

Manual

CANopen

Master API for Windows
Software package for the development of

CANopen Master applications under Windows

Software Version 6.1

HMS Technology Center Ravensburg GmbH
Helmut-Vetter-Straße 2
88213 Ravensburg
Germany

Tel.: +49 751 56146-0
Fax: +49 751 56146-29
Internet: www.hms-networks.de
e-Mail: info-ravensburg@hms-networks.de

Support
In case of unsolvable problems with this product or other products please
contact our support in written form by:

Fax: +49 751 56146-29
e-Mail: support@ixxat.de

Further international support contacts can be found on our webpage
www.hms-networks.de

Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic
distribution of this document is only allowed with explicit permission of
HMS Technology Center Ravensburg GmbH. HMS Technology Center
Ravensburg GmbH reserves the right to change technical data without prior
announcement. The general business conditions and the regulations of the
license agreement do apply. All rights are reserved.

Registered Trademarks
All trademarks mentioned in this document and where applicable third par-
ty registered are absolutely subject to the conditions of each valid label right
and the rights of particular registered proprietor. The absence of identifica-
tion of a trademark does not automatically mean that it is not protected by
trademark law.

Document number: 4.12.0132.20000
Version: 6.5

mailto:support@ixxat.de

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Contents

3

1 INTRODUCTION .. 7

1.1 Where to find what... 8

1.2 Basic specifications ... 8

1.3 Definitions, acronyms, abbreviations 8

1.4 Typographical conventions ... 12

1.5 Support ... 12

1.6 Return of defect Hardware ... 12

2 COMMISSIONING ... 13

2.1 System requirements .. 13

2.2 Supported CAN-boards ... 13

2.3 Before installation .. 14

2.4 The actual installation ... 15

2.5 Getting Acquainted with the API 15

3 OVERVIEW .. 17

3.1 Function categories... 19

3.1.1 Basic API-functions .. 19

3.1.2 Functions for the network management 20

3.1.3 CANopen-object management .. 20

3.1.4 CANopen communication .. 21

3.1.5 LMT services .. 21

3.1.6 LSS services .. 22

3.2 Internal use of the command queues 22

4 APPLICATION EXAMPLES .. 24

4.1 Sample programs supplied ... 24

4.1.1 Calling sample programs ... 24

4.1.2 Structure of the sample programs ... 24

4.2 Reading an object dictionary entry via SDO 25

4.3 I/O-node with TPDO and RPDO Polling 26

4.4 I/O-node with TPDO and RPDO Callback 28

4.5 Altering the PDO-mode ... 29

5 INDIVIDUAL FUNCTIONS ... 30

5.1 Basic API-functions ... 30

5.1.1 COP_InitBoard ... 30

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Contents

4

5.1.2 COP_ReleaseBoard ... 34

5.1.3 COP_GetBoardInfo .. 35

5.1.4 COP_InitInterface ... 36

5.1.5 COP_DefineCallbacks ... 38

5.1.6 COP_t_EventCallback ... 40

5.1.7 COP_DefineMsgRPDO COP_DefineMsgEvent
COP_DefineMsgEmergency COP_DefineMsgSync 41

5.1.8 COP_GetThreadIds ... 43

5.1.9 COP_Reset_DLL .. 45

5.1.10 COP_SendMsg ... 46

5.1.11 COP_GetMsg ... 47

5.1.12 COP_SetCommTimeOut ... 48

5.1.13 COP_GetStatus .. 49

5.1.14 COP_TestCommand ... 50

5.2 Functions for the network management 51

5.2.1 COP_AddNode .. 51

5.2.2 COP_DeleteNode ... 53

5.2.3 COP_SearchNode .. 54

5.2.4 COP_GetNodeInfo ... 55

5.2.5 COP_ChangeNodeParameter ... 57

5.2.6 COP_SetEmcyIdentifier .. 59

5.2.7 COP_ConfigFlyMaster .. 60

5.2.8 COP_StartFlyMaster ... 62

5.2.9 COP_GetStatusFlyMasterNeg ... 63

5.2.10 COP_StartNode ... 65

5.2.11 COP_StopNode .. 66

5.2.12 COP_ResetComm ... 67

5.2.13 COP_ResetNode ... 68

5.2.14 COP_EnterPreOperational .. 69

5.2.15 COP_GetNodeState ... 70

5.3 CANopen object management ... 71

5.3.1 COP_CreatePDO .. 71

5.3.2 COP_DeletePDO... 73

5.3.3 COP_GetPDOInfo ... 74

5.3.4 COP_CreateSDO .. 75

5.3.5 COP_GetSDOInfo ... 76

5.3.6 COP_SetSDOTimeOut .. 77

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Contents

5

5.3.7 COP_DefSyncObj ... 78

5.3.8 COP_SetSyncDivisor ... 80

5.3.9 COP_GetSyncInfo... 82

5.3.10 COP_EnableSync .. 83

5.3.11 COP_DisableSync ... 84

5.3.12 COP_InitTimeStampObj ... 85

5.3.13 COP_StartStopTSObj .. 86

5.3.14 COP_GetTimeStampObj ... 87

5.4 CANopen communication ... 88

5.4.1 COP_ReadPDO ... 88

5.4.2 COP_ReadPDO_S ... 89

5.4.3 COP_RequestPDO .. 90

5.4.4 COP_WritePDO .. 91

5.4.5 COP_WritePDO_S .. 92

5.4.6 COP_ReadSDO ... 93

5.4.7 COP_WriteSDO .. 95

5.4.8 COP_PutSDO ... 97

5.4.9 COP_GetSDO ... 99

5.4.10 COP_CancelSDO .. 100

5.4.11 COP_GetEmergencyObj ... 101

5.4.12 COP_GetEmergencyObj_S .. 102

5.4.13 COP_CheckSync ... 103

5.4.14 COP_GetEvent ... 104

5.5 LMT services .. 108

5.5.1 COP_LMT_ConfigNode .. 108

5.5.2 COP_LMT_GetAddress ... 110

5.5.3 COP_LMT_ConfigModuleID ... 112

5.5.4 COP_LMT_IdentifyRemoteSlaves .. 114

5.6 LSS services ... 116

5.6.1 COP_SetLSSTimeOut .. 116

5.6.2 COP_LSS_InquireAddress ... 117

5.6.3 COP_LSS_InquireNodeID .. 119

5.6.4 COP_LSS_ConfigNodeID .. 121

5.6.5 COP_LSS_ConfigBitTiming ... 123

5.6.6 COP_LSS_ActivateBitTiming ... 126

5.6.7 COP_LSS_IdentifyRemoteSlaves .. 128

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Contents

6

5.6.8 COP_LSS_IdentifyNonConfRemoteSlaves 130

5.6.9 COP_LSS_Fastscan ... 132

APPENDIX A - ERROR CODES .. 135

The error codes of the CANopen Master API DLL 135

The error codes of the CANopen Master Firmware 137

APPENDIX B - PERFORMANCE CHARACTERISTICS 139

APPENDIX C - SCOPE OF DELIVERY ... 140

APPENDIX D - DATA STRUCTURES OF THE COMMAND QUEUES 152

The record COP_t_Message ... 152

Command Opcodes ... 155

APPENDIX E - DIFFERENCES TO VERSION 5.X 160

New functions ... 160

Removed functions.. 160

Deleted functions .. 160

Inapplicable functions ... 160

Altered functions ... 160

Renamed functions ... 160

Functions with altered parameter set ... 161

APPENDIX F - CANOPEN-SPECIFIC ASPECTS 162

Processing of synchronous PDOs... 162

TPDOs ... 162

RPDOs ... 162

Node guarding and node states .. 163

APPENDIX G - FREQUENT SOURCES OF ERRORS 164

Presetting and initialising the CAN board 164

Reading out receive-data queues .. 164

APPENDIX H - TIMER RESOLUTIONS AND VALUE RANGES 166

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

7

1 Introduction

The CANopen Master Application Programming Interface (API) is a programming
library for connecting a PC-application to a CANopen-network in form of a single
monolithic file named XatCOP60.dll

This functionality comprises the availability of process data objects (PDOs) and
service data objects (SDOs) for the direct information exchange with individual
network subscribers and the provision of system services of the synchronization
object (Sync) and of the central time object (Time Stamp). In addition the
device error messages (Emergency messages) can be evaluated. For the
network, so-called NMT-services and node-monitoring mechanisms are available.

In particular the following features of the CANopen specification CiA-301 V4 are
supported:

• SDO block transfer

• Heartbeat mechanism

• Bootup message

• Sync counter

With these functions the CAN-identifiers are allocated according to the so-called
Predefined Connection Set. For PDOs and SDOs, however, other CAN-
identifiers can also be defined.

The user must be familiar with the various mechanisms and terms of CANopen.
More information can be obtained from the relevant specifications (CiA-301, CiA-
401, ...), which are available from CiA (www.can-cia.org).

A detailed introduction to CANopen is given in the book: K. Etschberger,
"Controller Area Network, Basics, Protocols, Chips and Applications", 2001 IXXAT
Press, ISBN 3-00-007376-0.

Other current information on the software not included in the manual is available
in the form of README-files on the data carriers supplied. Please therefore check
whether README-files are contained on the diskette/CD.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

8

1.1 Where to find what

This manual describes all functions and data structures provided by CANopen
Master API for controlling a CANopen-system.

Section 3 provides an overview of the software. The typical situations and
processes for the use of the CANopen Master API are briefly described under
‘Application examples’ (section 4). Section 5 ‘Individual functions’ contains the
complete function reference.

This documentation is then concluded with the appendices, which describe the
internal command interface of the underlying CANopen Master firmware, the
performance parameters and the scope of delivery as well as a section on typical
sources of errors and stumbling blocks from practical experience.

1.2 Basic specifications

/1/ CiA-301 CANopen Application Layer and Communication Profile

/2/ CiA-302 Additional application layer functions

/3/ CiA-305 Layer Setting Services and Protocol (LSS)

1.3 Definitions, acronyms, abbreviations

Bootup Message

Special case of a →Heartbeat message. With this the node signals the successful
transition to the "pre-operational" state. See also NMT.

CAN-ID

The CAN-ID or message-identifier identifiers a CAN-message and at the same
time defines the message priority. The highest priority ID 0 is reserved for network

management services →NMT

CiA

CAN in Automation e.V.: Organisation of CAN-Bus device manufacturers and
users.

Client-SDO

A Client-SDO is understood as the initiator of an SDO-transmission. It has access

to the object dictionary entries of an "SDO-Server". →SDO, OD

Communication Cycle Period

Communication Cycle Period defines the time interval between sequential →Sync-
objects.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

9

Communication parameters

The attributes of a →PDO are described in the communication parameters. The

attributes include →Transmission Type, →Inhibit Time and of course the

→CAN-ID.

Emergency Message

With a high-priority Emergency object a device signals the occurrence of a fatal
internal device error or the reset of one or all device-internal errors.

Guard Time

The NMT-Master cyclically transmits a request to the NMT-Slave to send its
current node state. This request must be answered within the node lifetime. The

node lifetime of a node is given by Lifetime Factor ∗ Guard Time of the node. The
NMT-Slave does not carry out guarding of the NMT-Master if the Guard Time is
parameterized with 0. However, the Node Guarding protocol is answered. The
reactions to violations of the Node Guarding are described in the CANopen
specification.

Heartbeat

Independent cyclical transmission of the node state by means of a so-called

Heartbeat message. Alternative to →Node Guarding by means of →Guard Time.
It reduces the bus load due to absence of the request message.

Inhibit Time

A Process Data Object (→PDO) may only be transmitted again after expiry of this
time.

LSS: Layer Setting Services

Service element of the application layer, which enables the setting of basic

device-communication parameters such as baudrate and →Node-ID.

NMT: Network Management

Service element of the application layer in the CAN reference model, which
comprises the configuration, initialization and error processing in the network as
well as network-wide process synchronisation. CANopen recognizes four main
states: "initialization", "pre-operational", "operational" and "stopped". NMT-
commands trigger the state transition of a CANopen node. The Network
Management has a Master-Slave structure.

Node Guarding

Cyclic guarding of a node. Node Guarding can be implemented either by means

of →Guard Time or via →Heartbeat.

Node-ID

An individual device in the CAN-network is unmistakeably defined by its node

number (between 1 and 127). This node number is used by →Predefined
Connection Set for the pre-defined identifier allocation. Node-ID 0 is reserved for

→NMT-services.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

10

OD: Object Dictionary

The object dictionary is a data structure via which all objects of a CANopen device
can be addressed. The object dictionary is subdivided into an area with general
information on the device, an area containing the communication parameters
and an area that describes the specific device functionality. The data in the OD
are addressed via an index and a subindex. Via the entries (objects) of the object
dictionary, the application objects of a device such as input and output signals,
device parameters, function or network variables in standardized form are made
accessible via the network. The object dictionary forms the interface between
network and application process.

PDO: Process Data Object

PDOs represent the actual means of transport for the transmission of process
data. A PDO is transmitted by a "Producer" and can be received by one or more
"Consumers". The process data transmitted by a Producer in a PDO can contain a
maximum of 8 bytes. A PDO is transmitted without acknowledgement and
requires an identifier unmistakeably allocated to the PDO. The meaning of the
transmitted data is defined by the identifier used and the PDO-mapping allocated
to a PDO. The communication-specific parameters define the mode of the PDO.
For the management of PDOs, both PDO-Producer and PDO-Consumer require
appropriate data structures. The PDO-Producer manages the data it requires in
the form of so-called TPDO data structures, the data to be received by a PDO-
Consumer are managed by so-called RPDO data structures.

Predefined Connection Set

Preset allocation of the →CAN-ID based on the →Node-ID and on the function
code. The 127 nodes are differentiated via the lower valued bits of the identifier.
For the following communication objects Predefined Connection Set predefines
the CAN-ID: Node Guarding/Heartbeat, Emergency Message, Sync Object, Time
Stamp, Server-SDO 1, RPDO 1 to 4 and TPDO 1 to 4.

RPDO: receive-PDO

→PDO

SDO: Service Data Object

An SDO is a CAN-communication object used for initialization and
parameterization of CANopen devices or for transmission of long data records.
SDOs are used for read or write access to the entries in the object dictionary of a
device. An entry is accessed by stating the index and subindex.

SDO Timeout

An SDO-request must be answered within the timeout time.

Server-SDO

Each device must support at least one server-SDO and thus allow access to the
entries in its object dictionary. The specification of an SDO-Server-object requires
the definition of one CAN-identifier each per transmission direction

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

11

(acknowledged service), and specification of the corresponding Client- or Server-
node if the dynamic structure of SDO-connections is supported.

Sync-object

Sync-object is used for synchronized data collection, synchronized command-
strobing and cyclic transmission of process data. The receipt of a Sync-object
triggers updating and transmission of synchronous messages. For this, a device
(Sync-Producer) cyclically transmits the high-priority Sync-object. The Sync-object

is only completely described with specification of the →Communication Cycle

Period parameter and of the →Synchronous Window Length parameter. If a
parameter is initialized with 0, it has no effect.

Synchronous Window Length

Time window after a →Sync-object within which the →PDOs must be
transmitted, which have synchronous transmission type.

Time-Stamp-Message

This is used for resynchronization of the local timers, to ensure higher
requirements of synchronicity.

Transmission Type

The mode of a →PDO is specified via the transmission type in the communication
profile of a device. CANopen provides the following transmission types for PDOs:

synchronous: the transmission is, depending on a Sync-object

either acyclic: once

or cyclic: with each receipt or after a number of Sync-objects specifiable with the

→Transmission Rate.

asynchronous: the transmission is triggered by a manufacturer-specific or by an
event defined via the device profile.

Remote: the transmission occurs only after being requested by another subscriber
(PDO Consumer).

Transmission Rate

For the cyclic-synchronous mode of a →PDO, the value of the Transmission Rate
represents the number of Sync-objects that must have been received until the
PDO is transmitted again.

TPDO: transmit-PDO

→PDO

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Introduction

12

1.4 Typographical conventions

The following typographical conventions apply to this handbook.

Type Meaning
V20_CN32.EDS User inputs or operating system-specific

elements such as file names etc.
Baudrate Lettering of a windows control

or screen output

TPDO CANopen term

1.5 Support

For additional information on IXXAT products, FAQ lists and installation tips,
please refer to the support section of the IXXAT website (www.ixxat.com), which
also contains information on current product versions and available updates.

If you have any further questions after studying the information on our website
and the manuals, please contact our support department. The support section on
our website contains the relevant forms for your support request. In order to
facilitate our support work and enable a fast response, please provide precise
information on the individual points and describe your question or problem in
detail.

If you would prefer to contact our support department by phone, please also
send a support request via our website first, so that our support department has
the relevant information available.

1.6 Return of defect Hardware

If it is necessary to return hardware, please download the relevant RMA form
from our website and follow the instructions on this form.

In the case of repairs, please also describe the problem or fault in detail on the
RMA form. This will enable us to carry out the repair quickly.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Commissioning

13

2 Commissioning

2.1 System requirements

The software is available for Windows XP, Windows Vista and also Windows
7/8/10 in 32bit as well as in 64bit.

 Minimum requirement

Operating system Windows XP Professional SP2

Processor Pentium4 1,3 GHz

Main memory 512 MB RAM

The system requirements are mainly determined by the Client-application, since
the core functionality of the CANopen Master API runs directly on the CAN-board
independently of the computer.

2.2 Supported CAN-boards

The CANopen Master API primarily works together with so-called active CAN-
boards. These have a microcontroller that executes the CANopen Master
Firmware contained in the API. If the CAN board is equipped with a 16-bit
microcontroller, all available CAN lines can be used independently of one
another.

In this way the following IXXAT CAN interfaces are supported. More detailed
information on the individual capacity limits is given in Appendix B - Performance
characteristics.

PC Interface CAN Interface Order no. Microcontroller

ISA iPC-I 320

iPC-I 320 / 104

1.01.0040

1.01.0043

Dallas 80C320

PCI iPC-I 320 / PCI 1.01.0044
1.01.0039

Dallas 80C320

PCI iPC-I XC16 / PCI
iPC-I XC16 / PMC

1.01.0047
1.01.0049

Infineon XC161

PCI-Express iPC-I XC16 / PCIe 1.01.0053 Infineon XC161

PCI-Express CAN-IB200 / PCIe 1.01.0233
1.01.0234

NIOS II

PC-Card / PCMCIA tinCAN V4 1.01.0028 Dallas 80C320

PC-Card / PCMCIA tinCAN161 1.01.0026 Infineon C161

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Commissioning

14

USB USB-to-CAN II 1.01.0062 Infineon C161U

USB USB-to-CAN compact 1.01.0087

1.01.0088

Infineon C161U

Ethernet CAN@net II / VCI 1.01.0086
 .10200

Freescale
MCF5235

Furthermore, there is a windows library included named
XatCOP60_VCI3.dll that allows for using all other IXXAT CAN Interface
boards such as USB-to-CAN V2 (1.01.0281) based on VCI3. This way
CANopen Master firmware is running as thread in user mode of the Windows
operating system. So it is able to benefit from the internal clock of the system
processor, on the other hand, it is also subjected to the restraints of the
operating system kernel which is to be known as not being real time capable. The
latter makes itself felt, among other things, by variations of the sync cycle time.
Choosing of the variant, i.e. the selection of either the microcontroller specific
firmware or the generic VCI3 firmware is automatic. This means that the
microcontroller variant is always preferred, unless there is none for the desired
CAN board. In terms of programming of your client application there is no
difference between both the variants. The application programming interface as
well as the scope of operation is identical.

Make sure the aforementioned DLL is located in the same folder as the
CANopen Master API DLL itself, otherwise you will get the error
BER_k_BOARD_DLD_ERR when calling the API-function COP_InitBoard().

Access to the CAN-Bus is only possible with IXXAT CAN-interface boards. For
installation of the CAN-interface board used, please refer to the manuals included
with the hardware.

2.3 Before installation

The CANopen Master API installation is depending on the VCI driver software.
This has the advantage that the CANopen Master API is independent of operating
system and hardware. The availability of the CANopen Master API for a certain
operating system/hardware combination therefore depends only on the VCI
support. For an up-to-date overview of the VCI version(s) required for the
CANopen Master API, please consult the IXXAT website at www.ixxat.com. For
downloading of the VCI driver package see the download area on the homepage
www.ixxat.com

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Commissioning

15

The driver of the CAN boards must be installed before the CANopen
Master API, otherwise you will get the error BER_k_VCI_INST_ERR when
calling the API-function COP_COP_InitBoard ().

2.4 The actual installation

Start the file setup61.exe found on the CD supplied and follow the instructions
of the program. You must normally have administrator rights to be able to install
the software successfully.

2.5 Getting Acquainted with the API

There is one identical sample program each for the programming languages
Microsoft C#, Microsoft Visual C++, Borland Delphi, Borland C++ Builder and
Microsoft Visual Basic.NET. The sample program shows how to initialize a
CANopen network and to address an I/O-node with a digital 8-bit input/output.
To find the commands relevant for CANopen, you can search for the abbreviation
COP_. By clicking the button Init CANopen-Master, the following procedure is
followed.

(1) COP_InitBoard registers the CAN-board with the CANopen Master API.

(2) COP_InitInterface initializes the CANopen Master Firmware and
transfers the baudrate.

(3) With COP_AddNode the I/O-node is registered with the Master API using
Node Guarding.

(4) With COP_SearchNode it is checked whether the node really exists in the
network.

(5) COP_CreatePDO is used to configure one Process Data Object PDO for
the input and output.

(6) Now the node is started with COP_StartNode and a timer for polling is
started.

(7) The timer function reads out the RPDO with COP_ReadPDO.

(8) The node outputs are written to with COP_WritePDO.

