message buffer handling and message queue handling.

\abcc_drv\src\abcc_mem.c
\abcc_drv\src\abcc_mem.h

Message resource memory support used by abcc_link.c.

\abcc_drv\src\abcc_handler.h
\abcc_drv\src\abcc_handler.c

Anybus CompactCom handler implementation including handler parts that are
independent of operating mode.

\abcc_drv\src\abcc_setup.h
\abcc_drv\src\abcc_setup.c

Anybus CompactCom handler implementation including setup state machine.

\abcc_drv\src\abcc_remap.c Anybus CompactCom handler implementation for remapping process data at
runtime.

\abcc_drv\src\abcc_timer.h
\abcc_drv\src\abcc_timer.c

Support for Anybus CompactCom driver timeout functionality.

File Name Description
\abcc_drv\src\par\abcc_handler_par.c Implements ABCC_RunDriver() and ABCC_ISR().

\abcc_drv\src\par\abcc_par_drv.c Implements the driver for parallel operating mode.

\abcc_drv\src\par\abcc_drv_par_if.h Implements the parallel driver interface.

File Name Description
\abcc_drv\src\par\abcc_handler_spi.c Implements ABCC_RunDriver() and ABCC_ISR().

\abcc_drv\src\spi\abcc_spi_drv.c Implements the driver for SPI operating mode.

\abcc_drv\src\spi\abcc_drv_spi_if.h Implements the SPI driver interface.

\abcc_drv\src\spi\abcc_crc32.c
\abcc_drv\src\spi\abcc_crc32.h

Crc32 implementation used by SPI.

File Name Description
\abcc_drv\src\par30\abcc_handler_par30.c Implements ABCC_RunDriver() and ABCC_ISR().

\abcc_drv\src\par30\abcc_par30_drv.c Implements the driver for parallel 30 ping/pong operating mode.

\abcc_drv\src\par30\abcc_drv_par30_if.h Implements the parallel 30 ping/pong driver interface.

File Name Description
\abcc_drv\src\serial\abcc_handler_ser.c Implements ABCC_RunDriver() and ABCC_ISR().

\abcc_drv\src\serial\abcc_serial_drv.c Implements the driver for serial operating mode.

\abcc_drv\src\serial\abcc_drv_ser_if.h Implements the serial driver interface.

\abcc_drv\src\serial\abcc_crc16.c
\abcc_drv\src\serial\abcc_crc16.h

Crc16 implementation used by Serial.

Software Overview 42

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

A.5 System Adaptation Files

File Name Description
\abcc_adapt\abcc_drv_cfg.h User configuration of the CompactCom driver. The configuration

parameters are documented in the driver's public interface abcc_cfg.h.

\abcc_adapt\abcc_identification.h User configuration to set the identification parameters of an Compact-
Com module.

\abcc_adapt\abcc_obj_cfg.h User configuration of the Anybus object implementation.

\abcc_adapt\abcc_sw_port.c Platform dependent macros and functions required by the Compact-
Com driver and Anybus object implementation.

\abcc_adapt\abcc_sw_port.h Platform dependent macros and functions required by the Compact-
Com driver and Anybus object implementation. The description of the
macros are found in abcc_port.h. The file abcc_port.h is found in the
public CompactCom driver interface.

\abcc_adapt\abcc_sys_adapt.c -

\abcc_adapt\abcc_td.h Definition of CompactCom types.

\abcc_adapt\abcc_platform_cfg.h Platform specific defines overriding defines in abcc_adapt/abcc_ob-
j_cfg.h and abcc_adapt/abcc_identification.h.

API 43

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Appendix B

B. API

B.1 API Documentation

The Anybus CompactCom API layer defines a common interface for all network applications to the
Anybus CompactCom driver. The interface is found in abcc.h.

API Functions

Function Description
ABCC_StartDriver() Initiates the driver, enables interrupt, and sets the operating mode.

When this function has been called the timer system can be started.
Note! This function will NOT release the reset of the module.