(9) Finally the network is set to standby (Pre-Operational) with
COP_EnterPreOperational.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Commissioning

16

Figure 2-1 shows this typical sequence of the CANopen Master API function calls
in a Windows application with use of process data objects and service data
objects.

Fig. 2-1: Typical sequence of function calls

COP_InitBoardCOP_InitBoardCOP_InitBoardCOP_InitBoard

COP_InitInterfaceCOP_InitInterfaceCOP_InitInterfaceCOP_InitInterface

COP_AddNodeCOP_AddNodeCOP_AddNodeCOP_AddNode

COP_CreatePDOCOP_CreatePDOCOP_CreatePDOCOP_CreatePDO

COP_StartNodeCOP_StartNodeCOP_StartNodeCOP_StartNode

COP_ReadPDOCOP_ReadPDOCOP_ReadPDOCOP_ReadPDO

COP_WritePDOCOP_WritePDOCOP_WritePDOCOP_WritePDO

COP_ReadSDOCOP_ReadSDOCOP_ReadSDOCOP_ReadSDO

COP_WriteSDOCOP_WriteSDOCOP_WriteSDOCOP_WriteSDO

COP_EnterPreCOP_EnterPreCOP_EnterPreCOP_EnterPre
OperationalOperationalOperationalOperational

COP_ReleaseBoardCOP_ReleaseBoardCOP_ReleaseBoardCOP_ReleaseBoard

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

17

3 Overview

The CANopen Master API provides functions for the CANopen network
management and the CANopen object communication.

Independent CANopen Master Firmware runs on the microcontroller of the IXXAT
CAN-board, which independently configures and intensively uses the CAN-
Controller and the local RAM-memory. For communication with this firmware
two command queues (CMD-queues) are used and for communication with the
network six data queues.

The CANopen Master API DLL loads the firmware into the volatile memory on the
board, sets up the queues and handles editing of the data for the queues.

All commands for CANopen Master Firmware on the board are exchanged via the
two command queues. For fast exchange of communication and emergency
objects the six data queues are used (Figure 3-1). In the multi-line firmware the
queues are available several times, so that complete independence of the CAN
lines is ensured.

CANopen Master API DLL

CANopen Master Firmware on µC

CMD-
Queues1 1

SDO-
Queues1 1

TPDO-
Queue64

RPDO-
Queue112

EMCY-
Queue32

Event-
Queue32

Sync-
Queue2

TS-
Queue1

Client Application

Fig. 3-1 Communication between Master API DLL and Master
Firmware (single-line variant)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

18

The firmware is configured and parameterized in conversational mode via the
command queues. Almost all functions of the CANopen Master API are edited to
operation structures within the DLL, transfered to the firmware and then
processing resp. confirmation by the firmware is awaited (see also section 3.2).

The external CANopen devices are configured with the aid of the two SDO-
queues. API-functions are available for asynchronous SDO-transfer (not blocking
the Windows application) and synchronous SDO-transfer (blocking the Windows
application).

The process data exchange between the Windows application and the CANopen
network takes place by means of the PDO-transmit- and PDO-receive-queue.

Finally there are three other receive-queues by means of which the Windows
application can be informed of emergency objects, net-events and Sync-objects
as required. A Callback or a Message-ID can be assigned to each of these queues,
so that when the corresponding CANopen message is received, a function is
called directly inside the Windows application or a Message is posted to an
application window or a worker thread.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

19

3.1 Function categories

The functions of the CANopen-Master API can be divided into the following
categories. The complete reference is given in section 5.

3.1.1 Basic API-functions

They are used for initialization and parameterization of the API, selection of the
CAN-board and for communication with the Master Firmware on the CAN-board.

• Selection of the CAN-board
- COP_InitBoard

- COP_ReleaseBoard

- COP_GetBoardInfo

• Initialization and parameterization of the API
- COP_InitInterface

- COP_DefineCallbacks

- COP_DefineMsgRPDO

- COP_DefineMsgEvent

- COP_DefineMsgEmergency

- COP_DefineMsgSync

- COP_GetThreadIds

- COP_Reset_DLL

• Communication with the CANopen Master Firmware
- COP_SendMsg

- COP_GetMsg

- COP_SetCommTimeOut

- COP_GetStatus

- COP_TestCommand

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

20

3.1.2 Functions for the network management

These are functions for setting up the network and controlling the individual
CANopen nodes.

• Setting up the CANopen network
- COP_AddNode

- COP_DeleteNode

- COP_SearchNode

- COP_GetNodeInfo

- COP_ChangeNodeParameter

- COP_SetEmcyIdentifier

- COP_ConfigFlyMaster

- COP_StartFlyMaster

- COP_GetStatusFlyMasterNeg

• Controlling the individual CANopen nodes
- COP_StartNode

- COP_StopNode

- COP_ResetComm

- COP_ResetNode

- COP_EnterPreOperational

- COP_GetNodeState

3.1.3 CANopen-object management

For creating and parameterizing CANopen communication objects.

• Process data objects (PDOs)
- COP_CreatePDO

- COP_DeletePDO

- COP_GetPDOInfo

• Service data objects (SDOs)
- COP_CreateSDO

- COP_GetSDOInfo

- COP_SetSDOTimeOut

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

21

• System services
- COP_DefSyncObj

- COP_SetSyncDivisor

- COP_GetSyncInfo

- COP_EnableSync

- COP_DisableSync

- COP_InitTimeStampObj

- COP_StartStopTSObj

- COP_GetTimeStampObj

3.1.4 CANopen communication

For the direct information exchange with the individual CANopen devices.

• Process data objects (PDOs)
- COP_ReadPDO

- COP_ReadPDO_S

- COP_RequestPDO

- COP_WritePDO

- COP_WritePDO_S

• Service data objects (SDOs)
- COP_ReadSDO

- COP_WriteSDO

- COP_PutSDO

- COP_GetSDO

- COP_CancelSDO

• System services
- COP_GetEmergencyObj

- COP_GetEmergencyObj_S

- COP_CheckSync

- COP_GetEvent

3.1.5 LMT services

- COP_LMT_ConfigNode

- COP_LMT_GetAddress

- COP_LMT_ConfigModuleID

- COP_LMT_IdentifyRemoteSlaves

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

22

3.1.6 LSS services

- COP_SetLSSTimeOut

- COP_LSS_InquireAddress

- COP_LSS_InquireNodeID

- COP_LSS_ConfigNodeID

- COP_LSS_ConfigBitTiming

- COP_LSS_ActivateBitTiming

- COP_LSS_IdentifyRemoteSlaves

- COP_LSS_IdentifyNonConfRemoteSlaves

- COP_LSS_Fastscan

3.2 Internal use of the command queues

Almost all functions of the CANopen Master API work internally according to a
fixed plan with COP_SendMsg() and COP_GetMsg(). This plan is shown as an
example in Figure 3-2.

First the command record COP_t_QueueMessage is initialized according to the
DLL-function called by the application program, provided with the command-
Opcode and filled with the function parameters.

This command record is entered in the transmit-command queue by calling
COP_SendMsg(). Then the acknowledgement (confirmation) of the Master
Firmware is awaited by cyclically querying the receive-command queue restricted
by time by calling COP_GetMsg().

The error code is extracted from the received acknowledgement command record
and returned to the application program.

As these two dialog functions are also available to the application program, an
own implementation of the CANopen Master API DLL functionality can be written
if required. The data structures and command opcodes required for this are
contained in the file copcmd. Detailed information is given in Appendix D - Data
structures of the command queues.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Overview

23

Fig. 3-2: Flowchart of a standard request

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

24

4 Application examples

To gain a feeling for the use of the CANopen Master API, this section shows some
typical tasks. For reasons of clarity, error processing is not discussed.

4.1 Sample programs supplied

There is one simple identical sample program DigIODemo.exe each for the
programming languages Microsoft C#, Microsoft Visual C++, Borland Delphi,
Borland C++ Builder and Microsoft Visual Basic.NET. To use it correctly, an I/O-
node standardized in accordance with CiA-401 must be available. The node
should have 8 digital inputs and outputs each. In addition the CAN-identifiers
used must be set according to the Predefined Connection Set. With this a
simple CANopen network consisting of an I/O-Slave and the CANopen Master API
can then be constructed.

The condition for the perfect functioning of the sample programs is the
successful installation of the CANopen Master API. Then the sample programs are
contained in the subdirectory SAMPLES of the Public Documents folder.

4.1.1 Calling sample programs

The sample programs expect the following command line parameters:

<Boardtype>: This parameter defines which CAN-board shall be used for the
CANopen Master API.
The following board names are accepted: IB200, USBV2,
PCI320, XC16, TINCAN161 and CAN@NET.
The easiest way is to enter SELECT here. Then a board selection
dialog is opened in which you can select your board.

<Baudrate>: Baudrate used in kBit/s.

<Node>: The node-ID of the external I/O-node.

<CANline>: Required CAN line (0, 1, 2 or 3) or –1 for single-line firmware
of an active CAN-board (see section 2.2).

4.1.2 Structure of the sample programs

The sample programs consist of a graphic interface with which the states of the
inputs or outputs of the I/O-node are shown and manipulated. The sample
programs roughly follow the procedure described in section 4.4. For further
information, see section2.5.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

25

4.2 Reading an object dictionary entry via SDO

In addition to the PDO functionality described in the previous section, reading an
object dictionary entry with the CANopen Master API is now described.

(1) Initialization of the CAN-board with COP_InitBoard()

The board type (pBoardtype) and the unique Boardidentifier
(pBoardID) as well as the required CAN line on the relevant board are
transfered. If the call is successful, a Boardhandle (pBoardhdl) is
returned that identifies the board with all subsequent API-calls.

(2) COP_InitInterface() initializes the CANopen Master Firmware.
Here the baudrate of the network (baudrate) and the node-ID of the
CANopen Master Firmware itself (node_no) are set. The node-ID is only
relevant for use of the Heartbeat mechanism.

(3) The target node is registered with the Master Firmware with
COP_AddNode(). To be able to work with a node in the network, it must
always be registered with the firmware first. For this internal
management structures are allocated, its mandatory SDO-channel
(Server-SDO 1) is being established, and status variables are set.
With node registration, the following can be set: node-ID and node
monitoring mechanism (Guarding or Heartbeat).

(4) Now the CAN- Identifier (CAN-ID), for example, can be read out from the
object dictionary for the first receive-process-data-object (RPDO) with
COP_ReadSDO().
This information is given according to the CANopen-specification DS-301
under [1400sub01] in the node ODs. An unsigned32-value is returned
with the CAN-ID. Normally the value there is set according to the
Predefined Connection Set (i.e. CAN-ID = 0x200 + node-ID). The
basic-CAN-ID-value is also found as a constant in the main header cop
under COP_k_S_ID_RxPDO1. The actual identifier is calculated as
follows:
 node-ID + COP_k_S_ID_RxPDO1

(5) Finally the client application deregisters from the DLL again with
COP_ReleaseBoard().
Attention: this must only be done if the application is closed and not
after each access! It completely releases the CAN-board and removes the
CANopen Master Firmware from the microcontroller.

You now have the necessary equipment to determine all node parameters of a
CANopen-network through SDO read accesses, as also implemented in the
additional demo application NetManage.exe

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

26

4.3 I/O-node with TPDO and RPDO Polling

The control of a simple I/O-node with a transmit-PDO (TPDO) for the outputs and
a receive-PDO (RPDO) for the inputs introduces the use of PDOs in addition to
the SDO-example.

After the last exercise you can now read out all necessary node parameters from
the network. We use this to determine all parameters of the RPDO and TPDOs of
the I/O-node.

(1) COP_InitBoard() as for exercise 4.2

(2) COP_InitInterface() as for exercise 4.2

(3) COP_AddNode() as for exercise 4.2

(4) With COP_ReadSDO() the following communication parameters are
collected from the object dictionary (only necessary if the values are not
already known):

PDO-parameters RPDO1 Index Subindex
(outputs of the module) (hex) (hex)

CAN-ID 1400 1

Mode (synchronous, asynchronous) 1400 2

Number of application objects 1600 0

Application objects (Mapping) 1600 1..40

PDO-parameters TPDO1 Index Subindex
(inputs of the module) (hex) (hex)

CAN-ID 1800 1

Mode (synchronous, asynchronous) 1800 2

Number of application objects 1A00 0

Application objects (Mapping) 1A00 1..40

(5) By calling COP_CreatePDO() with type = COP_k_PDO_TYP_RX the
RPDO can now be adapted.
The CAN-ID (CANid), the transmission type (mode) and the data length in
bytes (length) of the PDO are put together from the values determined.
The data length is calculated from the sum of all object lengths of the
application objects determined:
 length = sum([1600sub01..40] & 0x000000ff) / 8

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

27

(6) By calling COP_CreatePDO() with type = COP_k_PDO_TYP_TX the
TPDO is also updated.
The CAN-ID (CANid), the transmission type (mode) and the data length in
bytes (length) of the PDO are put together from the values determined.
The data length is calculated again from the sum of all object lengths of
the application objects determined:
 length = sum([1A00sub01..40] & 0x000000ff) / 8

(7) The node is now started with COP_StartNode().
To be able to transmit or receive PDOs, the relevant node must be set to
Operational mode.

(8) The I/O-outputs can now be set by the application with
COP_WritePDO().

(9) To query the I/O-inputs determined by the module, COP_ReadPDO()
must be called cyclically. This is normally done in a loop until all PDOs are
read out of the RPDO-Queue.

(10) To close the program this time, the node (or the whole network) is
stopped with the NMT-command COP_StopNode(). A restart is
facilitated if the node is simply put on standby with
COP_EnterPreOperational().

(11) Then the application must call COP_ReleaseBoard() again as last
command.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

28

4.4 I/O-node with TPDO and RPDO Callback

The signalling of the receipt of RPDOs, emergency objects, status messages and
Sync-objects replaces the Polling of the Master Firmware.

This exercise is an addition to the previous exercise with Polling. Alternatively to
the declaration of Callback-functions, Windows messages can also be defined by
means of COP_DefineMsgRPDO
COP_DefineMsgEvent
COP_DefineMsgEmergency
COP_DefineMsgSync, which are posted for signalling to a window of the Client
application.

(1) to (6) as previous example.

(7) So that the application can be called back by the DLL, a function of type
COP_t_EventCallback must be implemented.

(8) The address of this Callback function is declared with
COP_DefineCallbacks() as parameter fp_rx_pdo with the CANopen
Master API.

(9) With COP_StartNode() the node (the network) can be started again.

(10) If the CANopen-node transmits a PDO, this is entered in the RPDO-Queue
by the Master Firmware and the fp_rx_pdo Callback function is called
with the queue number as parameter.

(11) In the Callback the application must read out the RPDO-Queue with
COP_CreatePDO() until it is empty.
It is to be noted here that the application program is in the Thread-
context of the Master API DLL and thus protected elements (members) of
the application are not accessible or data pointers may be incorrect.
After exiting the Callback function, the callback thread of the calling
Master API DLL is returned to.

(12) Additional transmission of the PDO can be triggered with
COP_RequestPDO().

(13) If the application is to be closed, follow the procedure in the previous
examples.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Application examples

29

4.5 Altering the PDO-mode

Here an example is given of the (re-)configuration of a node, so that PDOs are
now transmitted synchronously (only after receipt of the synchronization object)
instead of asynchronously (transmitted by node on own initiative).

A separate subindex exists in the communication record of the PDOs for the
mode (Transmission type) of a process data object. In example 4.3 it has
already been read out (RPDO=[1400sub02]; TPDO=[1800sub02]). This entry is
now to be written on. This allows the mode to be altered.

This example builds on the previous examples.

(1) to (4) as in example 4.3

(5) Now the TPDO of the node is set to synchronous transmission. For this a
1 is written on [1800sub02] by means of COP_WriteSDO().

(6) Before the synchronization object is transmitted by the Master Firmware,
it can be configured with the function COP_DefSyncObj().
Here it is possible to set the cycle time (sync_period).

(7) The cyclic transmission of the Sync-object by the Master Firmware is now
started with COP_EnableSync() and can be stopped again with
COP_DisableSync().

(8) As only the mode of the transmit-PDO has been altered, it is possible to
proceed as in example 4.3 under (5) to (11).

However it is necessary here to briefly discuss the differences between
synchronous and asynchronous transmission. For further information on this, see
Appendix F - CANopen-specific aspects.

- Asynchronous transmission:
A node transmits a PDO when for example a change in value has
occured or it is requested to do so by a PDO-request.

- Synchronous transmission:
As soon as the network-Master transmits a Sync-object, the PDO is
sent by the node. The CANopen-Master stores the PDO.
When the next Sync-object is received, all previously received
synchronous PDOs of the last Sync-cycle are passed on to the Client
application. The Receive-PDOs therefore always run behind a Sync-
period (as required in the specification).

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

30

5 Individual functions

This section contains the complete function reference of the CANopen Master
API.

The Function prototypes are found in the language-dependent header file cop.h,
cop.vb, cop.cs or cop.pas

5.1 Basic API-functions

The basic API functions are used for the initialization and parameterization of the
API, selection of the CAN-board and for communication with the Master
Firmware on the CAN-board.

5.1.1 COP_InitBoard

Description: With COP_InitBoard an IXXAT CAN-board is allocated for
use by the CANopen Master API. When first called, the CAN-
board is reset, the Master Firmware loaded onto the board and
started and the communication queues created.
With a subsequent call, additional CAN lines are activated. This
function shall be called just once for every CAN line. Therefore,
to use both CAN lines of a CAN board equipped with two CAN
controllers, two calls are necessary, which only differ in the first
parameter pBoardhdl and in the last parameter lCANline.

If the function was successful, a Boardhandle is returned that
identifies the CAN board/line combination unmistakeably. This
Boardhandle is transfered as first parameter with every
function of the CANopen Master API.
As from Version 6 CANopen Master API supports all VCI3 CAN
boards – even those for which there is no specific firmware
(see chapter 2.2) available. In such cases, the so called generic
VCI3 firmware is being utilised, which is a windows DLL
included in the scope of delivery. It supports up to 4 CAN
controllers per board. Master API DLL is capable of handling a
maximum of 12 CAN boards simultaneously.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

31

Prototype: short COP_InitBoard(COP_t_HANDLE* pBoardhdl,short COP_InitBoard(COP_t_HANDLE* pBoardhdl,short COP_InitBoard(COP_t_HANDLE* pBoardhdl,short COP_InitBoard(COP_t_HANDLE* pBoardhdl,
 GUID* pBoardtype,GUID* pBoardtype,GUID* pBoardtype,GUID* pBoardtype,
 GUID* pBoardID,GUID* pBoardID,GUID* pBoardID,GUID* pBoardID,
 long lCANline);long lCANline);long lCANline);long lCANline);

Parameters:

Parameter Dir. Explanation

pBoardhdl (out) Identifies this CAN board/line combination with
all subsequent function calls.

pBoardtype (in/out) Type of the CAN-board according to header file
vcguid resp. xatbrds

See section 2.2 for a list of those CAN-boards,
that are supported by means of a custom
firmware:
GUID_IPCIXC16PCI_DEVICE,
GUID_IPCIXC16PCIE_DEVICE,
GUID_IPCI320PCI_DEVICE,
GUID_IPCI320104_DEVICE,
GUID_TINCANV4_DEVICE,
GUID_USB2CANCOMPACT_DEVICE,
GUID_USB2CANII_DEVICE,
GUID_TINCAN161_DEVICE,
GUID_CANATNET2_DEVICE,
GUID_CANIB200_PCIE_DEVICE.

Also, there are two special values defined in the
main header cop:

COP_DEFAULTBOARD means that the one
board defined in the VCI2 IXXAT Control
Panel Applet, the so-called standard CAN-
board (marked there in blue) should be
used. With VCI3, simply the only one
installed CAN board will be used. This is the
typical application with exactly one CAN-
board in the computer.

COP_BOARDDIALOG means that a board
selection dialog is to be displayed, from
which the user himself then selects the
CAN-board to be used.

Value is always returned at
COP_DEFAULTBOARD and
COP_BOARDDIALOG and can be saved for
example in the persistent configuration data of
the Client application.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

32

pBoardID (in/out) Unique identifier of a CAN-board.

Is used together with pBoardtype in order to
unmistakeably identify a board locally. If only
one board of the respective type is present,
enter the value COP_1stBOARD here.

Several installed CAN-boards of the same type
can be detected and differentiated by the Client
application giving consecutive pBoardID
values in each case for the same pBoardtype
(beginning with 0). In this way, the n-th board
of this type is taken. For this purpose, there are
respective tokens COP_1stBOARD,
COP_2ndBOARD, COP_3rdBOARD etc already
#defined in the header.

Value is always returned and can be saved for
example in the persistent configuration data of
the Client application.

lCANline (in) Selection of the CAN line to be used. Several
default values are defined in the main header
cop for this:

COP_FIRSTLINE First CAN line. This is
 the default value.

COP_SECONDLINE Second CAN line (if it
 exists).

COP_THIRDLINE Third CAN line (if it
 exists).

COP_FOURTHLINE Fourth CAN line (if it
 exists).

COP_SINGLELINE Single line firmware.
In the case of applications where maximum
performance is required using only the first
CAN line. In this way, a specially optimized
single line firmware is loaded onto the CAN
board, that due to axed CAN differentiation
can work somewhat faster.

Return values:

Return value Description

BER_k_OK Success

BER_k_ERR General error, not further specified

BER_k_BOARD_ALREADY_USED Required CAN-board already being
used by CANopen Master API

BER_k_ALL_BOARDS_USED Master API has reached maximum
capacity of 4 simultaneously operable
CAN-boards

BER_k_CANNOT_SEARCH_BOARD No board selected, as the user has
cancelled the IXXAT hardware-
selection dialog with “Cancel“-
button

BER_k_BOARD_NOT_FOUND Specified board type and key do not
match any available CAN-board

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

33

BER_k_BOARD_NOT_SUPP Required CAN-board is not
supported by CANopen Master API
due to unsuitable Microcontroller or
memory extension

BER_k_WRONG_FW The version number supplied by the
firmware is unsuitable.
Indicates faulty communication
between PC and µC

BER_k_USED_FROM_OTHER_PROCESS Required CAN-board is already
occupied by another CAN-application

BER_k_PC_MC_COMM_ERR No communication could be set up
with the CAN-board.

BER_k_BOARD_DLD_ERR An error has occurred during
firmware download.

Most probable reason: The I/O-
address range is being used by
another hardware or driver

This error also indicates that the
generic VCI3 firmware library is
missing or could not be loaded.

BER_k_NO_SUCH_CANLINE Required CAN line does not exist or is
not supported by the firmware

BER_k_CANLINE_USED Required CAN line is already in use

BER_k_VCI_INST_ERR Basic driver VCI not available or
defective

BER_k_BOARD_ERR Incorrect or unknown board type

BER_k_CCI_INST_ERR CCI installation error (internal)

BER_k_SDO_INST_ERR Internal error when instancing or
configuring the SDO handler
(internal)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

34

5.1.2 COP_ReleaseBoard

Description: With COP_ReleaseBoard, an IXXAT CAN board/line
combination used by the CANopen Master API is cancelled and
the board released where appropriate.
This function must always be called exactly once for each
board/line combinationused by COP_InitBoard() in order to
reset the relevant CAN controller. Only when the last CAN line
of a board has been released in this way is the Master
Firmware unloaded and the board released for other
applications.
If on the other hand another CAN line is in operation, another
one can be activated at any time with COP_InitBoard().

Prototype: void COP_ReleaseBoard(void COP_ReleaseBoard(void COP_ReleaseBoard(void COP_ReleaseBoard(COP_t_HANDLE boardhdl)COP_t_HANDLE boardhdl)COP_t_HANDLE boardhdl)COP_t_HANDLE boardhdl)

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

Return values:
none

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

35

5.1.3 COP_GetBoardInfo

Description: With COP_GetBoardInfo information on the hardware
properties of the CAN-board used and the version numbers of
the software components are queried.

Prototype: short COP_GetBoardInfo(COP_t_HANDLE boardhdl,short COP_GetBoardInfo(COP_t_HANDLE boardhdl,short COP_GetBoardInfo(COP_t_HANDLE boardhdl,short COP_GetBoardInfo(COP_t_HANDLE boardhdl,
 COP_BOARD_INFO* sp_info);COP_BOARD_INFO* sp_info);COP_BOARD_INFO* sp_info);COP_BOARD_INFO* sp_info);

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN-board/line combination

sp_info (out) Pointer to a buffer provided by the Client-
application of data type COP_BOARD_INFO,
which records the information

COP_BOARD_INFO Alignment: 1 byte

Field Type Meaning

hw_version WORD Revision number of the CAN-board

e.g. 0x0101-> V 1.01

fw_version WORD Version number of the Master Firmware

e.g. 0x0640-> V 6.40

sw_version WORD Version number of the CANopen Master API

e.g. 0x0600-> V 6.00

board_seg DWORD (I/O-address of the board used)

Legacy element, it is no longer used with
Master API 6, except for:

If the generic VCI3 firmware is running, the
value 0x100 is returned here.

irq_num WORD (Interrupt request line IRQ used by the board)

Legacy element, it is no longer used with
Master API 6

canlines WORD Number of supported CAN lines

serial_num[16] char[] Serial number of the CAN-board

str_hw_type[40] char[] Description of the card type

Return values:

Return value Description

BER_k_OK Success

BER_k_ERR Handle invalid

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

36

5.1.4 COP_InitInterface

Description: With COP_InitInterface the firmware is parameterized on
the CAN-board.
Here the baudrate of the network and the node monitoring
mechanism to be used by the CANopen Master Firmware is
defined.
The call of COP_InitInterface together with
COP_InitBoard forms a logical unit and the successful
execution of these two initializers is a condition for all further
functions of the other function categories of the CANopen
Master API.
Comments on the value range and the resolution of hbTime
can be found in Appendix H - Timer resolutions and value
ranges.

Contrary to most of the other API functions, this one
must not be called again during operation, because it
performs basic initialisations, amongst other things, of
the internal firmware data.
Only the heartbeat time of the firmware might be
changed retroactively by calling
COP_ChangeNodeParameter().

Prototype: short COP_InitInterface(COP_short COP_InitInterface(COP_short COP_InitInterface(COP_short COP_InitInterface(COP_t_HANDLE boardhdl,t_HANDLE boardhdl,t_HANDLE boardhdl,t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 WORD hbTime,WORD hbTime,WORD hbTime,WORD hbTime,
 DWORD AddFeaturDWORD AddFeaturDWORD AddFeaturDWORD AddFeatures);es);es);es);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Number of the baudrate table to be used.

There are two different tables:

COP_k_BAUD_CIA Table with the
baudrates specified by CiA in CiA-301.
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming values. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

37

baudrate (in) The predefined baudrates of both tables. The
following values are permissible:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

node_no (in) Node-ID of the CANopen Master Firmware
between 1 and 127.

A node-ID that diverges from the standard
value 0 is only necessary if the CANopen
network is operated with the Heartbeat node
monitoring mechanism. The health of CANopen
Master Firmware can thus be monitored by
other subscribers.

hbTime (in) Heartbeat-interval of the CANopen Master
Firmware in milliseconds; 0 for deactivated.

AddFeatures (in) Activation of additional functionality.

There are three different predefined values:

COP_k_NO_FEATURES No additional
functionality. Default value.
COP_k_FEATURE_FLYING_MASTER
 Activation of the Flying Master
functionality in accordance with CiA-302. Is not
supported by all board types (see Appendix B -
Performance characteristics).
COP_k_FEATURE_LOWSPEED
 Activation of Low Speed bus
coupling instead of the default HighSpeed
coupling. Note that the baudrate is limited to
125kB (COP_k_125_KB) with LowSpeed.

Return values:

Return value Description

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Invalid parameter value

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the
transmit-command queue

BER_k_TIMEOUT No response from Master Firmware

BER_k_CANLINE_USED CAN line already initialised

COP_k_NO_FLY_MASTER_PRESENT Flying Master functionality not
supported

COP_k_NO_LOWSPEED LowSpeed bus coupling not present or
not supported

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

38

5.1.5 COP_DefineCallbacks

Description: With COP_DefineCallbacks, functions from the Client-
application of type COP_t_EventCallback are declared to
the CANopen Master API, which are then called by the API in
the case of a new queue object.
There are four separate queues for the receipt of CANopen
communication objects. These are the PDO-receive queue for
process data objects, the EMCY-queue for emergency objects,
the Event-queue for network- or firmware-events and the Sync-
queue for Sync-objects. A separate callback function can be
defined for each of these four queues or NULL if not required.
Within the PDO callback function, COP_ReadPDO() should be
called until the PDO-receive queue is empty.
In the Emergency Callback function,
COP_GetEmergencyObj() is called until the EMCY-queue is
emptied.
The same applies to the Event and Sync-callback function. Here
the functions COP_GetEvent() or COP_CheckSync() resp.
are used to read out the queues.
It is possible to call this API function several times when the
program is running, for example to “deregister” callback
functions temporarily, to “re-register” or to define additional
callback functions.
As the boardhdl identifies a specific CAN board/line
combination, different callback functions can also be defined
for the various CAN lines.

The Sync-queue is filled internally with a message for
each Sync-object after the function () is called. For this
reason the Sync-Queue must regularly be read until
empty with the function COP_CheckSync(). If this is not
done, increased CPU-load is to be expected after a
certain time due to internal queue overruns.

Prototype: short COP_DefineCallbacks(short COP_DefineCallbacks(short COP_DefineCallbacks(short COP_DefineCallbacks(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 COP_t_EventCallback fp_rx_pdo,COP_t_EventCallback fp_rx_pdo,COP_t_EventCallback fp_rx_pdo,COP_t_EventCallback fp_rx_pdo,
 COP_tCOP_tCOP_tCOP_t_EventCallback fp_emergency,_EventCallback fp_emergency,_EventCallback fp_emergency,_EventCallback fp_emergency,
 COP_t_EventCallback fp_net_event,COP_t_EventCallback fp_net_event,COP_t_EventCallback fp_net_event,COP_t_EventCallback fp_net_event,
 COP_t_EventCallback fp_sync);COP_t_EventCallback fp_sync);COP_t_EventCallback fp_sync);COP_t_EventCallback fp_sync);

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

39

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN-board/line combination

fp_rx_pdo (in) This function is called when a process data
object (PDO) has been received.
See also the description of COP_ReadPDO()

fp_emergency (in) This function is called when an emergency
object (EMCY) has been received.
See also the description of
COP_GetEmergencyObj()

fp_net_event (in) This function is called when a network event
has occured.
See also the description of COP_GetEvent()

fp_sync (in) This function is called when a (self-transmitted)
Sync-Object has been received.
See also the description of COP_CheckSync()

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_BADCALLBACK_PTR An invalid function pointer is given

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

40

5.1.6 COP_t_EventCallback

Description: COP_t_EventCallback is a function prototype for functions
within the Client-application, which are registered with the
CANopen Master API with COP_DefineCallbacks() and
called for signalling of a new object in a receive-data queue.

Prototype: typedef void (CALLBACK* COP_t_EventCallback)(typedef void (CALLBACK* COP_t_EventCallback)(typedef void (CALLBACK* COP_t_EventCallback)(typedef void (CALLBACK* COP_t_EventCallback)(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 UINT8 quUINT8 quUINT8 quUINT8 que_num, e_num, e_num, e_num,
 UINT8 canline);UINT8 canline);UINT8 canline);UINT8 canline);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

que_num (in) Contains the queue ID.

The following values are possible:
COP_M2P_QUEUE_PDO0 bzw.
COP_M2P_QUEUE_PDO1
COP_M2P_QUEUE_EMERGENCY0 bzw.
COP_M2P_QUEUE_EMERGENCY1
COP_M2P_QUEUE_EVENT0 bzw.
COP_M2P_QUEUE_EVENT1
COP_M2P_QUEUE_SYNC0 bzw.
COP_M2P_QUEUE_SYNC1

The last digit of the constants stands in each
case for the CAN line

canline (in) CAN line, on which the new object was received

Return values:
none

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

41

5.1.7 COP_DefineMsgRPDO
COP_DefineMsgEvent
COP_DefineMsgEmergency
COP_DefineMsgSync

Description: With these functions Windows-messages are defined that are
posted to a window of the Client application in the case of a
new queue object.
The wParam of the message contains the Boardhandle, the
lParam contains the queue number similar to parameter
que_num of function prototype COP_t_EventCallback.
There are four separate queues for the receipt of CANopen
communication objects. These are the PDO-receive queue for
process data objects, the EMCY-Queue for emergency objects,
the Event-Queue for network- or Firmware-events and the
Sync-Queue for Sync-objects.
For each of these four queues with the correspondent function
COP_DefineMsgRPDO(), COP_DefineMsgEvent(),
COP_DefineMsgEmergency(), COP_DefineMsgSync() a
separate Windows-message, thread message or both can be
defined. If observation of a queue is undesired, 0 can also be
entered for the corresponding function parameter.
Within the PDO Message Handler, COP_ReadPDO() should be
called until the PDO-receive queue is empty.
In the Emergency Message Handler,
COP_GetEmergencyObj() is to be called until the EMCY-
Queue is empty.
The same applies to the Event and Sync-Message Handler. Here
the functions COP_GetEvent() or COP_CheckSync() resp.
are used to read out the queues.
It is possible to call this API function several times when the
program is running, for example to “deregister” callback
functions temporarily, to “re-register” or to define additional
callback functions.
As the boardhdl identifies a specific CAN board/line
combination, different callback functions can also be defined
for the various CAN lines.

After calling the function COP_EnableSync(), the Sync-
Queue is filled with a message internally for each Sync-
object. For this reason the Sync-Queue must regularly
be read until empty with the function COP_CheckSync().

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

42

If this is not done, increased CPU-load is to be expected
after a certain time due to internal queue overruns.

Prototype: short COP_DefineMsgCCCC(COP_t_HANDLE boardhdl,short COP_DefineMsgCCCC(COP_t_HANDLE boardhdl,short COP_DefineMsgCCCC(COP_t_HANDLE boardhdl,short COP_DefineMsgCCCC(COP_t_HANDLE boardhdl,
 HWND hWnd,HWND hWnd,HWND hWnd,HWND hWnd,
 DWORD idThread,DWORD idThread,DWORD idThread,DWORD idThread,
 UINT UINT UINT UINT Msg);Msg);Msg);Msg);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

hWnd (in) Handle of the window to which given Msg
message is to be posted.

A value of 0 deactivates the message posting.

idThread (in) Identifier of the thread to which given Msg
message is to be posted.

A value of 0 deactivates the message posting.

Msg (in) This message is posted when an object of the
respective queue has been received.

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_IV An invalid window handle was given

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

43

5.1.8 COP_GetThreadIds

Description: The thread identifiers of the internal CANopen Master API DLL
poll threads for the recieve queues can be read out with
COP_GetThreadIds.
A separate poll thread is started in the Master API DLL for each
of the four queues for the reception of CANopen
communication objects if a corresponding callback function or
message has been defined for the client application. These poll
threads are instanced and destroyed as required when the API
functions COP_DefineCallbacks() and
COP_DefineMsgRPDO
COP_DefineMsgEvent
COP_DefineMsgEmergency
COP_DefineMsgSync are called.
The same poll thread is used for queues of the same name of
all CAN lines of one board.

This COP_GetThreadIdsCOP_GetThreadIdsCOP_GetThreadIdsCOP_GetThreadIds()()()() function enables the client
application immediate access to the relevant poll
thread in the Master API DLL via the Windows function
OpenThread()OpenThread()OpenThread()OpenThread(), for example in order to change its
priority or to stop it. As these interventions possibly
have serious consequences for the stability of the
Master API DLL or of the client application, they are
generally not recommended.

Prototype: short COP_GetThreadIds(short COP_GetThreadIds(short COP_GetThreadIds(short COP_GetThreadIds(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 PUINT pPdoThreadId,PUINT pPdoThreadId,PUINT pPdoThreadId,PUINT pPdoThreadId,
 PUINT pEmcyThreadId,PUINT pEmcyThreadId,PUINT pEmcyThreadId,PUINT pEmcyThreadId,
 PUINT pEventThreadId,PUINT pEventThreadId,PUINT pEventThreadId,PUINT pEventThreadId,
 PUINT pSyncThreadId);PUINT pSyncThreadId);PUINT pSyncThreadId);PUINT pSyncThreadId);

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN board/line combination

pPdoThreadId (out) Identifier of the poll thread for the PDO receive
queues

pEmcyThreadId (out) Identifier of the poll thread for the EMCY
queues

pEventThreadId (out) Identifier of the poll thread for the event
queues

pSyncThreadId (out) Identifier of the poll thread for the sync queues

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

44

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_CCI_INST_ERR Initialization of the board incomplete or
defective

BER_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

45

5.1.9 COP_Reset_DLL

Description: With COP_ResetDLL the CANopen Master DLL is re-initialized
to be able to register the board again in the event of a
program abort (without release of the board) in an interpreter
debugger such as Visual Basic.

All registered CAN-boards and all CAN lines will be
deregistered.

Prototype: void COP_Reset_DLL();void COP_Reset_DLL();void COP_Reset_DLL();void COP_Reset_DLL();

Parameters:
none

Return values:
none

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

46

5.1.10 COP_SendMsg

Description: With COP_SendMsg an entry of type COP_t_Message is
written to the transmit-command queue.
A list of the record fields and the supported command-
Opcodes is given in Appendix D - Data structures of the
command queues.

Prototype: short COP_SendMsg(COP_t_HANDLE boardhdl,short COP_SendMsg(COP_t_HANDLE boardhdl,short COP_SendMsg(COP_t_HANDLE boardhdl,short COP_SendMsg(COP_t_HANDLE boardhdl,
 COP_t_Message* sp_message);COP_t_Message* sp_message);COP_t_Message* sp_message);COP_t_Message* sp_message);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sp_message (in) Pointer to the operation record for the Master
Firmware

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

47

5.1.11 COP_GetMsg

Description: With COP_GetMsg an entry of type COP_t_Message is read
out of the receive-command queue.
A list of the record fields and the supported command-
Opcodes is given in Appendix D - Data structures of the
command queues.

Prototype: short COP_GetMsg(COP_t_HANDLE boardhdl,short COP_GetMsg(COP_t_HANDLE boardhdl,short COP_GetMsg(COP_t_HANDLE boardhdl,short COP_GetMsg(COP_t_HANDLE boardhdl,
 COP_t_Message* sp_message);COP_t_Message* sp_message);COP_t_Message* sp_message);COP_t_Message* sp_message);

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN-board/line combination

sp_message (out) Pointer to the Confirmation record for the
response of the Master Firmware

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_TIMEOUT Delay time expired. No entry found in the
Receive-command queue.

BER_k_PC_MC_COMM_ERR Internal error during access of the receive
command queue.

BER_k_DATA_CORRUPT Wrong sequence number in firmware response.
Failure of transmission path (USB, ethernet, …)
from windows-DLL to device firmware.

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

48

5.1.12 COP_SetCommTimeOut

Description: With COP_SetCommTimeOut the delay time is defined that
determines how long to wait for an acknowledgement of the
Master Firmware.
With almost every function of the CANopen Master API, an
operation record is compiled within the DLL for the Master
Firmware, transfered to it by means of COP_SendMsg() and in
COP_GetMsg() processing or confirmation by the Master
Firmware is awaited as described in section 3.2 Internal use of
the command queues. If the set delay time is exceeded, the
relevant function returns with the return value
BER_k_TIMEOUT.
The standard value for the delay time is 5 seconds.

This communication delay time is internally coupled to
the SDO delay time, as the SDO delay time is
subordinate to the communication delay time. When
the communication delay time is set to a value less than
the SDO delay time, the SDO delay time is therefore
also automatically reduced.

Prototype: short COP_SetCommTimeOut(COP_t_HANDLE boardhdl,short COP_SetCommTimeOut(COP_t_HANDLE boardhdl,short COP_SetCommTimeOut(COP_t_HANDLE boardhdl,short COP_SetCommTimeOut(COP_t_HANDLE boardhdl,
 WORD w_timeout);WORD w_timeout);WORD w_timeout);WORD w_timeout);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

w_timeout (in) New value for the delay time in milliseconds.
The value range is
55 <= w_timeout <= 65535.
Smaller values are rounded up internally.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

49

5.1.13 COP_GetStatus

Description: With COP_GetStatus the status of the Master Firmware and
the status of the Data Link Layer on the CAN-board are
queried.
A change of the status of the data link layer is also signaled via
event-queue and can be read out by calling COP_GetEvent().

Prototype: short COP_GetStatus(COP_t_HANDLE boardhdl,short COP_GetStatus(COP_t_HANDLE boardhdl,short COP_GetStatus(COP_t_HANDLE boardhdl,short COP_GetStatus(COP_t_HANDLE boardhdl,
 BYTE* state_master,BYTE* state_master,BYTE* state_master,BYTE* state_master,
 BYTE* state_err_dll);BYTE* state_err_dll);BYTE* state_err_dll);BYTE* state_err_dll);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

state_master (out) Status of the CANopen Master Firmware.

The following values are possible:

COP_k_INIT Master is
parameterized and ready for use (function
COP_InitInterface() has already been
called)

COP_k_NOT_INIT Master has not yet
been parameterized by function
COP_InitInterface()

state_err_dll (out) Status of the Data Link Layer of the Master
Firmware.

The following values are possible:

COP_k_DLL_NOERR No error
COP_k_DLL_RXOVR Receive queue overrun
COP_k_DLL_TXOVR Transmit queue overrun
COP_k_DLL_COVR CAN-Controller:
 overrun
COP_k_DLL_BOFF CAN-Controller: In
 Bus-Off state
COP_k_DLL_ESET CAN-Controller: Error-
 Statusbit set
COP_k_DLL_ERESET CAN-Controller: Error-
 Statusbit reset

Return values:

Return value Description

BER_k_OK Success

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

50

5.1.14 COP_TestCommand

Description: With COP_TestCommand it is possible to determine whether
the firmware has been correctly loaded onto the CAN-board
and started.
For this a test string is requested and checked. At the same
time it is also checked whether the communication between
CANopen Master API DLL and the Master Firmware is working
correctly via both command queues.

Prototype: short COP_TestCommand(COP_t_HANDLE boardhdl);short COP_TestCommand(COP_t_HANDLE boardhdl);short COP_TestCommand(COP_t_HANDLE boardhdl);short COP_TestCommand(COP_t_HANDLE boardhdl);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue; transmit-command queue not
available

BER_k_TIMEOUT No response from Master Firmware; firmware
not started or receive-command queue not
available

BER_k_DATA_CORRUPT Corrupt data received, Communication path
(USB, Ethernet) disturbed

COP_k_OK Firmware started, communication working.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

51

5.2 Functions for the network management

The functions for the network management are used to set up the network and
control the individual CANopen nodes.