ABCC_IsReadyforCommunication() This function must be polled after the ABCC_StartDriver() until it returns the value
TRUE. This indicates that the module is ready for communication and the Com-
pactCom setup sequence is started.

ABCC_ShutdownDriver() Stops the driver and puts it into SHUTDOWN state.

ABCC_HWReset() Module hardware reset.
ABCC_ShutdownDriver() is called from this function.
Note! This function will only set reset pin to low. It is the responsibility of the caller
to make sure that the reset time (the time between the ABCC_HWReset() and
ABCC_HWReleaseReset() calls) is long enough.

ABCC_HWReleaseReset() Releases the module reset.

ABCC_RunTimerSystem() Handles all timers for the CompactCom driver. It is recommended to call this func-
tion on a regular basis from a timer interrupt. Without this function no timeout and
watchdog functionality will work.

ABCC_RunDriver() Drives the CompactCom driver sending and receiving mechanism. This main rou-
tine should be called cyclically during polling.
TRUE: Driver is started and ready for communication.
FALSE: Driver is stopped or is not started.

ABCC_UserInitComplete() This function should be called by the application when the last response from the
user specific setup has been received. This will end the CompactCom setup
sequence and ABCC_SETUP_COMPLETE will be sent.

ABCC_SendCmdMsg() Sends a command message to the module.

ABCC_SendRespMsg() Sends a response message to the module.

ABCC_SendRemapRespMsg() Sends a remap response to the module.

ABCC_SetAppStatus() Sets the current application status, according to ABP_AppStatusType in abp.h.

ABCC_GetCmdMsgBuffer() Allocates the command message buffer.

ABCC_ReturnMsgBuffer() Frees the message buffer.

ABCC_TakeMsgBufferOwnership() Takes the ownership of the message buffer

ABCC_ModCap() Reads the module capability. This function is only supported by the CompactCom
parallel operating mode.

ABCC_LedStatus() Reads the LED status. Only supported in SPI and CompactCom parallel operat-
ing mode.

ABCC_AnbState() Reads the current Anybus state.

API 44

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

API Event Related Functions

API Callbacks

All these functions need to be implemented by the application.

Function Description
ABCC_ISR() This function should be called from inside the CompactCom interrupt routine to

acknowledge and handle received CompactCom events (triggered by the IRQ pin
on the CompactCom application interface)

ABCC_TriggerRdPdUpdate() Triggers a RdPd read.

ABCC_TriggerReceiveMessage() Triggers a message receive read.

ABCC_TriggerWrPdUpdate() Indicates that new process data from the application is available and will be sent
to the CompactCom.

ABCC_TriggerAnbStatusUpdate() Checks for Anybus status change.

ABCC_TriggerTransmitMessage() Checks sending queue.

Function Description
ABCC_CbfAdiMappingReq() The function is called when the driver is about to start the automatic process

data mapping.

It returns mapping information for read and write PD.

ABCC_CbfUserInitReq() The function is called to trigger a user specific setup during the module setup
state.

ABCC_CbfUpdateWriteProcessData() Updates the current write process data. The data must be copied into the buffer
before returning from the function.

ABCC_CbfNewReadPd() Called when new process data has been received. The process data needs to
be copied to the application ADI:s before returning from the function.

ABCC_CbfReceiveMsg() A message has been received from the module. This is the receive function for
all received commands from the module.

ABCC_CbfWdTimeout() The function is called when communication with the module has been lost.

ABCC_CbfWdTimeoutRecovered() Indicates a recent CompactCom watchdog timeout but now the communication
is working again.

ABCC_CbfRemapDone() This callback is invoked when REMAP response is successfully sent to the mod-
ule.

ABCC_CbfAnbStatusChanged() This callback is invoked if the module changes status i.e. if Anybus state or
supervision state is changed.

ABCC_CbfEvent() Called for unhandled events.

Unhandled events are events enabled in ABCC_USER_INT_ENABLE_MASK
but not present in ABCC_USER_HANDLE_IN_ABCC_ISR_MASK.

ABCC_CbfSync_Isr() If sync is supported this function will be invoked at the sync event.