5.2.1 COP_AddNode

Description: With COP_AddNode a new node is registered with the Master
Firmware and thus added to the network management.
With this process internal management structures and status
variables are initialized, so that the node registration is the
condition for any communication with the corresponding
CANopen device. In addition, the first 4 receive- and transmit-
PDOs according to Predefined Connection Set are
established, so COP_CreatePDO() does not have to be called
for these 8 PDOs.
The parameter NgOrHb states whether the node monitoring is
carried out via Node-Guarding or by means of Heartbeat-
message. Mixed mode of the two node monitoring
mechanisms is permitted.
In the case of Heartbeat it’s up to the Client Application to
configure the corresponding Object Dictionary entry [1017.0]
(Producer Heartbeat Time) of the node appropriately, so that
the node actually generates heartbeat messages.
The node monitoring begins when the function
COP_StartNode() or COP_EnterPreOperational() is
called (see also appendix F - Node guarding and node states).
The current state of a network participant can be queried by
COP_GetNodeState().
Information on the value range and the resolution of the
GuardHeartbeatTime is given in Appendix H - Timer
resolutions and value ranges.

Depending on the CAN-board used, the number of
nodes that can be managed simultaneously varies.
USB-to-CAN compact as well as all 320-based boards
are not able to support 127 nodes simultaneously. Refer
to Appendix B - Performance characteristics for the
exact values.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

52

Prototype: short COP_AddNode(COP_t_HANDLE boardhdl,short COP_AddNode(COP_t_HANDLE boardhdl,short COP_AddNode(COP_t_HANDLE boardhdl,short COP_AddNode(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE NgOrHb,BYTE NgOrHb,BYTE NgOrHb,BYTE NgOrHb,
 WORD GuaWORD GuaWORD GuaWORD GuardHeartbeatTime,rdHeartbeatTime,rdHeartbeatTime,rdHeartbeatTime,
 BYTE lifetimefactor);BYTE lifetimefactor);BYTE lifetimefactor);BYTE lifetimefactor);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the external CANopen device
(between 1 and 127)

NgOrHb (in) Definition of the monitoring mechanism
applicable for the node.

The following values are permitted:

COP_k_NODE_GUARDING Node is to be
guarded, i.e. cyclic request of a predefined
toggling CAN-telegram by the Master

COP_k_HEARTBEAT Node sends Heartbeat
message cyclically, i.e. node sends a predefined
CAN-telegram on own initiative

GuardHeartbeatTime (in) Guardtime in milliseconds.

With COP_k_NODE_GUARDING this parameter
states the so-called Guardtime, i.e. the time
period between two Guarding-request
telegrams.
0 means that the node is not to be guarded at
all.

With COP_k_HEARTBEAT this parameter states
the so-called Heartbeattime, i.e. the time period
between two Heartbeat-messages.

lifetimefactor (in) Defines the number of unsuccessful attempts at
a Guard-request by the Master to be permitted
(between 1 and 255). If this number is
exceeded without a response of the node being
received, the firmware signals a
COP_k_NMT_EVT in the Event-Queue.

Only for COP_k_NODE_GUARDING.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR Required CAN resource not available

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

53

5.2.2 COP_DeleteNode

Description: With COP_DeleteNode a node is removed from the internal
node list of the CANopen-Master and therefore from the
network-management.
The external node should first be stopped with NMT
commands or reset, so that the network remains in a defined
state.

Prototype: short COP_DeleteNode(COP_t_HANDLE boardhdl,short COP_DeleteNode(COP_t_HANDLE boardhdl,short COP_DeleteNode(COP_t_HANDLE boardhdl,short COP_DeleteNode(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the external CANopen device
(between 1 and 127)

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

54

5.2.3 COP_SearchNode

Description: COP_SearchNode checks whether a device is available in the
network with the specified node-ID.
Before this function is called, the potential node must have
been registered with COP_AddNode(). The check is carried out
by attempting to access the mandatory object dictionary entry
[1000] via the standard server-SDO of the node. The Timeout
value used is 100 ms and is independent of the SDO Timeout.

Prototype: short COP_SearchNode(COP_t_HANDLE boardhdl,short COP_SearchNode(COP_t_HANDLE boardhdl,short COP_SearchNode(COP_t_HANDLE boardhdl,short COP_SearchNode(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the CANopen device to be searched
for (between 1 and 127)

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_TIMEOUT No (registered) node with the stated node-ID
found in the network

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

55

5.2.4 COP_GetNodeInfo

Description: COP_ChangeNodeParameter delivers the properties of a
registered node.
They might be useful, for example, to find out the set node
monitoring time. In order to change node settings call
COP_ChangeNodeParameter() and
COP_SetEmcyIdentifier() respectively.
Before this function is called, the potential node must have
been registered with COP_AddNode().

Prototype: short COP_GetNodeInfo(short COP_GetNodeInfo(short COP_GetNodeInfo(short COP_GetNodeInfo(
 COP_t_HANDLE bCOP_t_HANDLE bCOP_t_HANDLE bCOP_t_HANDLE boardhdl,oardhdl,oardhdl,oardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE* NgOrHb,BYTE* NgOrHb,BYTE* NgOrHb,BYTE* NgOrHb,
 WORD* GuardHeartbeatTime,WORD* GuardHeartbeatTime,WORD* GuardHeartbeatTime,WORD* GuardHeartbeatTime,
 BYTE* lifetimefactor,BYTE* lifetimefactor,BYTE* lifetimefactor,BYTE* lifetimefactor,
 WORD* EmcyIdentifier);WORD* EmcyIdentifier);WORD* EmcyIdentifier);WORD* EmcyIdentifier);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the external CANopen device
(between 1 and 127)

NgOrHb (out) Set monitoring mechanism for the node.

COP_k_NODE_GUARDING Node is to be
guarded, i.e. cyclic request of a pre-defined
toggling CAN-telegram by the Master

COP_k_HEARTBEAT Node cyclically sends
Heartbeat message, i.e. node sends a pre-
defined CAN-telegram on own initiative

GuardHeartbeatTime (out) Set monitoring time in in milliseconds.

With COP_k_NODE_GUARDING this
parameter states the so-called Guardtime, i.e.
the time period between two Guarding-
request telegrams.
0 means that the node is not to be guarded
at all.

With COP_k_HEARTBEAT this parameter
states the so-called Heartbeattime, i.e. the
time period between two Heartbeat-
messages.

lifetimefactor (out) Set number of unsuccessful attempts at a
Guard-request by the Master to be permitted
(between 1 and 255). If this number is
exceeded without a response of the node
being received, the firmware signals a
COP_k_NMT_EVT in the Event-Queue.

Only for COP_k_NODE_GUARDING.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

56

EmcyIdentifier (out) Set CAN-identifier of the emergency object of
the node.
According to Predefined Connection Set its
default value is 0x80+node_no. However,
it might be changed by overwriting OD entry
[1014] of the node, and then the Master
firmware needs to follow by calling
COP_SetEmcyIdentifier().

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

57

5.2.5 COP_ChangeNodeParameter

Description: COP_ChangeNodeParameter subsequently changes the
properties of a node registered with COP_AddNode().
Information on the value range and the resolution of the
GuardHeartbeatTime is given in appendix Appendix H -
Timer resolutions and value ranges.

Prototype: short COP_ChangeNodeParameter(short COP_ChangeNodeParameter(short COP_ChangeNodeParameter(short COP_ChangeNodeParameter(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE NgOrHb,BYTE NgOrHb,BYTE NgOrHb,BYTE NgOrHb,
 WORWORWORWORD GuardHeartbeatTime,D GuardHeartbeatTime,D GuardHeartbeatTime,D GuardHeartbeatTime,
 BYTE lifetimefactor);BYTE lifetimefactor);BYTE lifetimefactor);BYTE lifetimefactor);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the CANopen device (between 1
and 127)

NgOrHb (in) Definition of the monitoring mechanism
applicable for the node.

The following values are permitted:

COP_k_NODE_GUARDING Node is to be
guarded, i.e. cyclic request of a pre-defined
toggling CAN-telegram by the Master

COP_k_HEARTBEAT Node cyclically sends
Heartbeat message, i.e. node sends a pre-
defined CAN-telegram on own initiative

GuardHeartbeatTime (in) Monitoring time in in milliseconds.

With COP_k_NODE_GUARDING this parameter
states the so-called Guardtime, i.e. the time
period between two Guarding-request
telegrams.
0 means that the node is not to be guarded at
all.

With COP_k_HEARTBEAT this parameter states
the so-called Heartbeattime, i.e. the time period
between two Heartbeat-messages.

lifetimefactor (in) Defines the number of unsuccessful attempts at
a Guard-request by the Master to be permitted
(between 1 and 255). If this number is
exceeded without a response of the node being
received, the firmware signals a
COP_k_NMT_EVT in the Event-Queue.

Only for COP_k_NODE_GUARDING.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

58

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

59

5.2.6 COP_SetEmcyIdentifier

Description: With COP_SetEmcyIdentifier the CAN-identifier of the
emergency object of a node can be adapted.
Each network participant transmits its emergency object on a
reserved individual CAN-identifier which is calculated in a
standardised way according to the node-ID. Since this
emergency identifier can be reconfigured by writing to object
dictionary entry [1014], CANopen Master API allows for
adapting to such a reconfiguration by means of this function.

Calling this function is not required usually, because the
firmware is able to receive all preset emergency-
identifiers of all CANopen nodes by default.

Prototype: short COP_short COP_short COP_short COP_SSSSetetetetEmcyIdentifierEmcyIdentifierEmcyIdentifierEmcyIdentifier((((
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 WORDWORDWORDWORD EmcyIdentifier);EmcyIdentifier);EmcyIdentifier);EmcyIdentifier);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the external CANopen device
(between 1 and 127)

EmcyIdentifier (in) New CAN-identifier of the emergency object
of the node.
The standardised CAN-identifier is one of the
highest priority of CANopen. It is calculated
from the node-ID according to the following
formula:
 EmcyIdentifier = 0x80 + node_no

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

COP_k_CAL_ERR Given CAN-identifier already in use

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

60

5.2.7 COP_ConfigFlyMaster

Description: With COP_ConfigFlyMaster, the Flying Master functionality
of the Master Firmware is configured once in accordance with
CiA-302. These are the contents of the object directory entry
Flying Master Timing Parameters [1F90] and the object
directory entry Consumer Heartbeat Time [1016] for
monitoring of the active master after transferring network
mastership.
The condition is that this additional functionality was activated
on initialization of the firmware by means of
COP_InitInterface(AddFeatures = COP_k_FEATURE_
FLYING_MASTER).
It is not possible to call this function more than once to change
the set values later.
Additional functionality Flying Master is not available with all
CAN boards (see Appendix B - Performance characteristics)

Prototype: short COP_ConfigFlyMaster(short COP_ConfigFlyMaster(short COP_ConfigFlyMaster(short COP_ConfigFlyMaster(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 WORD wDetectionTimeout,WORD wDetectionTimeout,WORD wDetectionTimeout,WORD wDetectionTimeout,
 WORD wNegotiationDelay,WORD wNegotiationDelay,WORD wNegotiationDelay,WORD wNegotiationDelay,
 WORD wPriorityLevel,WORD wPriorityLevel,WORD wPriorityLevel,WORD wPriorityLevel,
 WORD wPriorityTimeslot,WORD wPriorityTimeslot,WORD wPriorityTimeslot,WORD wPriorityTimeslot,
 WORD wNodeTimeslot,WORD wNodeTimeslot,WORD wNodeTimeslot,WORD wNodeTimeslot,
 WORD wCycletimeCd,WORD wCycletimeCd,WORD wCycletimeCd,WORD wCycletimeCd,
 WORD wCycletimeTimeoutHbeat);WORD wCycletimeTimeoutHbeat);WORD wCycletimeTimeoutHbeat);WORD wCycletimeTimeoutHbeat);

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN-board/line combination

wDetectionTimeout (in) Delay time until detection of the active network
master, corresponds to object directory entry
[1F90sub1]

wNegotiationDelay (in) Delay until negotiation of the network
mastership among the master candidates,
corresponds to object directory entry
[1F90sub2]

wPriorityLevel (in) Priority level of the CANopen Master API,
corresponds to object directory entry
[1F90sub3]

Valid values are 0 (high), 1 and 2 (low)

wPriorityTimeslot (in) Object directory entry [1F90sub4]

wNodeTimeslot (in) Object directory entry [1F90sub5]

wCycletimeCd (in) Object directory entry [1F90sub6]

wCycletimeTimeout
Hbeat

(in) Monitoring of the active master after transfer
of network mastership, corresponds to object
directory entry [1016]

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

61

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Unauthorized parameter value

COP_k_UNKNOWN Flying Master functionality not
supported OR
Function already successfully called

COP_k_NO_FLY_MASTER_PRESENT Flying Master functionality not activated

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

62

5.2.8 COP_StartFlyMaster

Description: COP_StartFlyMaster starts the Flying Master functionality of
the Master Firmware. The CANopen Master Firmware then
actively participates in the negotiation of the active master with
other potential masters and attempts to gain network
mastership based on its settings.
The condition is that this additional functionality was activated
on initialisation of the firmware with COP_InitInterface(
AddFeatures = COP_k_FEATURE_FLYING_MASTER) and
the Flying Master was configured with
COP_ConfigFlyMaster().

Prototype: short COP_StartFlyMaster(COP_t_HANDLE boardhdl);short COP_StartFlyMaster(COP_t_HANDLE boardhdl);short COP_StartFlyMaster(COP_t_HANDLE boardhdl);short COP_StartFlyMaster(COP_t_HANDLE boardhdl);

Parameter:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Unauthorized parameter value

COP_k_UNKNOWN Function already successfully called

COP_k_NO_FLY_MASTER_PRESENT Flying Master functionality not activated

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

63

5.2.9 COP_GetStatusFlyMasterNeg

Description: COP_GetStatusFlyMasterNeg returns the current status of
the negotiation of network mastership with other potential
masters.
The condition is that this additional functionality was activated
on initialization of the firmware with COP_InitInterface(
AddFeatures = COP_k_FEATURE_FLYING_MASTER) and
the Flying Master was configured with
COP_ConfigFlyMaster(). In addition it must have been
started after configuration with COP_StartFlyMaster().
This function can be called regularly to check whether the
CANopen Master Firmware again has or no longer has network
mastership. In addition, a separate event type is defined for
firmware events that can be read out with COP_GetEvent().

Prototype: short COP_GetStatusFlyMasterNeg(short COP_GetStatusFlyMasterNeg(short COP_GetStatusFlyMasterNeg(short COP_GetStatusFlyMasterNeg(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE* status,BYTE* status,BYTE* status,BYTE* status,
 BYTE* masterid,BYTE* masterid,BYTE* masterid,BYTE* masterid,
 BYTE* masterprio);BYTE* masterprio);BYTE* masterprio);BYTE* masterprio);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

status (out) Status of negotiation.

The following values are possible:

COP_k_FLY_MASTER CANopen
Master Firmware has gained network
mastership and is the active NMT Master

COP_k_FLY_NOT_MASTER CANopen
Master Firmware lost the negotiation and is no
longer the active NMT Master
COP_k_FLY_WAIT_BUSCONNECTION
CANopen Master Firmware is not on CAN

COP_k_FLY_NEGOTIATION_RUNNING The
negotiation is running and not yet concluded

masterid (out) Node-ID of the active NMT Master if not
CANopen Master Firmware itself

masterprio (out) Priority class of the active NMT Master if not
CANopen Master Firmware itself

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

64

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Unauthorized parameter value

COP_k_UNKNOWN Flying Master functionality not
supported

COP_k_NO_FLY_MASTER_PRESENT Flying Master functionality not activated

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

65

5.2.10 COP_StartNode

Description: COP_StartNode transfers a single node or the whole network
by transmitting an NMT-command into OPERATIONAL state.

Prototype: short COP_StartNode(COP_t_HANDLE boardhdl,short COP_StartNode(COP_t_HANDLE boardhdl,short COP_StartNode(COP_t_HANDLE boardhdl,short COP_StartNode(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node to be controlled (between
1 and 127) or 0 for all nodes.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

66

5.2.11 COP_StopNode

Description: COP_StopNode transfers a single node or the whole network
by transmitting an NMT-command into STOPPED state.

Prototype: short COP_StopNode(COP_t_HANDLE boardhdl,short COP_StopNode(COP_t_HANDLE boardhdl,short COP_StopNode(COP_t_HANDLE boardhdl,short COP_StopNode(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node to be controlled (between
1 and 127) or 0 for all nodes.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

67

5.2.12 COP_ResetComm

Description: COP_ResetComm resets the values of the communication
profile of a single node or of the whole network by
transmitting an NMT-command.

Prototype: short COP_ResetComm(COP_t_HANDLE boardhdl,short COP_ResetComm(COP_t_HANDLE boardhdl,short COP_ResetComm(COP_t_HANDLE boardhdl,short COP_ResetComm(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

Boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node to be controlled (between
1 and 127) or 0 for all nodes.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

68

5.2.13 COP_ResetNode

Description: COP_ResetNode resets the application and the values of the
communication profile of a single node or of the whole
network by transmitting an NMT-command.

Prototype: short COP_ResetNode(COP_t_HANDLE boardhdl,short COP_ResetNode(COP_t_HANDLE boardhdl,short COP_ResetNode(COP_t_HANDLE boardhdl,short COP_ResetNode(COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node to be controlled (between
1 and 127) or 0 for all nodes.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

69

5.2.14 COP_EnterPreOperational

Description: COP_EnterPreOperational transfers a single node or the
whole network by transmitting an NMT-command into PRE-
OPERATIONAL state.

Prototype: short COP_EnterPreOperational(short COP_EnterPreOperational(short COP_EnterPreOperational(short COP_EnterPreOperational(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE node_no);BYTE node_no);BYTE node_no);BYTE node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node to be controlled (between
1 and 127) or 0 for all nodes.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

70

5.2.15 COP_GetNodeState

Description: COP_GetNodeState retrieves the current NMT state of a single
CANopen node. It is being deduced from monitoring of
communication with the slave, mainly by its heartbeat resp
guarding responses, but also by its bootup message.

Prototype: short COP_GetNodeState(COshort COP_GetNodeState(COshort COP_GetNodeState(COshort COP_GetNodeState(COP_t_HANDLE boardhdl,P_t_HANDLE boardhdl,P_t_HANDLE boardhdl,P_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 WORD* node_state);WORD* node_state);WORD* node_state);WORD* node_state);

Parameters:

Parameter Dir. Erklärung

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the desired node (between 1 and
127)

node_state (out) Current state of the network participant

The following values are possible:

COP_k_NS_STOPPED Node is in
STOPPED state

COP_k_NS_OPERATIONAL Node is in
OPERATIONAL state

COP_k_NS_PREOPERATIONAL Node is in
PRE-OPERATIONAL state

COP_k_NS_UNKNOWN Node state is
unknown or the node is not registed with
Master Firmware. This default value will be
returned especially as the NMT state could not
be deduced (yet) due to e.g. lack of node
monitoring or turning off of heartbeat.

COP_k_NS_DISCONNECTED A monitoring
error with the node has been encountered:
Either heartbeat/guarding failed or there was an
incomprehensible change in reported state by
the Node itself.
As part of the error handling an NMT command
(COP_StartNode ..
COP_EnterPreOperational) is
recommended to get the node back on track.

Return values:

Rückgabewert Beschreibung

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

71

5.3 CANopen object management

The functions for the CANopen-object management are used for creating and
parameterizing CANopen communication objects.

5.3.1 COP_CreatePDO

Description: With COP_CreatePDO a process data object is created in the
internal Master Firmware object management. The function
call does not affect any external slave device. Hence this local
PDO is just mirroring an existing PDO on a physical node.
By stating the node-ID the PDO is allocated to a node. If the
value 0 is given as node-ID, the PDO is not directly allocated to
a node and can be allocated to several nodes by appropriate
identifier allocation to the node (via SDO).
It is also possible to call this function more than once for the
same PDO to alter the properties of the PDO subsequently
when the network has already been started.

The first 4 Transmit- and Receive-PDOs according to
Predefined Connection Set do not need to be created
explicitly. They are already established with data length
8 and transmission type COP_k_PDO_MODE_ASYNC
when calling COP_AddNode().

The number of PDOs that can be handled
simultaneously varies according to the type of CAN
board used. USB-to-CAN compact as well as all 320-
based boards support only 12+12 PDOs simultaneously,
all other boards more. Refer to Appendix B -
Performance characteristics for exact values.

Prototype: short COP_CreatePDO(COP_t_HANDLE boardhdl,short COP_CreatePDO(COP_t_HANDLE boardhdl,short COP_CreatePDO(COP_t_HANDLE boardhdl,short COP_CreatePDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,
 BYTE type,BYTE type,BYTE type,BYTE type,
 BYTE mode,BYTE mode,BYTE mode,BYTE mode,
 BYTE length,BYTE length,BYTE length,BYTE length,
 WORD WORD WORD WORD CANCANCANCANid);id);id);id);

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

72

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node allocated to the PDO
(between 1 and 127) or 0 for no allocation.

pdo_no (in) Number of the PDO (between 1 and 16).

type (in) Transmission direction of the PDO from point of
view of the Master.

The following values are permitted:

COP_k_PDO_TYP_RX for a receive-process-
 data-object

COP_k_PDO_TYP_TX for a transmit-process-
 data-object

mode (in) Mode of the PDO in consonance with coding of
subindex1 (Transmission Type) of the CANopen
PDO communication parameters in the Object
Dictionary.

The following special values are defined:

COP_k_PDO_MODE_SYNC for a
synchronous process data object (corresponds
to Transmission Type = 1)

COP_k_PDO_MODE_ASYNC for an
asynchronous, i.e. event-controlled process data
object (corresponds to Transmission Type =
254)

length (in) Byte length of the PDO between 1 and 8.

CANid (in) Identifier of the CAN-object used by the PDO.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_CAL_ERR Given CAN-identifier is already in use at receiving
side

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

73

5.3.2 COP_DeletePDO

Description: With COP_DeletePDO a process data object is removed from
the internal Master Firmware object management and its
resources (the CAN-identifier in particular) is being released.

Prototype: short COP_DeletePDO(COP_t_HANDLE boardhdl,short COP_DeletePDO(COP_t_HANDLE boardhdl,short COP_DeletePDO(COP_t_HANDLE boardhdl,short COP_DeletePDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,
 BYTE type);BYTE type);BYTE type);BYTE type);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node allocated to the PDO
(between 1 and 127) or 0 for no allocation.

pdo_no (in) Number of the PDO (between 1 and 16).

type (in) Transmission direction of the PDO from point of
view of the Master.

The following values are permitted:

COP_k_PDO_TYP_RX for a receive-process-
 data-object

COP_k_PDO_TYP_TX for a transmit-process-
 data-object

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value (pdo_no)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

74

5.3.3 COP_GetPDOInfo

Description: COP_GetPDO delivers the properties of a process data object.
In order to change these properties call function
COP_CreatePDO().

Prototype: short COP_GetPDOInfo(COP_t_HANDLE boardhdl,short COP_GetPDOInfo(COP_t_HANDLE boardhdl,short COP_GetPDOInfo(COP_t_HANDLE boardhdl,short COP_GetPDOInfo(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,
 BYTE type,BYTE type,BYTE type,BYTE type,
 BYTE* mode,BYTE* mode,BYTE* mode,BYTE* mode,
 BYTE* length,BYTE* length,BYTE* length,BYTE* length,
 WORD* CANid);WORD* CANid);WORD* CANid);WORD* CANid);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node allocated to the PDO
(between 1 and 127) or 0 for no allocation.

pdo_no (in) Number of the PDO (between 1 and 16).

type (in) Transmission direction of the PDO from point of
view of the Master.

The following values are permitted:

COP_k_PDO_TYP_RX for a receive-process-
 data-object

COP_k_PDO_TYP_TX for a transmit-process-
 data-object

mode (out) Set mode of the PDO in consonance with
coding of subindex1 (Transmission Type) of the
CANopen PDO communication parameters in
the Object Dictionary.

length (out) Set byte length of the PDO between 1 and 8.

CANid (out) Set identifier of the CAN-object used by the
PDO.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

75

5.3.4 COP_CreateSDO

Description: With COP_CreateSDO an additional client service data object is
created in the internal Master Firmware object management
(the default-SDO already exists for each with COP_AddNode()
registered node). Provided, however, an appropriate
ServerSDO object is existing on the registered node.
Configuration of the same with the respective Object
Dictionary entry [1201]..[127F] is the responsibility of the client
application, that is the user.
The CANopen Master API is always the SDO-client, the node is
the SDO-server.

Prototype: shortshortshortshort COP_CreateSDO(COP_t_HANDLE boardhdl,COP_CreateSDO(COP_t_HANDLE boardhdl,COP_CreateSDO(COP_t_HANDLE boardhdl,COP_CreateSDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,
 WORD clientWORD clientWORD clientWORD clientCANCANCANCANid,id,id,id,
 WORD serverWORD serverWORD serverWORD serverCANCANCANCANid);id);id);id);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node allocated to the SDO
(between 1 and 127).

sdo_no (in) Number of the SDO

This value must always be
COP_k_USERDEFINED_SDO, because a
maximum of 2 SDOs per node can be managed
and the firmware for each registered node sets
up the default-SDO COP_k_DEFAULT_SDO
automatically.

clientCANid (in) Identifier of the CAN-object that the SDO-Client
uses for the request to the Server

serverCANid (in) Identifier of the CAN-object that the SDO-Server
uses for the response

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_CAL_ERR Server CAN-ID not available

COP_k_IV Invalid parameter value

COP_k_SDO_RUNNING SDO transfer currently running, thus the user-
defined SDO may not be altered at the moment

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

76

5.3.5 COP_GetSDOInfo

Description: COP_GetSDOInfo delivers the properties of a client service
data object for SDO-communication with a registered node.
In order to change these properties call function
COP_CreateSDO().

Prototype: short COP_GetSDOInfo(COP_t_HANDLE boardhdl,short COP_GetSDOInfo(COP_t_HANDLE boardhdl,short COP_GetSDOInfo(COP_t_HANDLE boardhdl,short COP_GetSDOInfo(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,
 WORD* clientCANid,WORD* clientCANid,WORD* clientCANid,WORD* clientCANid,
 WORD* serverCANid);WORD* serverCANid);WORD* serverCANid);WORD* serverCANid);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Node-ID of the node allocated to the SDO
(between 1 and 127).

sdo_no (in) Number of the SDO

The following values are permitted:

COP_k_DEFAULT_SDO for the
automatically established SDO

COP_k_USERDEFINED_SDO for the
additional user defined SDO.

clientCANid (out) Set identifier of the CAN-object that the SDO-
Client uses for the request to the Server

serverCANid (out) Set identifier of the CAN-object that the SDO-
Server uses for the response

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

77

5.3.6 COP_SetSDOTimeOut

Description: COP_SetSDOTimeOut defines the delay time that determines
how long the CANopen Master Firmware is to wait for the
individual response of the SDO-server with a running SDO-
transfer.
The preset value is 200 ms.
Information on the value range and the resolution of the
w_timeout is given in Appendix H - Timer resolutions and
value ranges.

Prototype: short COP_SetSDOTimeOut(Cshort COP_SetSDOTimeOut(Cshort COP_SetSDOTimeOut(Cshort COP_SetSDOTimeOut(COP_t_HANDLE boardhdl,OP_t_HANDLE boardhdl,OP_t_HANDLE boardhdl,OP_t_HANDLE boardhdl,
 WORD w_timeout);WORD w_timeout);WORD w_timeout);WORD w_timeout);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

w_timeout (in) New value for the delay time in milliseconds

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

78

5.3.7 COP_DefSyncObj

Description: COP_DefSyncObj defines the cycle time for the system service
of the synchronization object.
The preset value for the cycle time is 1000 ms.
When this function is called, the transmit mode of the
synchronization object is ended. Therefore
COP_EnableSync() must always follow.
The value set here first applies to all CAN lines of a board, as
the firmware only knows one time base. In order to still be able
to configure different cycle times for the different CAN lines of
a board, use the function COP_SetSyncDivisor().
Information on the value range and the resolution of the
sync_period is given in Appendix H - Timer resolutions and
value ranges.

Prototype: short COP_DefSyncObj(short COP_DefSyncObj(short COP_DefSyncObj(short COP_DefSyncObj(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 WORD sync_period,WORD sync_period,WORD sync_period,WORD sync_period,
 WORD sync_windowWORD sync_windowWORD sync_windowWORD sync_window,,,,
 BYTE CounterOverflowBYTE CounterOverflowBYTE CounterOverflowBYTE CounterOverflow););););

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sync_period (in) New value for the cycle time in milliseconds.

The cycle time defines the time-lag between
successive synchronization objects.

Value range is
2 <= sync_period <= 65280.

sync_window (in) Reserved

It is recommended to use the same value as
sync_period, since 0 is invalid.

CounterOverflow (in) Maximum value of the CANopen sync counter.
Value range is
2 <= CounterOverflow <= 240
and 0 deactivating the sync counter.

If the sync counter is activated, the sync
message is sent with an additional data byte
that is incremented for each transmission, and
that is reset to 1 every time the maximum value
is overstepped.

With deactivated sync counter, the sync
message is sent without data byte as usual.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

79

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

80

5.3.8 COP_SetSyncDivisor

Description: With COP_SetSyncDivisor the divisor for the cycle time for
the system service of the synchronization object of the Master
Firmware is set.
The firmware works with the same time basis for all CAN lines
of a board. In order to still be able to implement different cycle
times for the CAN lines, it is possible to define via the divisor
at what internal cycle a SYNC object is actually to be
transmitted. If, for example, a firmware-global Sync cycle time
of 5 ms has been set with the function COP_DefSyncObj(),
the SYNC object appears on all CAN lines at the same time at
intervals of 5 ms (if the functionality for the corresponding
CAN line has been activated with COP_EnableSync()). An
intended cycle time of 10 ms is now achieved with a divisor
value of 2, therefore the firmware effectively only transmits
every second SYNC object.
To handle different cycle times for the CAN lines, the greatest
common divisor of both cycle times must first be transmitted
as the cycle time to COP_DefSyncObj(). Then the divisor of
the intended cycle time with the firmware cycle time as the
divisor is defined for each CAN line.

Example: CAN line 1 intended cycle time: 100ms
CAN line 2 intended cycle time: 30ms
Largest common divisor: 10 (sync_period)
Divisor for CAN line 1: 100ms / 10ms = 10 (divisor)
Divisor for CAN line 2: 30ms / 10 ms = 3 (divisor)

Prototype: short COP_SetSyncDivisor(COP_t_HANDLE boardhdl,short COP_SetSyncDivisor(COP_t_HANDLE boardhdl,short COP_SetSyncDivisor(COP_t_HANDLE boardhdl,short COP_SetSyncDivisor(COP_t_HANDLE boardhdl,
 BYTE divisor);BYTE divisor);BYTE divisor);BYTE divisor);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN board/line combination

divisor (in) Divisor for the intended cycle time for the
respective CAN line with the Master Firmware
cycle time set via COP_DefSyncObj.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

81

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

82

5.3.9 COP_GetSyncInfo

Description: COP_GetSyncInfo delivers the properties of the system service
of the synchronization object.
In order to change these properties call function
COP_DefSyncObj() and COP_SetSyncDivisor().

Prototype: shorshorshorshort COP_t COP_t COP_t COP_GetGetGetGetSyncSyncSyncSyncInfoInfoInfoInfo(COP_t_HANDLE boardhdl,(COP_t_HANDLE boardhdl,(COP_t_HANDLE boardhdl,(COP_t_HANDLE boardhdl,
 WORDWORDWORDWORD**** sync_period,sync_period,sync_period,sync_period,
 WORDWORDWORDWORD**** sync_window,sync_window,sync_window,sync_window,
 BYTEBYTEBYTEBYTE**** CounterOverflowCounterOverflowCounterOverflowCounterOverflow,,,,
 BYTE*BYTE*BYTE*BYTE* divisor divisor divisor divisor););););

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sync_period (out) Set value for the cycle time in milliseconds.

The cycle time defines the time-lag between
successive synchronization objects.

sync_window (out) Reserved

CounterOverflow (out) Set maximum value of the CANopen sync
counter.
0 deactivates the sync counter.

If the sync counter is activated, the sync
message is sent with an additional data byte
that is incremented for each transmission, and
that is reset to 1 every time the maximum value
is overstepped.

With deactivated sync counter, the sync
message is sent without data byte as usual.

divisor (out) Set divisor for the intended cycle time for the
respective CAN line with the Master Firmware
cycle time set via COP_DefSyncObj.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

83

5.3.10 COP_EnableSync

Description: COP_EnableSync starts cyclic transmission of the
synchronization object by the Master Firmware.
Is this function being called prior to calling
COP_DefSyncObj() the predefined cycle time of 1000ms will
be applied.
With COP_CheckSync() the Client-application can query
transmission of a Sync object. If a Callback is registered for the
Sync-Queue, that function is automatically called as soon as
the Master has transmitted a Sync-object.

Prototype: short COP_EnableSync(COP_t_HANDLE boardhdl,short COP_EnableSync(COP_t_HANDLE boardhdl,short COP_EnableSync(COP_t_HANDLE boardhdl,short COP_EnableSync(COP_t_HANDLE boardhdl,
 BYTE mode);BYTE mode);BYTE mode);BYTE mode);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

mode (in) Operating mode of the function.

The following values are permitted:

COP_k_SINGLE_LINE Function only aimed
at the CAN line implicitly coded in boardhdl

COP_k_ALL_LINES Function aimed at all
CAN lines of the board coded in boardhdl

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Unauthorised parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

84

5.3.11 COP_DisableSync

Description: COP_DisableSync ends cyclic transmission of the
synchronization object by the Master Firmware.

Prototype: short COP_DisableSync(COP_t_HANDLE boardhdl,short COP_DisableSync(COP_t_HANDLE boardhdl,short COP_DisableSync(COP_t_HANDLE boardhdl,short COP_DisableSync(COP_t_HANDLE boardhdl,
 BYTE mode);BYTE mode);BYTE mode);BYTE mode);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

mode (in) Operating mode of the function.

The following values are permitted:

COP_k_SINGLE_LINE Function only aimed
at the CAN line implicitly coded in boardhdl

COP_k_ALL_LINES Function aimed at all
CAN lines of the board coded in boardhdl

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Unauthorized parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

85

5.3.12 COP_InitTimeStampObj

Description: With COP_InitTimeStampObj the current time for the system
service of the central time information (TimeStamp Object) is
transfered.
This function must be called before the time service is activated
by means of COP_StartStopTSObj().

Prototype: short COP_InitTimeStampObj(COP_t_HANDLE boardhdl,short COP_InitTimeStampObj(COP_t_HANDLE boardhdl,short COP_InitTimeStampObj(COP_t_HANDLE boardhdl,short COP_InitTimeStampObj(COP_t_HANDLE boardhdl,
 DWORD ms,DWORD ms,DWORD ms,DWORD ms,
 WORD days);WORD days);WORD days);WORD days);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

ms (in) Time: Milliseconds after midnight

days (in) Date: Days since January 1st, 1984

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Invalid time specification

COP_k_BSY Timestamp queue is full

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

86

5.3.13 COP_StartStopTSObj

Description: With COP_StartStopTSObj cyclic transmission of the central
time information (TimeStamp Object) by the Master Firmware
is started or stopped.
Information on the value range and the resolution of the cycle
time cycle is given in Appendix H - Timer resolutions and
value ranges.

Prototype: short COP_StartStopTSObj(COP_t_HANDLE boardhdl,short COP_StartStopTSObj(COP_t_HANDLE boardhdl,short COP_StartStopTSObj(COP_t_HANDLE boardhdl,short COP_StartStopTSObj(COP_t_HANDLE boardhdl,
 BYTE startstop,BYTE startstop,BYTE startstop,BYTE startstop,
 WORD cycle);WORD cycle);WORD cycle);WORD cycle);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

startstop (in) Switch for the TimeStamp Object.

The following values are permitted:

COP_k_TS_START Start transmission
COP_k_TS_STOP End transmission

cycle (in) Cycle time in milliseconds.

The cycle time defines the interval of
consecutive time information.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_CAL_ERR General error of the Master Firmware

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

87

5.3.14 COP_GetTimeStampObj

Description: COP_GetTimeStampObj delivers the properties and the
current value of the system service of the central time
information (TimeStamp Object).
In order to change these properties call function
COP_InitTimeStampObj().

Prototype: short COP_GetTimeStampObj(COP_t_HANDLE boardhdl,short COP_GetTimeStampObj(COP_t_HANDLE boardhdl,short COP_GetTimeStampObj(COP_t_HANDLE boardhdl,short COP_GetTimeStampObj(COP_t_HANDLE boardhdl,
 BYTE* startstop,BYTE* startstop,BYTE* startstop,BYTE* startstop,
 WORD* cycle,WORD* cycle,WORD* cycle,WORD* cycle,
 DWORD* ms,DWORD* ms,DWORD* ms,DWORD* ms,
 WORD* days);WORD* days);WORD* days);WORD* days);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

startstop (out) Set state of the TimeStamp service.

The following values are possible:

COP_k_TS_START Transmission active
COP_k_TS_STOP Transmission disabled

cycle (out) Set cycle time in milliseconds.

The cycle time defines the interval of
consecutive time information.

ms (out) Current time: Milliseconds after midnight

days (out) Current date: Days since January 1st, 1984

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

88

5.4 CANopen communication

The functions for the CANopen communication are used for the direct
information exchange with the individual CANopen devices.

5.4.1 COP_ReadPDO

Description: COP_ReadPDO reads the data of a process data object (PDO)
received by the Master Firmware from the RPDO-queue.
With the exception of the four Predefined Connection Set
RPDOs a PDO can only be received if it had been set up
beforehand with function COP_CreatePDO(). The
combination of node-ID and pdo# (node_no / pdo_no) serves
as its unique identification. The actual properties of a set up
PDO might be queried any time by calling
COP_GetPDOInfo().

Prototype: short COP_ReadPDO(COP_t_HANDLE boardhdl,short COP_ReadPDO(COP_t_HANDLE boardhdl,short COP_ReadPDO(COP_t_HANDLE boardhdl,short COP_ReadPDO(COP_t_HANDLE boardhdl,
 BYTE* node_no,BYTE* node_no,BYTE* node_no,BYTE* node_no,
 BYTE* pdo_no,BYTE* pdo_no,BYTE* pdo_no,BYTE* pdo_no,
 BYTE* rxlen,BYTE* rxlen,BYTE* rxlen,BYTE* rxlen,
 BYTE* rxdataBYTE* rxdataBYTE* rxdataBYTE* rxdata,,,,
 BYTE* SyncCounterBYTE* SyncCounterBYTE* SyncCounterBYTE* SyncCounter););););

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (out) Number of the node that has transmitted the
PDO (between 1 and 127)

pdo_no (out) Number of the PDO, beginning with 1

rxlen (out) Number of valid bytes of rxdata

rxdata (out) Address of an 8 byte buffer for the received
PDO-data.

SyncCounter (out) Value of the sync object’s sync counter on
receipt of the PDO.

For an explanation of the sync counter see
COP_DefSyncObj()

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_OK Success

COP_k_QUEUE_EMPTY No new PDOs available

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

89

5.4.2 COP_ReadPDO_S

Description: COP_ReadPDO_S reads out the data of a process data object
(PDO) received by the Master Firmware from the RPDO-Queue.
COP_ReadPDO_S works in the same way as COP_ReadPDO().
In contrast to COP_ReadPDO(), however, the function returns
the PDO-data as a structure.

Prototype: short COP_ReadPDO_S(COP_t_HANDLE boardhdl,short COP_ReadPDO_S(COP_t_HANDLE boardhdl,short COP_ReadPDO_S(COP_t_HANDLE boardhdl,short COP_ReadPDO_S(COP_t_HANDLE boardhdl,
 COP_t_RX_PDO* sp_pdo);COP_t_RX_PDO* sp_pdo);COP_t_RX_PDO* sp_pdo);COP_t_RX_PDO* sp_pdo);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sp_pdo (out) Pointer to a buffer provided by the Client-
application of data type COP_t_RX_PDO,
which accepts the PDO data

COP_t_RX_PDO Alignment: 1 byte

Field Type Meaning

node_no BYTE Number of the node that the PDO has
transmitted (between 1 and 127)

pdo_no BYTE Number of the PDO, beginning with 1

length BYTE Number of valid bytes of a_data

SyncCounter BYTE Value of the sync object’s sync counter on
receipt of the PDO.

For an explanation of the sync counter see
COP_DefSyncObj()

a_data[8] BYTE[] Received PDO-data

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_OK Success

COP_k_QUEUE_EMPTY No new PDOs available

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

90

5.4.3 COP_RequestPDO

Description: COP_RequestPDO initiates a request for a process data object
(PDO).
The data of the requested PDO are then received via the RPDO-
Queue (read-out as usual with COP_ReadPDO() or
COP_ReadPDO_S()).

Prototype: short COP_RequestPDO(COP_t_HANDLE boardhdl,short COP_RequestPDO(COP_t_HANDLE boardhdl,short COP_RequestPDO(COP_t_HANDLE boardhdl,short COP_RequestPDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE pdo_no);BYTE pdo_no);BYTE pdo_no);BYTE pdo_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the registered node that is to
transmit the PDO (between 1 and 127)

pdo_no (in) Number of the PDO, beginning with 1

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_BSY CAN transmit-queue full

COP_k_CAL_ERR General error of the Master Firmware

COP_k_IV Invalid parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

91

5.4.4 COP_WritePDO

Description: COP_WritePDO writes the data of a process data object to be
transmitted by the Master Firmware into the TPDO-Queue.
With the exception of the four Predefined Connection Set
TPDOs a PDO can only be transmitted if it had been set up
beforehand with function COP_CreatePDO(). The
combination of node-ID and pdo# (node_no / pdo_no) serves
as its unique identification. The actual properties of a set up
PDO might be queried any time by calling
COP_GetPDOInfo().

PDOs with incorrect parameters (node_no, pdo_no) are
rejected by the firmware. Via the Event-Queue a
corresponding message of type COP_k_WPDO_EVT is then
returned (read-out of the Event-Queue with
COP_GetEvent()). Since the corresponding parameter
check is performed in the firmware, and since the API-
function COP_WritePDO() is working unconfirmedly for
the purpose of performance gain, the function call
returns COP_k_OK rather than COP_k_IV in this case.

Prototype: short COP_WritePDO(COP_t_HANDLE boardhdl,short COP_WritePDO(COP_t_HANDLE boardhdl,short COP_WritePDO(COP_t_HANDLE boardhdl,short COP_WritePDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,BYTE pdo_no,
 BYTEBYTEBYTEBYTE* txdata);* txdata);* txdata);* txdata);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the node to which the PDO is to be
transmitted (between 0 and 127)

pdo_no (in) Number of the TPDO (beginning with 1)

txdata (in) Address of an 8 byte buffer for the PDO-data to
be transmitted.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in transmit-PDO-
queue

COP_k_OK Success

COP_k_IV Invalid parameter value

COP_k_BSY Transmit-PDO-queue of the firmware is full

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

92

5.4.5 COP_WritePDO_S

Description: COP_WritePDO_S writes the data of a process data object to
be transmitted by the Master Firmware into the TPDO-Queue.
COP_WritePDO_S works in the same way as
COP_WritePDO(). In contrast to COP_WritePDO(), however,
the function accepts the PDO-data as a structure.