API 45

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Support Functions

Function Description
ABCC_NetworkType() Retrieves the network type.

ABCC_ModuleType() Retrieves the module type.

ABCC_DataFormatType() Retrieves the network endianness.

ABCC_ParameterSupport() Retrieves the parameter support.

ABCC_GetOpmode() Calls ABCC_SYS_GetOpmode() to read the operating mode from HW.

ABCC_GetAttribute() Fills an CompactCom message with parameters to get an attribute.

ABCC_SetByteAttribute() Fills an CompactCom message with parameters in order to set an attribute.

ABCC_VerifyMessage() Verifies an CompactCom response message.

ABCC_GetDataTypeSize() Returns the size of an ABP data type.

Host Application State Machine 46

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

Appendix C

C. Host Application State Machine

The application flow in the example code is maintained using the state machine described in the flow-
chart below.

The function APPL_HandleAbcc(), called cyclically from the main loop, implements the state machine
and is responsible for the execution of various tasks during each state.

The first time APPL_HandleAbcc() is called, state APPL_INIT is entered.

APPL_INIT

• Checks that an Anybus CompactCom device is detected.

• The Application Data object is initiated, using the desired ADI mapping. In this example, it is
one of the three ADI mapping examples described in “Example Application” on page 30.

• ABCC_StartDriver() is called to initiate the driver.

• ABCC_HwReleaseReset() is called to release the Anybus CompactCom device reset.

• Sets state to APPL_WAITCOM.

APPL_WAITCOM

• Waits for the Anybus CompactCom device to signal that it is ready to communicate.

• Sets state to APPL_RUN.

Power up

APPL_INIT

� Start ABCC driver
� Release ABCC reset

APPL_WAITCOM

Wait for start-up event

APPL_RUN

Run ABCC driver

APPL_ABCCRESET

� Shut down driver
� Set ABCC reset

APPL_DEVRESET

� Shut down driver
� Set ABCC reset
� Return reset status to trigger device reset

APPL_HALT

Do nothing

APPL_SHUTDOWN

� Shut down driver
� Set ABCC reset
� Return shutdown status

� Watchdog event
� Applica on speci c event

Reset command from ABCC

Applica on speci c event

Failed to start driver:
� Invalid opera ng mode
� Module not detected
� Module type not supported

Module does not start

Host Application State Machine 47

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

APPL_RUN

• ABCC_RunDriver() is called to run the driver. Callbacks will be invoked for specific events. All
callbacks used by the driver are named ABCC_Cbf<x>(). The required callbacks are all imple-
mented in appl_abcc_handler.c.

• During startup the following events will be triggered by the driver (in the described order):

- ABCC_CbfStateChanged() will be called when the Anybus CompactCom device has entered
ABP_ANB_STATE_SETUP. If desired, set a breakpoint or use a debug function to indicate
state changes.

- ABCC_CbfAdiMappingReq() will be called when the CompactCom device is ready to send
the default mapping command. The generic example code will ask the Application Data ob-
ject for the configured default map.

- ABCC_CbfUserInitReq() will be called when it is possible for the application to send com-
mands to configure or read information to/from the CompactCom device. In the example
code, the function triggers the user init state machine to start sending a command sequence
to the CompactCom device. When the last message response is received, the function ABCC-
UserInitComplete() is called to notify the driver that the user init sequence has ended. This
will internally trigger the driver to send a SETUP_COMPLETE command to the Compact-
Com device. If no user init is needed, ABCC_UserInitComplete() can be called directly from
ABCC_CbfUserInitReq().

- When setup is complete, the CompactCom device will enter state ABP_ANB_STATE_N-
W_INIT. This means that ABCC_CbfStateChanged() will be called. In this state a number
of commands will be sent from the CompactCom device to the host application objects. All
received commands will be handled in ABCC_CbfReceiveMsg(). The responses to the com-
mands depend on which host objects that are implemented, and the configuration made in
abcc_identification.h and abcc_obj_cfg.h. If desired, set a breakpoint in ABCC_CfgRe-
ceiveMsg() to indicate the commands that are sent and how they are handled.