PDOs with incorrect parameters (node_no, pdo_no) are
rejected by the firmware. Via the Event-Queue a
corresponding message of type COP_k_WPDO_EVT is then
returned (read-out of the Event-Queue with
COP_GetEvent()). Since the corresponding parameter
check is performed in the firmware, and since the API-
function COP_WritePDO() is working unconfirmedly for
the purpose of performance gain, the function call
returns COP_k_OK rather than COP_k_IV in this case.

Prototype: short COP_WritePDO_S(COP_t_HANDLE boardhdl,short COP_WritePDO_S(COP_t_HANDLE boardhdl,short COP_WritePDO_S(COP_t_HANDLE boardhdl,short COP_WritePDO_S(COP_t_HANDLE boardhdl,
 COP_t_TX_PDO* sp_pdo);COP_t_TX_PDO* sp_pdo);COP_t_TX_PDO* sp_pdo);COP_t_TX_PDO* sp_pdo);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sp_pdo (in) Pointer to a buffer provided by the Client-
application of data type COP_t_TX_PDO,
which contains the PDO data

COP_t_TX_PDO Alignment: 1 byte

Field Type Meaning

node_no BYTE Number of the node to which the PDO is to
be transmitted (between 0 and 127)

pdo_no BYTE Number of the TxPDO (beginning with 1)

a_data[8] BYTE[] PDO-data to be transmitted

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in transmit-PDO-
Queue

COP_k_OK Success

COP_k_IV Invalid parameter value or NULL pointer

COP_k_BSY Transmit-PDO-queue of the firmware is full

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

93

5.4.6 COP_ReadSDO

Description: COP_ReadSDO reads out the contents of an Object Dictionary
entry from a node.
The OD-entry is addressed via idx and subidx. The service
data object to be used is to be specified in sdo_no.
The function works synchronously, i.e. the call only returns to
the Client-application when the full (segmented where
required) SDO-Transfer is finished.

Prototype: short COP_ReadSDO(COP_t_HANDLE boardhdl,short COP_ReadSDO(COP_t_HANDLE boardhdl,short COP_ReadSDO(COP_t_HANDLE boardhdl,short COP_ReadSDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,
 BYTE BYTE BYTE BYTE mode,mode,mode,mode,
 WORD idx,WORD idx,WORD idx,WORD idx,
 BYTE subidx,BYTE subidx,BYTE subidx,BYTE subidx,
 DWORD* rxlen,DWORD* rxlen,DWORD* rxlen,DWORD* rxlen,
 BYTE* rxdata,BYTE* rxdata,BYTE* rxdata,BYTE* rxdata,
 DWORD* abortcode);DWORD* abortcode);DWORD* abortcode);DWORD* abortcode);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the node, from whose object
dictionary an entry is to be read (between 1 and
127)

sdo_no (in) Number of the service data object to be used.
The following values are permitted:

COP_k_DEFAULT_SDO means that the
default-SDO for the node, which the firmware
automatically creates, is to be used.

COP_k_USERDEFINED_SDO means that the
additional SDO, which must have been created
previously by COP_CreateSDO(), is to be
used.

mode (in) Definition of the SDO-transmission protocol.
With more than 4 bytes of data to be
transmitted, the reference data are generally
divided into 7-byte segments.

The following values are permitted:

COP_k_NO_BLOCKTRANSFER Use of the
(conventional) Domain-protocol, with which the
receipt of each segment is confirmed.

COP_k_BLOCKTRANSFER Use of the
block transfer protocol, with which
confirmation is given only after max. 127
segments. The implementation of the block
transfer is optional and is not supported by
every node.

idx (in) MainIndex of the object dictionary entry to be
read

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

94

subidx (in) SubIndex of the object dictionary entry to be
read

rxlen (in/out) Size of the receive buffer rxdata.

If the receive buffer is not sufficient, no
separate error code is returned (in the case of
success, for example, the return value is
COP_k_OK), and the SDO-Transfer is not
aborted but the number of required bytes is
returned to the Client-application in this
parameter. An internal buffer overrun is
prevented by the excess bytes received being
rejected when the buffer capacity is exhausted.

rxdata (out) Address of a suffiently large buffer for the
object dictionary data received.

abortcode (out) Possible Abort-Code of the SDO-Transfer
(optional parameter)

In case of an abort, COP_k_ABORT is returned
as return value.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_MEM_ALLOC_ERR Internal data structures or operating system-
objects could not be created

BER_k_SDO_THREAD_ERR Error with control of the SDO-Thread

BER_k_PC_MC_COMM_ERR Communication link with the CAN board is
disturbed

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

COP_k_ABORT SDO-Transfer aborted by one of the two
partners.

Error-code included in abortcode

COP_k_QUEUE_EMPTY No SDO-response of the Master Firmware

COP_k_TIMEOUT No response from the device, so SDO-Transfer
aborted by the Master Firmware

COP_k_SDO_RUNNING Previous SDO transfer is not finished yet

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

95

5.4.7 COP_WriteSDO

Description: COP_WriteSDO writes data into an object dictionary entry of a
node.
The OD-entry is addressed via idx and subidx. The service
data object to be used is to be specified in sdo_no.
The function works synchronously, i.e. the call returns to the
Client-application only when the full (segmented where
required) SDO-Transfer is finished.

Prototype: short COP_WriteSDO(COP_t_BOARD boardhdl,short COP_WriteSDO(COP_t_BOARD boardhdl,short COP_WriteSDO(COP_t_BOARD boardhdl,short COP_WriteSDO(COP_t_BOARD boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,
 BYTE mode,BYTE mode,BYTE mode,BYTE mode,
 WORD idx,WORD idx,WORD idx,WORD idx,
 BYTE subidx,BYTE subidx,BYTE subidx,BYTE subidx,
 DWORD txlen,DWORD txlen,DWORD txlen,DWORD txlen,
 BYTE* txdata,BYTE* txdata,BYTE* txdata,BYTE* txdata,
 DWORD* abortcodDWORD* abortcodDWORD* abortcodDWORD* abortcode);e);e);e);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the node whose object dictionary
entry is to be written to (between 1 and 127)

sdo_no (in) Number of the service data object to be used.
The following values are permitted:

COP_k_DEFAULT_SDO means that the
default-SDO for the node that the firmware
automatically creates is to be used.

COP_k_USERDEFINED_SDO means that the
additional SDO, which must have been created
previously by means of COP_CreateSDO(), is
to be used.

mode (in) Definition of the SDO-transmission protocol.
With more than 4 bytes of data to be
transmitted, the reference data are generally
divided into 7-byte segments.

The following values are permitted:

COP_k_NO_BLOCKTRANSFER Use of the
(conventional) Domain-protocol, with which the
receipt of each segment is confirmed.

COP_k_BLOCKTRANSFER Use of the
block transfer protocol, with which
confirmation is given only after max. 127
segments. The implementation of the block
transfer is optional and is not supported by
every node.

idx (in) MainIndex of the object dictionary entry to be
written

subidx (in) SubIndex of the object dictionary entry to be
written

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

96

txlen (in) Number of bytes to be transmitted, i.e. size of
the transmit buffer txdata

txdata (in) Address of the buffer containing the object
dictionary data.

abortcode (out) Possible Abort-Code of the SDO-Transfer
(optional parameter)

In case of an abort, COP_k_ABORT is returned
as return value.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_MEM_ALLOC_ERR Internal data structures or operating system-
objects could not be created

BER_k_SDO_THREAD_ERR Error with control of the SDO-Thread

BER_k_PC_MC_COMM_ERR Communication link with the CAN board is
disturbed

COP_k_OK Success

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_IV Invalid parameter value

COP_k_ABORT SDO-Transfer aborted by one of the two
partners.

Error-code included in abortcode

COP_k_QUEUE_EMPTY No SDO-response of the Master Firmware

COP_k_TIMEOUT No response from the device, so SDO-Transfer
aborted by the Master Firmware

COP_k_SDO_RUNNING Previous SDO transfer is not finished yet

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

97

5.4.8 COP_PutSDO

Description: Initiates reading or writing of a service data object by placing
an SDO-operation in the transmit-SDO-Queue.
The function is not blocking (asynchronous) and therefore
returns to the Client-application immediately. After termination
of the SDO-Transfer the result must be read with
COP_GetSDO(). The optional Event Handle h_Event can be
used to wait synchronously for the end of the SDO-Transfer by
means of WaitForSingleObject().

Prototype: short COP_PutSDO(COP_t_HANDLE boardshort COP_PutSDO(COP_t_HANDLE boardshort COP_PutSDO(COP_t_HANDLE boardshort COP_PutSDO(COP_t_HANDLE boardhdl,hdl,hdl,hdl,
 BYTEBYTEBYTEBYTE node_no,node_no,node_no,node_no,
 BYTEBYTEBYTEBYTE sdo_no,sdo_no,sdo_no,sdo_no,
 BYTEBYTEBYTEBYTE mode,mode,mode,mode,
 BYTEBYTEBYTEBYTE rwAccess,rwAccess,rwAccess,rwAccess,
 WORDWORDWORDWORD idx,idx,idx,idx,
 BYTEBYTEBYTEBYTE subidx,subidx,subidx,subidx,
 DWORD length,DWORD length,DWORD length,DWORD length,
 BYTE* data,BYTE* data,BYTE* data,BYTE* data,
 HANDLE h_Event);HANDLE h_Event);HANDLE h_Event);HANDLE h_Event);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the node whose object dictionary is
to be accessed (between 1 and 127)

sdo_no (in) Number of the service data object to be used.
The following values are permitted:

COP_k_DEFAULT_SDO means that the
default-SDO for the node, which the firmware
automatically creates, is to be used.

COP_k_USERDEFINED_SDO means that the
additional SDO, which must have been created
previously by means of COP_CreateSDO(), is
to be used.

mode (in) Definition of the SDO-transmission protocol.
With more than 4 bytes of data to be
transmitted, the reference data are generally
divided into 7-byte segments.

The following values are permitted:

COP_k_NO_BLOCKTRANSFER Use of the
(conventional) Domain-protocol, with which the
receipt of each segment is confirmed.

COP_k_BLOCKTRANSFER Use of the
block transfer protocol, with which
confirmation is given only after max. 127
segments. The implementation of the block
transfer is optional and is not supported by
every node.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

98

rwAccess (in) Transmission direction (read/write).

The following values are permitted:

COP_k_SDO_DOWNLOAD Writing object
dictionary access (the data are transmitted to
the node by the Master Firmware).

COP_k_SDO_UPLOAD Reading object
dictionary access (the data are transmitted from
the node to the Master Firmware)

idx (in) MainIndex of the object dictionary entry

subidx (in) SubIndex of the object dictionary entry

length (in) For COP_k_SDO_DOWNLOAD: size of the buffer
data.

data (in) For COP_k_SDO_DOWNLOAD: Address of the
buffer containing the data to be transmitted.

h_Event (in) Optional Handle of an operating system-Event.

The Windows-Event must be created by the
Client-application by means of
CreateEvent() in the initial state non-
signaled.

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_OK Success

COP_k_IV Invalid parameter value

COP_k_SDO_RUNNING SDO-operation already in progress but not yet
ended or result not yet obtained by means of
COP_GetSDO().

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

99

5.4.9 COP_GetSDO

Description: Reads the result of an SDO-transfer previously initialized with
COP_PutSDO() from the receive-SDO-Queue.
The function is not blocking (asynchronous) and therefore
returns to the Client-application immediately. The Event Handle
transferred with COP_PutSDO() can be used to wait expressly
for the end of the SDO-Transfer without having to poll with
COP_GetSDO.

Prototype: short COP_GetSDO(COP_t_HANDLE boardhdl,short COP_GetSDO(COP_t_HANDLE boardhdl,short COP_GetSDO(COP_t_HANDLE boardhdl,short COP_GetSDO(COP_t_HANDLE boardhdl,
 DWORD* leDWORD* leDWORD* leDWORD* length,ngth,ngth,ngth,
 BYTE* data,BYTE* data,BYTE* data,BYTE* data,
 DWORD* abortcode);DWORD* abortcode);DWORD* abortcode);DWORD* abortcode);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

length (in/out) Size of the receive buffer data or number of
bytes transmitted

data (out) Address of a buffer for the object dictionary
data received

abortcode (out) Possible Abort-Code of the SDO-Transfer
(optional parameter)

In case of an abort, COP_k_ABORT is returned
as return value.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_SDO_THREAD_ERR SDO transfer cancelled using
COP_CancelSDO()

BER_k_TIMEOUT No response from Master Firmware

BER_k_PC_MC_COMM_ERR Communication link with the CAN board is
disturbed

BER_k_DATA_CORRUPT Corrupt data received, Communication path
(USB, Ethernet) disturbed, automatic retry

COP_k_OK Success

COP_k_IV Invalid parameter value

COP_k_NOT_FOUND No node registered with the stated node-ID

COP_k_SDO_RUNNING SDO transfer currently running, the approximate
progress in ‰ is included in length

COP_k_ABORT SDO transfer aborted by one of the two
partners.

Error-code included in abortcode

COP_k_QUEUE_EMPTY No SDO-response of the Master Firmware

COP_k_TIMEOUT No response from the device, so SDO-Transfer
aborted by the Master Firmware

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

100

5.4.10 COP_CancelSDO

Description: With COP_CancelSDO a running SDO-operation, which was
previously initiated with COP_PutSDO(), is aborted.

Prototype: short COP_Canceshort COP_Canceshort COP_Canceshort COP_CancelSDO(COP_t_HANDLE boardhdl,lSDO(COP_t_HANDLE boardhdl,lSDO(COP_t_HANDLE boardhdl,lSDO(COP_t_HANDLE boardhdl,
 BYTE node_no,BYTE node_no,BYTE node_no,BYTE node_no,
 BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,BYTE sdo_no,
 WORD idx,WORD idx,WORD idx,WORD idx,
 BYTE subidx);BYTE subidx);BYTE subidx);BYTE subidx);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (in) Number of the node whose object dictionary is
being accessed (between 1 and 127)

sdo_no (in) Number of the service data object used for the
current transfer.
The following values are permitted:
COP_k_DEFAULT_SDO
COP_k_USERDEFINED_SDO

idx (in) MainIndex of the current SDO-Transfer

subidx (in) SubIndex of the current SDO-Transfer

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Invalid parameter value

COP_k_NOT_FOUND No node registered with the stated node-ID

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

101

5.4.11 COP_GetEmergencyObj

Description: COP_GetEmergencyObj reads an emergency object from the
EMCY-Queue and returns it subdivided into Errorvalue,
Errorregister and Errordata.

Prototype: short COP_GetEmergencyObj(short COP_GetEmergencyObj(short COP_GetEmergencyObj(short COP_GetEmergencyObj(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE* node_no,BYTE* node_no,BYTE* node_no,BYTE* node_no,
 WORD* WORD* WORD* WORD* err_value,err_value,err_value,err_value,
 BYTE* err_register,BYTE* err_register,BYTE* err_register,BYTE* err_register,
 BYTE* err_data);BYTE* err_data);BYTE* err_data);BYTE* err_data);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

node_no (out) Number of the node that has issued the error
message (between 1 and 127)

err_value (out) Error code of the error message.

The error codes are standardized according to
CiA-301.

err_register (out) Contents of the device error register

err_data (out) Address of a 5-byte buffer for the
manufacturer-specific error field

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_OK Success

COP_k_QUEUE_EMPTY No new emergency objects available

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

102

5.4.12 COP_GetEmergencyObj_S

Description: COP_GetEmergencyObj_S reads an emergency object from
the EMCY-Queue.
COP_GetEmergencyObj_S works in the same way as
COP_GetEmergencyObj(). In contrast to
COP_GetEmergencyObj(), however, the function returns the
alarm message as a structure.

Prototype: short COP_GetEmergencyObj_S(short COP_GetEmergencyObj_S(short COP_GetEmergencyObj_S(short COP_GetEmergencyObj_S(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 COP_t_EMERGENCY_OBJ* sp_emergency);COP_t_EMERGENCY_OBJ* sp_emergency);COP_t_EMERGENCY_OBJ* sp_emergency);COP_t_EMERGENCY_OBJ* sp_emergency);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sp_emergency (out) Pointer to a buffer provided by the Client-
application of data type
COP_t_EMERGENCY_OBJ, which receives thev
alarm message

COP_t_EMERGENCY_OBJ Alignment: 1 byte

Field Type Meaning

err_value WORD Error code of the error message.

The error codes are standardized according
to DS-301 (chapter 7.2.7).

err_reg BYTE Contents of the device error register

err_data[5] BYTE[] Manufacturer-specific error field

node_no BYTE Number of the node that has issued the error
message (between 1 and 127)

Return values:

Return value Description

BER_k_ERR Handle invalid

COP_k_OK Success

COP_k_QUEUE_EMPTY No new emergency objects available

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

103

5.4.13 COP_CheckSync

Description: COP_CheckSync checks whether a Sync-object has been
signaled by the CANopen-Master Firmware.
Every time the Master Firmware has transmitted the Sync-
object, an entry is made in the Sync-Queue. The Client
application is thus able to react to a Sync-event, for example in
order to read out cylic synchronous PDOs.

Prototype: short COP_CheckSync(COP_t_HANDLE boardhdlshort COP_CheckSync(COP_t_HANDLE boardhdlshort COP_CheckSync(COP_t_HANDLE boardhdlshort COP_CheckSync(COP_t_HANDLE boardhdl,,,,
 BYTE* SyncCounterBYTE* SyncCounterBYTE* SyncCounterBYTE* SyncCounter););););

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

SyncCounter (out) Value of the sync counter on sending of the
sync object.

For an explanation of the sync counter see
COP_DefSyncObj()

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_PC_MC_COMM_ERR Communication link with the CAN board is
disturbed

COP_k_OK Sync carried out

COP_k_QUEUE_EMPTY No Sync-event available

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

104

5.4.14 COP_GetEvent

Description: COP_GetEvent reads a network- or Master Firmware-event
from the Event-Queue.
The event can have various meanings: network-Event (e.g.
node failed), local Status-Event (e.g. CAN-error, overruns),
Queue-overrun; WritePDO-Event (e.g. incorrect parameter -
PDO rejected) or Flying Master-Event (e.g. network mastership
lost).

Prototype: short COP_GetEvent(COPshort COP_GetEvent(COPshort COP_GetEvent(COPshort COP_GetEvent(COP_t_HANDLE boardhdl,_t_HANDLE boardhdl,_t_HANDLE boardhdl,_t_HANDLE boardhdl,
 BYTE* evt_type,BYTE* evt_type,BYTE* evt_type,BYTE* evt_type,
 BYTE* evt_data1,BYTE* evt_data1,BYTE* evt_data1,BYTE* evt_data1,
 BYTE* evt_data2,BYTE* evt_data2,BYTE* evt_data2,BYTE* evt_data2,
 BYTE* evt_data3);BYTE* evt_data3);BYTE* evt_data3);BYTE* evt_data3);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

evt_type (out) Type of event.

The following values are possible:

COP_k_NMT_EVT Network event

COP_k_DLL_EVT Local event of the Data
Link Layer

COP_k_WPDO_EVT Event triggered by a
transmit-PDO operation

COP_k_RPDO_EVT Receive-PDO event

COP_k_QUEUE_OVRUN_EVT Overrun of one
of the three receive queues (EMCY, RPDO,
Event)

COP_k_FLY_EVT Event connected with
Flying Master additional functionality

evt_data1 (out) Additional information on the event

evt_data2 (out) Additional information on the event

evt_data3 (out) Additional information on the event

 Depending on the contents of the parameter evt_type
additional information on the event is given in the other three
parameters evt_dataX. These are listed in the following
tables.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

105

*evt_type == COP_k_NMT_EVT
evt_data1evt_data1evt_data1evt_data1 evt_data2evt_data2evt_data2evt_data2 evt_data3evt_data3evt_data3evt_data3

Cause of event:

COP_k_NMT_GUARDERR
Guard error. Device has not
responded or the signaled
node-state is unexpected

COP_k_NMT_BOOTIND
Device has sent Bootup
message

COP_k_NMT_HEARTBEATERR
Heartbeat error. Device has
transmitted nothing or
signaled node-state is
unexpected

Node-ID of
the device
involved

Signaled node state:
COP_k_NS_STOPPED,
COP_k_NS_OPERATIONAL,
COP_k_NS_PREOPERATIONAL
and
COP_k_NS_DISCONNECTED
(see also COP_GetNodeState)

*evt_type == COP_k_DLL_EVT
evt_data1evt_data1evt_data1evt_data1 evt_data2evt_data2evt_data2evt_data2 evt_data3evt_data3evt_data3evt_data3

Statusflags of the Data Link Layer, bit coded:

COP_k_DLL_COVR
Overrun of the receive queue of the CAN-
Controller

COP_k_DLL_BOFF
CAN-Controller in the BusOff state

COP_k_DLL_ESET
Error Status Bit of the CAN-Controller set

COP_k_DLL_ERESET
Error Status Bit of the CAN-Controller reset

COP_k_DLL_RXOVR
Overrun of the firmware-internal receive queue

COP_k_DLL_TXOVR
Overrun of the firmware-internal transmit queue

unused unused

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

106

*evt_type == COP_k_WPDO_EVT
*evt_type == COP_k_RPDO_EVT
evt_data1evt_data1evt_data1evt_data1 evt_data2evt_data2evt_data2evt_data2 evt_data3evt_data3evt_data3evt_data3

Event in connection with the PDO-
Queues:

COP_k_ERR_PDO_IV
Invalid parameter in the transmit-
PDO-operation (triggered by
COP_WritePDO)

COP_k_ERR_PDO_OVR
Overrun of the firmware-internal
transmit- or receive queue. This means
that the corresponding PDO was lost.
In addition to this event, a
COP_k_DLL_EVT with *evt_data1
 = COP_k_DLL_RXOVR or
 = COP_k_DLL_TXOVR
is also generated.

Node-ID of the
device involved
(node_no)

Number of the
PDO involved
(pdo_no)

*evt_type == COP_k_QUEUE_OVRUN_EVT
evt_data1evt_data1evt_data1evt_data1 evt_data2evt_data2evt_data2evt_data2 evt_data3evt_data3evt_data3evt_data3

Overrun counter of the
EMCY-Queue, i.e.
number of lost
emergency messages

Overrun counter of the
RPDO-Queue, i.e.
number of lost receive-
PDOs

Overrun counter of the
Event-Queue, i.e. number
of lost events

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

107

*evt_type == COP_k_FLY_EVT
evt_data1evt_data1evt_data1evt_data1 evt_data2evt_data2evt_data2evt_data2 evt_data3evt_data3evt_data3evt_data3

Event connected with the Flying Master
additional functionality

COP_k_FLY_MASTER
Firmware has gained network mastership and is
the active NMT Master

COP_k_FLY_NOT_MASTER
Firmware lost the negotiation and is not the
active NMT Master

COP_k_FLY_LOST_MASTERSHIP
Firmware has lost network mastership, as it was
replaced by a higher priority NMT Master

COP_k_FLY_LOST_ACTIVE_MASTER
Active NMT Master failed. Now negotiation of
the new NMT Master begins with all other
potential masters in the network.

COP_k_FLY_WAIT_BUSCONNECTION
CANopen Master Firmware is not on CAN

COP_k_FLY_NEGOTIATION_RUNNING
Negotiation of network mastership with other
potential masters is running

not used not used

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_PC_MC_COMM_ERR Communication link with the CAN board is
disturbed

COP_k_OK Success

COP_k_QUEUE_EMPTY No new entries available

COP_k_IV NULL pointer as parameter

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

108

5.5 LMT services

This so-called LMT service is required to set the parameters of the CANopen
network for devices without direct user interface (such as DIP-switch). Not all
devices support the LMT service – not least because it has been superseded by
LSS.

5.5.1 COP_LMT_ConfigNode

Description: With COP_LMT_ConfigNode the node-ID and baudrate of a
CANopen device are set using the LMT service.
The target device is unmistakeably identified worldwide via its
LMT-address, which is made up of manufacturer’s name,
product code and serial number.
In this function a whole set of LMT-commands is issued in the
following sequence:
(1) SwitchModeSelective using the parameters sz_mname,
 sz_pname and sz_sno.
(2) ConfigureModuleID using the parameter
 new_node_no.
(3) ConfigureBitTimingParameters using the parameter
 new_baudrate.
(4) StoreConfiguration.

When this COP_LMT_ConfigNode() function is called,
the firmware is reset internally. Then a complete
reinitialization of the CANopen Master Firmware is
therefore required in accordance with Fig. 2-1,
beginning with COP_InitInterface().

Prototype: short COP_LMT_ConfigNode(short COP_LMT_ConfigNode(short COP_LMT_ConfigNode(short COP_LMT_ConfigNode(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 char* sz_mname,char* sz_mname,char* sz_mname,char* sz_mname,
 char* sz_pname,char* sz_pname,char* sz_pname,char* sz_pname,
 char* sz_sno,char* sz_sno,char* sz_sno,char* sz_sno,
 BYTE new_node_no,BYTE new_node_no,BYTE new_node_no,BYTE new_node_no,
 WORD access_WORD access_WORD access_WORD access_baudrate,baudrate,baudrate,baudrate,
 WORD new_baudrate);WORD new_baudrate);WORD new_baudrate);WORD new_baudrate);

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

109

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

sz_mname (in) Manufacturer’s name of the device to be
configured (LMT-Address.manufacturer-name)
7 characters

sz_pname (in) Product code of the device to be configured
(LMT-Address.product-name)
7 characters

sz_sno (in) Serial number of the device to be configured
(LMT-Address.serial-number)
14 characters

new_node_no (in) New node-ID (to be set) between 1 and 127

access_baudrate (in) Baudrate for the CAN-communication during
the LMT-configuration process.

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

new_baudrate (in) New baudrate (to be set)

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from the device

COP_k_IV Invalid parameter value or NULL pointer

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

110

5.5.2 COP_LMT_GetAddress

Description: With COP_LMT_GetAddress the LMT address of a CANopen
device is read out.
A CANopen device that supports the LMT-service can be
unmistakeably identified worldwide via its LMT-address, which
is made up of manufacturer’s name, product code and serial
number.
In this function a whole set of LMT-commands is issued in the
following sequence:
(1) SwitchModeGlobal for activating the LMT service.
(2) InquireManufacturerName to inquire the manu
 facturer’s name sz_mname.
(3) InquireProductName to inquire the product code
 sz_pname
(4) InquireSerialNumber to inquire the serial number
 sz_sno.
(5) SwitchModeGlobal to deactivate the LMT service.
As SwitchModeGlobal is used within this CANopen API
function, it may only be used in such cases where only one
LMT-compatible device exists in the network, as otherwise the
device responses overlap and destroy each other.

Prototype: short COP_LMT_GetAddress(COP_t_HANDLE boardhdl,short COP_LMT_GetAddress(COP_t_HANDLE boardhdl,short COP_LMT_GetAddress(COP_t_HANDLE boardhdl,short COP_LMT_GetAddress(COP_t_HANDLE boardhdl,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 char* sz_mname,char* sz_mname,char* sz_mname,char* sz_mname,
 char* sz_pname,char* sz_pname,char* sz_pname,char* sz_pname,
 char* sz_sno);char* sz_sno);char* sz_sno);char* sz_sno);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudrate (in) Baudrate for the CAN-communication during
the LMT-configuration process.

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

sz_mname (out) Pointer to an 8-byte buffer provided by the
Client-application, which receives the read-out
manufacturer’s name of the device (LMT-
Address.manufacturer-name)
7 characters + terminating \0

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

111

sz_pname (out) Pointer to an 8-byte buffer provided by the
Client-application, which receives the read-out
product code of the device (LMT-
Address.product-name)
7 characters + terminating \0

sz_sno (out Pointer to a 15-byte buffer provided by the
Client-application, which receives the read-out
serial number of the device (LMT-Address.serial-
number)
14 characters + terminating \0

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in the transmit-
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from the device

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

112

5.5.3 COP_LMT_ConfigModuleID

Description: With COP_LMT_ConfigModuleID, the node-ID of a CANopen
device is configured using the LMT service.
A CANopen device that supports the LMT service can be clearly
identified and addressed worldwide via its LMT address, which
consists of the manufacturer name, product code and serial
number.
The scope of functions is part of the similar API function
COP_ConfigNode and transmits the following LMT
commands:
(1) SwitchModeSelective using the parameters sz_mname,
 sz_pname and sz_sno.
(2) ConfigureModuleID using the parameter
 new_node_no.
(3) StoreConfiguration.

Prototype: short COP_LMT_ConfigModuleID(short COP_LMT_ConfigModuleID(short COP_LMT_ConfigModuleID(short COP_LMT_ConfigModuleID(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 char* sz_mname,char* sz_mname,char* sz_mname,char* sz_mname,
 char* sz_pname,char* sz_pname,char* sz_pname,char* sz_pname,
 char* sz_sno,char* sz_sno,char* sz_sno,char* sz_sno,
 BYTE new_node_no);BYTE new_node_no);BYTE new_node_no);BYTE new_node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudrate (in) Baudrate for the CAN communication during
the LMT configuration process.

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

sz_mname (in) Manufacturer name of the device to be
configured (LMT address.manufacturer-name)
7 characters

sz_pname (in) Product code of the device to be configured
(LMT address.product-name)
7 characters

sz_sno (in) Serial number of the device to be configured
(LMT-Address.serial-number)
14 characters

new_node_no (in) New node-ID (to be configured) between 1 and
127

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

113

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Operation could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

114

5.5.4 COP_LMT_IdentifyRemoteSlaves

Description: With COP_LMT_IdentifyRemoteSlaves, devices of which
the manufacturer name and product code are known can be
identified in the network.
If more than one device of the same type exists in the network,
or if the serial numbers are not known, an individual CANopen
device that supports this LMT service can be clearly identified
with this function through interactive narrowing of the serial
number path.
This function does not require isolated CAN communication
and only transmits one LMT command:
(1) LMTIdentifyRemoteSlaves using the parameters
 sz_mname, sz_pname, sz_snolow and sz_snohigh.
If at least one node responds from the specified serial number
path, the function returns COP_k_OK, otherwise
COP_k_TIMEOUT. The delay time until the device response can
be configured with the function COP_SetLSSTimeOut().

Prototype: short COP_LMT_IdentifyRemoteSlaves(short COP_LMT_IdentifyRemoteSlaves(short COP_LMT_IdentifyRemoteSlaves(short COP_LMT_IdentifyRemoteSlaves(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 char* sz_mname,char* sz_mname,char* sz_mname,char* sz_mname,
 char* sz_pname,char* sz_pname,char* sz_pname,char* sz_pname,
 char* sz_char* sz_char* sz_char* sz_snolow,snolow,snolow,snolow,
 char* sz_snohigh);char* sz_snohigh);char* sz_snohigh);char* sz_snohigh);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudrate (in) Baudrate for the CAN communication during
the LMT search process.

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

sz_mname (in) Manufacturer name of the devices to be
identified (LMT-Address.manufacturer-name)
7 characters

sz_pname (in) Product code of the device to be identified
(LMT-Address.product-name)
7 characters

sz_snolow (in) Lower serial number limit of the devices to be
identified (LMT-Address.serial-number)
14 characters

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

115

sz_snohigh (in) Upper serial number of the devices to be
identified (LMT-Address.serial-number)
14 characters

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success, at least one device was found

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

116

5.6 LSS services

The so-called LSS services in accordance with CiA-305 Layer Setting Services
and Protocol (LSS) are used to configure the parameters of the CANopen network
for devices without a direct user interface (such as DIP-switch). Not all devices
support all LSS services.

5.6.1 COP_SetLSSTimeOut

Description: COP_SetLSSTimeOut defines the delay time which determines
how long a device response is awaited after transmitting an
LSS or LMT command.
The default value for the delay time is 100 milliseconds.

Prototype: short COP_SetLSSTimeOut(COP_t_HANDLE boardhdl,short COP_SetLSSTimeOut(COP_t_HANDLE boardhdl,short COP_SetLSSTimeOut(COP_t_HANDLE boardhdl,short COP_SetLSSTimeOut(COP_t_HANDLE boardhdl,
 WORD w_timeout);WORD w_timeout);WORD w_timeout);WORD w_timeout);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

w_timeout (in) New value for the delay time in milliseconds.
The value range is
5 <= w_timeout <= 32767.
Smaller values are rounded up internally.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_IV Unauthorized parameter value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

117

5.6.2 COP_LSS_InquireAddress

Description: COP_LSS_InquireAddress reads out the LSS address of a
CANopen device.
A CANopen device that supports the LSS service can be clearly
identified worldwide via its LSS address that corresponds with
the Identity Object [1018].
In this function a complete block of LSS commands is
transmitted in the following order:
(1) SwitchModeGlobal to activate the LSS service.
(2) InquireIdentityVendorID to inquire the vendor identity
 VendorId.
(3) InquireIdentityProductCode to inquire the product
 code ProductCode.
(4) InquireIdentityRevisionNumber to enquire the device
 revision number RevisionNo.
(5) InquireIdentitySerialNumber to inquire the serial
 number SerialNo.
(6) SwitchModeGlobal to deactivate the LSS service.
As SwitchModeGlobal is used in this CANopen API function, it
may only be used in cases where only one LSS-compatible
device exists in the network, as otherwise the device responses
are superimposed and disturb each other.

Prototype: short COP_LSS_InquireAddress(short COP_LSS_InquireAddress(short COP_LSS_InquireAddress(short COP_LSS_InquireAddress(
 COCOCOCOP_t_HANDLE boardhdl,P_t_HANDLE boardhdl,P_t_HANDLE boardhdl,P_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 DWORD* VendorId,DWORD* VendorId,DWORD* VendorId,DWORD* VendorId,
 DWORD* ProductCode,DWORD* ProductCode,DWORD* ProductCode,DWORD* ProductCode,
 DWORD* RevisiDWORD* RevisiDWORD* RevisiDWORD* RevisionNo,onNo,onNo,onNo,
 DWORD* SerialNo);DWORD* SerialNo);DWORD* SerialNo);DWORD* SerialNo);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

118

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

VendorId (out) Address of a DWORD buffer provided by the
client application, which receives the vendor ID
of the device that was read out

ProductCode (out) Address of a DWORD buffer provided by the
client application, which receives the product
code that was read out

RevisionNo (out) Address of a DWORD buffer provided by the
client application, which receives the revision
number that was read out

SerialNo (out) Address of a DWORD buffer provided by the
client application, which receives the product
serial number that was read out

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

119

5.6.3 COP_LSS_InquireNodeID

Description: COP_LSS_InquireNodeID inquires the node-ID of the
CANopen device.
A CANopen device that supports the LSS service returns its
configured node-ID, which however can also be 255. This
special value indicates that no valid node-ID at all is configured
and the device is in the so-called “LSS Init State”.
In this function a complete block of LSS commands is
transmitted in the following order:
(1a) SwitchModeGlobal to activate the LSS service, if
 defined.
(1b) Alternatively SwitchModeSelective to address the
 device using the parameters VendorId, ProductCode,
 RevisionNo and SerialNo.
(2) InquireNodeID to inquire the node-ID.
(3) SwitchModeGlobal to deactivate the LSS service.
If SwitchModeGlobal is used with the relevant flag, the
CANopen API function can only be used in cases where only
one LSS-compatible device exists in the network, as otherwise
the device responses are superimposed and disturb each other.

Prototype: short COP_LSS_InquireNodeID(short COP_LSS_InquireNodeID(short COP_LSS_InquireNodeID(short COP_LSS_InquireNodeID(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE bBYTE bBYTE bBYTE baudrate,audrate,audrate,audrate,
 BYTE mode,BYTE mode,BYTE mode,BYTE mode,
 DWORD VendorId,DWORD VendorId,DWORD VendorId,DWORD VendorId,
 DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,
 DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,
 DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,
 BYTE* node_id);BYTE* node_id);BYTE* node_id);BYTE* node_id);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

120

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

mode (in) Operating mode of the function.

Possible values are:
LSS_k_SET_MODE_SWITCH_MODE_GLOBAL
means that the LSS inquiry is to be initialized
with a SwitchModeGlobal command

VendorId (in) Vendor ID of the device to be inquired

ProductCode (in) Product code of the device to be inquired

RevisionNo (in) Revision number of the device to be inquired

SerialNo (in) Serial number of the device to be inquired

node_no (out) Node-ID of the device to be inquired (between
1 and 127, possibly as special value 255)

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

121

5.6.4 COP_LSS_ConfigNodeID

Description: COP_LSS_ConfigNodeID sets the node-ID of a CANopen
device using the LSS services.
A special value of 255 for the node-ID means that the device is
to be set to the so-called “LSS Init State”.
In this function a complete block of LSS commands is
transmitted in the following order:
(1a) SwitchModeGlobal to activate the LSS service, if
 defined.
(1b) Alternatively SwitchModeSelective to address the
 device using the parameters VendorId, ProductCode,
 RevisionNo and SerialNo.
(2) ConfigNodeID to configure the node-ID using the
 parameter new_node_no.
(3) StoreConfiguration to store the configuration, if
 defined.
(4) SwitchModeGlobal to deactivate the LSS service.
If SwitchModeGlobal is used with the relevant flag, the
CANopen API function can only be used in cases where only
one LSS-compatible device exists in the network, as otherwise
the device responses are superimposed and disturb each other.

Prototype: short COP_LSS_ConfigNodeID(short COP_LSS_ConfigNodeID(short COP_LSS_ConfigNodeID(short COP_LSS_ConfigNodeID(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 BYTE mode,BYTE mode,BYTE mode,BYTE mode,
 DWORD VendorId,DWORD VendorId,DWORD VendorId,DWORD VendorId,
 DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,
 DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,
 DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,
 BYTE new_node_no);BYTE new_node_no);BYTE new_node_no);BYTE new_node_no);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

122

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

mode (in) Operating mode of the function.

Possible values are:
LSS_k_SET_MODE_SWITCH_MODE_GLOBAL
means that the LSS inquiry is to be initialized
with a SwitchModeGlobal command
LSS_k_SET_MODE_STORE_CONFIGURATION
means that the LSS command to save the new
node-ID is to be transmitted

VendorId (in) Vendor-ID of the addressed device

ProductCode (in) Product-code of the addressed device

RevisionNo (in) Revision-number of the addressed device

SerialNo (in) Serial-number of the addressed device

new_node_no (in) New node-ID of the addressed device (between
1 and 127, possibly a special value 255)

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

123

5.6.5 COP_LSS_ConfigBitTiming

Description: COP_LSS_ConfigBitTiming configures the baudrate of a
CANopen device using the LSS services.
In this function a complete block of LSS commands is
transmitted in the following order:
(1a) SwitchModeGlobal to activate the LSS service, if
 defined.
(1b) Alternatively SwitchModeSelective to address the
 device using the parameters VendorId, ProductCode,
 RevisionNo and SerialNo.
(2) ConfigureBitTimingParameters() to configure the
 baudrate using the parameters new_bautable and
 new_baudrate.
(3) ActivateBitTimingParameters to directly activate the
 new baudrate after a configurable delay time using the
 parameter switch_delay.
(4) StoreConfiguration to store the configuration, if
 defined.
(5) SwitchModeGlobal to deactivate the LSS service.
If SwitchModeGlobal is used with the relevant flag, the
CANopen API function can only be used in cases where only
one LSS-compatible device exists in the network, as otherwise
the device responses are superimposed and disturb each other.

When this COP_LSS_ConfigBitTiming() function is called,
the firmware is reset internally. Then a complete re-
initialization of the CANopen Master Firmware is
therefore necessary in accordance with Fig. 2-1,
beginning with COP_InitInterface().

Prototype: short COP_LSS_ConfigBitTiming(short COP_LSS_ConfigBitTiming(short COP_LSS_ConfigBitTiming(short COP_LSS_ConfigBitTiming(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 BYTE mode,BYTE mode,BYTE mode,BYTE mode,
 DWORD VendorId,DWORD VendorId,DWORD VendorId,DWORD VendorId,
 DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,
 DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,DWORD RevisionNo,
 DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,DWORD SerialNo,
 BYTE new_baudtable,BYTE new_baudtable,BYTE new_baudtable,BYTE new_baudtable,
 BYTE new_baudrate,BYTE new_baudrate,BYTE new_baudrate,BYTE new_baudrate,
 WORD WORD WORD WORD switch_delay);switch_delay);switch_delay);switch_delay);

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

124

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly already configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

mode (in) Operating mode of the function.

Possible values are:
LSS_k_SET_MODE_SWITCH_MODE_GLOBAL
means that the LSS inquiry is to be initialized
with a SwitchModeGlobal command
LSS_k_SET_MODE_ACTIVATE_NEW_BAUDRA
TE means that the LSS command to activate
the new baudrate is to be transmitted after
expiry of the specified delay time configured
with switch_delay.
LSS_k_SET_MODE_STORE_CONFIGURATION
means that the LSS command to store the new
baudrate is to be transmitted

VendorId (in) Vendor-ID of the addressed device

ProductCode (in) Product-code of the addressed device

RevisionNo (in) Revision-number of the addressed device

SerialNo (in) Serial-number of the addressed device

new_baudtable (in) New bittiming table of the addressed device.

Value COP_k_BAUD_CIA is the standard
setting, however, there are manufacturer
specific values permitted above 127:

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

125

new_baudrate (in) New baudrate of the addressed device

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

switch_delay (in) Delay time before possible activation of the new
baudrate in milliseconds.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

126

5.6.6 COP_LSS_ActivateBitTiming

Description: COP_LSS_ActivateBitTiming is used to switch the baudrate
of all connected CANopen devices at the same time using the
LSS service.
In this function a complete block of LSS commands is
transmitted in the following order:
(1) SwitchModeGlobal to activate the LSS service.
(2) ActivateBitTimingParameters to activate the new
 baudrate after a configurable delay time using the
 parameters switch_delay.
(3) SwitchModeGlobal to activate the LSS service.

When this COP_LSS_ActivateBitTiming function is called,
the firmware is reset internally. Then a complete re-
initialization of the CANopen Master Firmware is
therefore necessary in accordance with Fig. 2-1,
beginning with COP_InitInterface().

Prototype: short COP_LSS_ActivateBitTiming(short COP_LSS_ActivateBitTiming(short COP_LSS_ActivateBitTiming(short COP_LSS_ActivateBitTiming(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 BYTE new_baudtabBYTE new_baudtabBYTE new_baudtabBYTE new_baudtable,le,le,le,
 BYTE new_baudrate,BYTE new_baudrate,BYTE new_baudrate,BYTE new_baudrate,
 WORD switch_delay);WORD switch_delay);WORD switch_delay);WORD switch_delay);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN-board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

127

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

new_baudtable (in) New bittiming table of the Master Firmware.

Permissible values are COP_k_BAUD_CIA and
COP_k_BAUD_USER.

new_baudrate (in) New baudrate of the Master Firmware.

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

This parameter does not replace the
configuration of the baudrate of each individual
node COP_LSS_ConfigBitTiming, but
informs the firmwareto which baudrate it
should set itself after switching the network
baudrate.

switch_delay (in) Delay time before activating the baudrate in
milliseconds.