- When network initiation is done, the CompactCom device will enter state ABP_AN-
B_STATE_WAIT_PROCESS. Again, ABCC_CbgStateChanged() will be called by the driv-
er. At this point, it is possible to set up an IO connection from the network.

- When an IO connection is set up, the CompactCom will enter state ABP_AN-
B_STATE_PROCESS_ACTIVE (or, on some networks, ABP_ANB_STATE_IDLE).
When process data is received from the CompactCom device, the ABCC_CbfNewReadPd()
function is called. The example code then forwards the data to the Application Data object
by calling AD_UpdatePdReadData(), to update the ADIs. The example code only loops data,
so at the end of the function body, ABCC_TriggerWrPdUpdate() is called to update the write
process data. The ABCC_TriggerWrPdUpdate() function triggers ABCC_CbfUpdateWrite-
ProcessData(), which is called whenever the driver is ready to send new process data.
ABCC_TriggerWrPdUpdate() should always be called when updated process data is availa-
ble.

- If state ABP_ANB_STATE_EXCEPTION is entered, the cause of the exception can be
read from the CompactCom device by activating the exception read state machine. RunEx-
ceptionSM() will be called from state APPL_RUN when the CompactCom device is in state
ABP_ANB_STATE_EXCEPTION.

Host Application State Machine 48

Doc.Id. HMSI-27-334
Host Application Implementation Guide
Doc.Rev. 1.10

- APPL_Reset() is called to initiate a restart of the device. This will happen if the application
host object receives a reset request from the CompactCom device. The CompactCom han-
dler state machine will then enter state APPL_ABCCRESET.

- APPL_RestartAbcc() is, like APPL_Reset(), used to initiate a restart of the device. If called,
the CompactCom handler state machine will then enter state APPL_ABCCRESET. (Cur-
rently this function is not used in the example code. It could be used instead of APPL_Re-
set(), since it avoids power cycling.

- APPL_Shutdown() is called to initiate a shutdown of the driver.

APPL_SHUTDOWN

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_HALT.

APPL_ABCCRESET

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_INIT.

APPL_DEVRESET

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_HALT.

The return value to the main loop (via the function call from APPL_AbccHandler()) will indicate that
the device should be reset.

APPL_HALT

No action.

	Table of Contents
	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.4 Support
	P.5 Glossary

	1. Introduction
	1.1 Overview
	1.2 Preparations

	2. Step One
	2.1 System Adaptation and Application Development
	2.2 System Set-up
	2.2.1 Big- or Little-endian
	2.2.2 16-bit Char System
	2.2.3 Data Types

	2.3 Anybus CompactCom Set-up
	2.3.1 Communication Interfaces and Operating Modes
	2.3.2 Parallel Operating Mode Specifics
	2.3.3 SPI Operating Mode Specifics
	2.3.4 Module ID and Module Detect Settings
	2.3.5 Message and Process Data Settings
	2.3.6 Interrupt Handling
	2.3.7 Communication Watchdog Settings
	2.3.8 ADI Settings
	2.3.9 Debug Event Print Settings
	2.3.10 Startup Time
	2.3.11 Sync Settings

	2.4 System Adaptation Functions
	2.4.1 General Functions
	2.4.2 SPI Operating Mode
	2.4.3 Parallel Operating Mode
	2.4.4 Serial Operating Mode

	2.5 Object Configuration
	2.6 Example Application
	2.6.1 ADIs and Process Data Mapping
	2.6.2 Main Loop
	2.6.3 Compile and Run

	3. Step Two
	3.1 Adaptations and Customizations
	3.1.1 Anybus CompactCom Setup
	3.1.2 System Adaptation Functions
	3.1.3 Network Identification
	3.1.4 Software Platform Porting
	3.1.5 Example Application

	A. Software Overview
	A.1 Files and Folders
	A.2 Root Files
	A.3 CompactCom Driver Interface (Read Only)
	A.4 Internal Driver Files (Read Only)
	A.5 System Adaptation Files

	B. API
	B.1 API Documentation

	C. Host Application State Machine