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

128

5.6.7 COP_LSS_IdentifyRemoteSlaves

Description: With COP_LSS_IdentifyRemoteSlaves, devices of which
the vendor-ID and the product-code are known can be
identified in the network.
If more than one device of the same type exists in the network,
or if the serial numbers or revision numbers are not known, an
individual CANopen device that supports this LSS service can be
clearly identified with this function through interactive
narrowing of the serial number path.
This function does not require isolated CAN communication
and only transmits one LSS command:
(1) LSSIdentifyRemoteSlave using the parameters
 VendorId, ProductCode, RevisionNoLow,
 RevisionNoHigh, SerialNoLow and SerialNoHigh.
If at least one node responds from the specified serial number
path, the function returns COP_k_OK, otherwise
COP_k_TIMEOUT. The delay time until the device response can
be configured with the function COP_SetLSSTimeOut().

Prototype: short COP_LSS_IdentifyRemoteSshort COP_LSS_IdentifyRemoteSshort COP_LSS_IdentifyRemoteSshort COP_LSS_IdentifyRemoteSlaves(laves(laves(laves(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate,BYTE baudrate,BYTE baudrate,BYTE baudrate,
 DWORD VendorId,DWORD VendorId,DWORD VendorId,DWORD VendorId,
 DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,DWORD ProductCode,
 DWORD RevisionNoLow,DWORD RevisionNoLow,DWORD RevisionNoLow,DWORD RevisionNoLow,
 DWORD RevisionNoHigh,DWORD RevisionNoHigh,DWORD RevisionNoHigh,DWORD RevisionNoHigh,
 DWORD SerialNoLow,DWORD SerialNoLow,DWORD SerialNoLow,DWORD SerialNoLow,
 DWORD SerialNoHigh);DWORD SerialNoHigh);DWORD SerialNoHigh);DWORD SerialNoHigh);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

129

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface()

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

VendorId (in) Vendor-ID of the devices to be identified

ProductCode (in) Product-code of the devices to be identified

RevisionNoLow (in) Lower revision-number limit of the devices to be
identified

RevisionNoHighw (in) Upper revision-number limit of the devices to
be identified

SerialNoLow (in) Lower serial-number limit of the devices to be
identified

SerialNoHigh (in) Upper serial-number limit of the devices to be
identified

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

130

5.6.8 COP_LSS_IdentifyNonConfRemoteSlaves

Description: COP_LSS_IdentifyRemoteSlaves identifies whether devices
exist in the network in the so-called “LSS Waiting State”.
This function does not require isolated CAN communication
and only transmits one LSS command:
(1) LSSIdentifyNonConfiguredRemoteSlaves.
If at least one node responds from the specified serial number
path, the function returns COP_k_OK, otherwise
COP_k_TIMEOUT. The delay time until the device response can
be configured with the function COP_SetLSSTimeOut().

Prototype: short COP_short COP_short COP_short COP_LSS_IdentifyNonConfRemoteSlaves(LSS_IdentifyNonConfRemoteSlaves(LSS_IdentifyNonConfRemoteSlaves(LSS_IdentifyNonConfRemoteSlaves(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate);BYTE baudrate);BYTE baudrate);BYTE baudrate);

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS
configuration process.

There are two different tables:

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

baudrate (in) Baudrate for the CAN communication during
the LSS configuration process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface()

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

131

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

COP_k_TIMEOUT No response from device

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS protocol
violation)

LSS_k_BSY LSS module of the firmware already busy

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

132

5.6.9 COP_LSS_Fastscan

Description: With COP_LSS_Fastscan a device in the network in the so-
called “LSS Waiting State” will be found.
This function does not require isolated CAN communication
and also does not need a vendor-id or a product-code
specified, for the entire LSS address range will be searched for
systemtically.
In case there are several devices of the same model present in
the network, this function finds exactly one of them, by
iterative and bitwise narrowing of the LSS address, and finally
delivers its precise vendor-id, product-code, revision-number
and serial-number. By using these device identification data the
particular device shall be configured subsequently using the
other LSS services functions provided such as
COP_LSS_ConfigNodeID().
By followup calls of this function another device will be found
and can be configured, until finally all unconfigured network
participants have been detected. If a node has been found, the
function returns COP_k_OK, otherwise
LSS_k_FS_NO_NONCONFIGURED_SLAVE or
LSS_k_FS_NF_NONCONFIGURED_SLAVE respectively. The delay
time until the device response can be configured with the
function COP_SetLSSTimeOut().
Due to the multitude of LSS commands sent on the bus during
a fastscan run, and the LSS timeout interval being applied to
each one of it, the overall time of the fastscan process is up to
130-times(!) the simple LSS timeout value, and so it sums up
to 13 seconds when using the default LSS timeout value of
100ms. For that amount of time the function will not return to
the calling application, hence the LSS timeout value should be
reduced notably prior to executing a LSS fastscan, to 40ms, for
instance, resulting in an overall execution time of 5 seconds for
a single LSS fastscan run.

Prototype: short COP_LSS_Fastscan(short COP_LSS_Fastscan(short COP_LSS_Fastscan(short COP_LSS_Fastscan(
 COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,COP_t_HANDLE boardhdl,
 BYTE baudtable,BYTE baudtable,BYTE baudtable,BYTE baudtable,
 BYTE baudrate, BYTE baudrate, BYTE baudrate, BYTE baudrate,
 DWORD* VendorId,DWORD* VendorId,DWORD* VendorId,DWORD* VendorId,
 BYTE VendorIdBits,BYTE VendorIdBits,BYTE VendorIdBits,BYTE VendorIdBits,
 DWORD* ProductCode,DWORD* ProductCode,DWORD* ProductCode,DWORD* ProductCode,
 BYTE ProductCodeBits,BYTE ProductCodeBits,BYTE ProductCodeBits,BYTE ProductCodeBits,
 DWORD* RevisionNo,DWORD* RevisionNo,DWORD* RevisionNo,DWORD* RevisionNo,
 BYTE RevisionNoBits,BYTE RevisionNoBits,BYTE RevisionNoBits,BYTE RevisionNoBits,
 DWORD* SerialNo,DWORD* SerialNo,DWORD* SerialNo,DWORD* SerialNo,
 BYTE SerialNoBitsBYTE SerialNoBitsBYTE SerialNoBitsBYTE SerialNoBits););););

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

133

Parameters:

Parameter Dir. Explanation

boardhdl (in) Handle of the CAN board/line combination

baudtable (in) Selection of the bittiming table to be used for
the CAN communication during the LSS scan
process.

There are two different tables::

COP_k_BAUD_CIA Table with the
bittimings specified by CiA in CiA-301
Standard table.

COP_k_BAUD_USER Table with userdefined
bittiming settings. These must have been set
before by a further API function.

baudrate (in) Baudrate for the CAN communication during
the LSS scan process.
However, does notnotnotnot overwrite the baudrate
possibly configured with
COP_InitInterface() .

The following values are permitted:
COP_k_10_KB
COP_k_20_KB
COP_k_50_KB
COP_k_100_KB
COP_k_125_KB
COP_k_250_KB
COP_k_500_KB
COP_k_800_KB
COP_k_1000_KB

VendorId (in/out) Preset resp detected vendor identification.

As input parameter: preset value of the
vendor identification to shorten the scan
process; Otherwise 0 to find any device.

As output parameter: vendor identification of
the found device.

VendorIdBits (in) Number of bits to be checked of given vendor
identification starting left at the MSB
(Value between 0 and 31)

For a full range scan and with no preset vendor
identification value in VendorId argument,
this value has to be set to 31 rather than 0!

ProductCode (in/out) Preset resp detected product-code.

As input parameter: preset value of the
product to shorten the scan process; Otherwise
0 to find any device.

As output parameter: product-code of the
found device.

ProductCodeBits (in) Number of bits to be checked of given product-
code starting left at the MSB
(Value between 0 and 31)

For a full range scan and with no preset
product-code value in ProductCode
argument, this value has to be set to 31 rather
than 0!

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Individual functions

134

RevisionNo (in/out) Preset resp detected product revision-number.

As input parameter: preset value of the
revision-number to shorten the scan process;
Otherwise 0 to find any device.

As output parameter: product revision-
number of the found device.

RevisionNoBits (in) Number of bits to be checked of given revision-
number starting left at the MSB
(Value between 0 and 31)

For a full range scan and with no preset
revision-number value in RevisionNo argument,
this value has to be set to 31 rather than 0!

SerialNo (in/out) Preset resp detected device serial-number.

As input parameter: preset value of the
serial-number to shorten the scan process;
Otherwise 0 to find any device.

As output parameter: serial-number of the
found device.

RevisionNoBits (in) Number of bits to be checked of given device
serial-number starting left at the MSB
(Value between 0 and 31)

For a full range scan and with no preset serial
number value in SerialNo argument, this value
has to be set to 31 rather than 0!

Return values:

Return value Description

BER_k_ERR Handle invalid

BER_k_NOT_SENT Order could not be entered in transmit
command queue

BER_k_TIMEOUT No response from Master Firmware

COP_k_OK Success

COP_k_NO General error of the Master Firmware

LSS_k_MEDIA_ACCESS_ERROR CAN bus access failed

LSS_k_IV_PARAMETER Unauthorized parameter value

LSS_k_PROTOCOL_ERR Unauthorized device response (LSS
protocol violation)

LSS_k_BSY LSS module of the firmware already busy

LSS_k_FS_NO_NONCONFIGURED_
SLAVE

No response, nothing found

LSS_k_FS_NO_NONCONFIGURED_
SLAVE

No response from device, preset device
not found

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix A - Error codes

135

Appendix A - Error codes

The error codes of the CANopen Master API DLL

These error codes come from the CANopen Master API DLL and signal errors in
the communication between the Master Firmware and the API DLL as well as
internal problems of the API DLL. The explanations of all error codes used from
the function descriptions are summarized again here and supplemented by
debugging tips.

Error code name
Error code value

Description

BER_k_OK
 0

Success

BER_k_ERR
 1

General error, not further specified

Is generally returned when the specified Boardhandle is
invalid, but can also be used in other error situations.

BER_k_DATA_CORRUPT
-41

Incorrect data patterns received. This indicates a
corruption of the communication path from firmware to
windows library (internal error).

Try to repeat the function call.

BER_k_NOT_SENT
-40

Congestion of the communication path from windowd
library to the firmware (internal error)

Try to repeat the function call after a while.

BER_k_NO_NEW_MSG
-39

- not used -

BER_k_TIMEOUT
-38

Communication timeout. This means that the firmware
has not responded within the communication delay time
(CommTimeOut) (internal error)

Most likely, the VCI communication channel is broken.

BER_k_BOARD_ALREADY_USED
-37

Required CAN-board is already being used by CANopen
Master API

A frequent source of error is the use of an interpreter
language. If aborted during debugging and the board is
therefore not deregistered correctly, the API no longer
releases the board for a ‘further’ process.

Try to reset the complete DLL with COP_Reset_DLL().
(Attention: only during the development phase!)

This is a fatal error stopping Master API operation.

BER_k_ALL_BOARDS_USED
-36

Master API has reached maxium capacity of 12
simultaneously manageable CAN-boards.

See previous error code.

This is a fatal error stopping Master API operation.

BER_k_BOARD_NOT_SUPP
-35

Requested CAN-board is not supported by CANopen
Master API due to unsuitable microcontroller or memory
extension

Use generic mode COP_VCI3GENERIC instead.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix A - Error codes

136

BER_k_BOARD_NOT_FOUND
-34

Specified board type and identification do not match any
available CAN-board

This is a fatal error stopping Master API operation.

BER_k_CANNOT_SEARCH_BOARD
-33

User has aborted the hardware selection dialog with
“Cancel“

BER_k_WRONG_FW
-32

The version number supplied by the firmware is incorrect
(internal error).
Indicates malfunctioning communication between PC and
microcontroller

This is a fatal error stopping Master API operation.

BER_k_USED_FROM_OTHER_PROCESS
-31

Requested CAN-board is already occupied by another
CAN-application

This is a fatal error stopping Master API operation.

BER_k_PC_MC_COMM_ERR
-30

Communication link with the CAN-board is disturbed

BER_k_BOARD_DLD_ERR
-29

An error has occured during firmware download.

This normally indicates a VCI installation problem. Please
read the installation instructions of the VCI or contact the
technical support.

It also results from a missing generic firmware library file
XatCOP60_VCI3.dll

This is a fatal error stopping Master API operation.

BER_k_BADCALLBACK_PTR
-28

An invalid function pointer was given

BER_k_NO_SUCH_CANLINE
-27

Requested CAN line is not installed or is not supported by
the firmware

The second CAN line cannot be used on CAN boards with
an 8-bit microcontroller even though it may be installed,
as the power of the processor is insufficient.

The same applies when the single line firmware is selected
via the COP_InitBoard() argument lCANline =
COP_SINGLELINE

BER_k_CANLINE_USED
-26

Requested CAN line is already busy

COP_InitBoard() has probably already been called for
this CAN line.

The CAN lines can nevertheless be used dynamically, i.e. it
is possible to release a CAN line used in a running
program again with COP_ReleaseBoard(), as well as
initialize another one with COP_InitBoard().

BER_k_VCI_INST_ERR
-25

IXXAT basic driver VCI not available, incomplete or
otherwise defective

In addition to an installed CAN board, the condition for
the CANopen Master API is correct installation of the
board driver via the VCI set-up program. See also section
2.3 Before installation.

This is a fatal error stopping Master API operation.

BER_k_BOARD_ERR
-24

Incorrect or unknown board type.

This is a fatal error stopping Master API operation.

BER_k_MEM_ALLOC_ERR
-23

Internal data structures or operating system objects could
not be created.

This is a fatal error stopping Master API operation.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix A - Error codes

137

BER_k_CCI_INST_ERR
-22

CCI installation error (internal)

Please make a note of the Hardware version number from
your CAN-board’s nameplate and report it to IXXAT
support

BER_k_SDO_INST_ERR
-21

Internal error when instancing or configuring the SDO
Thread.

This is a fatal error stopping Master API operation.

BER_k_SDO_THREAD_ERR
-20

Error in the control of the SDO-Thread or
SDO-Thread cancelled by COP_CancelSDO().

Try to repeat the function call.

The error codes of the CANopen Master Firmware

These error codes come from the Master Firmware and signal errors in the
communication between the CAN-Controller and the Master Firmware as well as
internal problems of the firmware. Here the explanations of the individual values
from the function descriptions are summarized again.

Error code name
Error code value

Description

COP_k_OK
 0

Success

COP_k_NO
 1

General error, not further specified

COP_k_CAL_ERR
 2

General error of the CANopen Master Firmware

COP_k_IV
 3

Invalid parameter value

COP_k_ABORT
 4

SDO-Transfer aborted

COP_k_NOT_FOUND
 5

No node registered with the stated node-ID

Indicates that the call of COP_AddNode() was forgotten
for this node-ID.

COP_k_NOT_INIT
 6

Master has not yet been initialized by means of
COP_InitInterface()

COP_k_INIT
 7

Master is initialized and ready for use

This is no error, but a valid regular retuThis is no error, but a valid regular retuThis is no error, but a valid regular retuThis is no error, but a valid regular return code.rn code.rn code.rn code.

COP_k_NO_OBJECTS
COP_k_QUEUE_EMPTY
 9

No new entries available in data queue

This is no error, but a valid regular return code.This is no error, but a valid regular return code.This is no error, but a valid regular return code.This is no error, but a valid regular return code.

COP_k_TIMEOUT
10

No response from the device

COP_k_SDO_RUNNING
16

SDO-Transfer in progress

Wait some time, then retry.

COP_k_BSY
17

CAN transmit-queue is full or
firmware is otherwise engaged

Wait a few milliseconds, then retry.

COP_k_NO_OBJECT
18

Local object dictionary entry is not existing (internal error).

Used only with SDO-Manager Feature.

COP_k_NO_SUBINDEX
19

Local object dictionary entry is not existing (internal error).

Used only with SDO-Manager Feature.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix A - Error codes

138

COP_k_PRESENT_DEVICE_STATE
21

Access currently not possible

Used only with SDO-Manager Feature.

COP_k_RANGE_EXCEEDED
22

Parameter out of range

Used only with SDO-Manager Feature.

COP_k_UNKNOWN
32

Unknown Opcode

COP_k_NO_FLY_MASTER_PRESENT
33

Flying Master functionality not supported or not activated

COP_k_NO_LOWSPEED
34

LowSpeed bus coupling is not present or is not supported
for the particular CAN board

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix B - Performance characteristics

139

Appendix B - Performance characteristics

The following table lists some of the capacity limit values for the supportedCAN-
boards. These values are defined by the microcontroller and the memory
extension of the CAN board and by the implementation of the CANopen Master
Firmware itself.

iPC-I 320

tinCAN V4

USB-to-CAN
compact

Generic VCI3
e.g.

USB-to-CAN V2

CAN-IB200

iPC-I XC16

tinCAN161

USB-to-CAN II

CAN@net II

Maximum number of simul-
taneously manageable nodes
(COP_AddNode)

40 + 1 127 + 1

Maximum number of
TPDOs per node
(COP_CreatePDO)

12 16

Maximum number of
RPDOs per node
(COP_CreatePDO)

12 16

Maximum number of
SDOs per node
(COP_CreateSDO)

2
(incl. default-SDO)

Maximum number of parallel
running SDO-Transfers

1

Maximum total number
of RPDOs and TPDOs

500 16001

Maximum number of
synchronous RPDOs and TPDOs

200 600

Multi line operation No Yes2

Flying Master
additional functionality

No Yes

1 The maximum number of PDOs according to Predefined Connection Set defined in the CANopen

specification /1/ is 1016
2 No for CAN@netII because of a single existing CAN controller

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

140

Appendix C - Scope of delivery

The CANopen Master API is installed as standard in the directory
\Programs\IXXAT\CANopen Master API 6.1

The sample applications are located at \Users\Public\Documents\IXXAT
CANopen Master API 6.1

Neither the program library nor the demo applications enter program settings in
the Windows registry.

Folder File name Meaning
\ Documentation
 files.txt List of installed files and their version numbers

 LiesMich.txt Important last-minute product information (German)
 ReadMe.txt Important last-minute product information (English)

 HISTORY.txt Development history and record of changes
 4.12.0132.10000.pdf Electronic operating manual and documentation

(German)

 4.12.0132.20000.pdf Electronic operating manual and documentation
(English)

\bin Binary files
 XatCOP60.dll CANopen Master API 6

 XatCOP60-64.dll CANopen Master API 6 (64bit version for processor
architecture “amd64”)

 XatCOP_VCI3.dll Generic VCI3 firmware

 XatCOP_VCI3-64.dll Generic VCI3 firmware (64bit version for processor
architecture “amd64”)

 MdllWrapper6.dll COM-Wrapper of the CANopen Master API 6

\bin\debuglog Debug-version
(generates protocol file XatCOP60.LOG)

 XatCOP60.dll CANopen Master API 6
 XatCOP60-64.dll CANopen Master API 6 (64bit version for processor

architecture “amd64”)

\lib Library files for the C Compilers
\lib\BCB Lib-file for the Borland C++ Builder

 XatCOP60.lib Lib-file for C++Builder in OMF format, generated
with the command line tool implib.exe

 Readme.txt Instructions for generating the Lib-file
\lib\MSVC Lib-files for Microsoft Visual C++ / Visual Studio

 XatCOP60.lib Lib-file for MS Visual C / Visual Studio
 XatCOP60-64.lib Lib-file for MS Visual C / Visual Studio (64bit version)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

141

\Samples\ Headers for all programming languages with

constants, types and interface descriptions
 cop.bas Visual Basic (legacyt) main header of the CANopen

Master API
 cop.h C main header of the CANopen Master API

 cop.pas Delphi (Pascal) main header of the CANopen Master
API

 cop.cs C# Main header of the CANopen Master API

 cop.vb Visual Basic.NET Main header of the CANopen Master
API

 copcmd.h C header with the command-Opcodes of the CANopen
Master API

 copcmd.pas Delphi (Pascal) header with the command-Opcodes of
the CANopen Master API

 CopSDOManager.h C header containing additional CANopen Master API
functions

 CopUserBittiming.h C header containing additional CANopen Master API
functions

 LSScmd.h C header with the LSS constants

 CopError.h C header for issuing description texts for the return
error codes

 CopError.c Corresponding C implementation file
 XatBrds.bas All IXXAT board types (CAN boards) for Visual Basic

(legacy)

 XatBrds.h C header of all IXXAT board types (CAN boards VCI 2)
 XatBrds.pas Delphi (Pascal) header of all IXXAT board types (CAN

boards VCI 2)
 XatBrds.cs All IXXAT board types (CAN boards) for C#

 XatBrds.vb All IXXAT board types (CAN boards) for Visual Basic
.NET

 Vciguid.h C header of all IXXAT board types (CAN boards VCI3)

 Vci3Guid.pas Delphi (pascal) header of all IXXAT board types (CAN
boards VCI3)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

142

\Samples\C C sample applications
\Samples\C\BCB DigIO Borland C++ Builder sample application for control of

an external DS-401 device via its two default-PDOs of
length 1

 DigIOdemo.bpr BCB project file

 DigIOdemo.cpp Implementation of WinMain()
 DigIOdemo.exe Release-Version of the sample application

 DigIOdemo.exe.manifest Declaration of the common controls utilised for
support of XP visual styles

 XatCOP60.dll CANopen Master API 6

 XatCOP_VCI3.dll Generic VCI3 firmware
 DigIOdemo.ico Icon of the application

 DigIOdemo.res Binary resource file, contains the application-icon
 Main.cpp Implementation of the main window of the

application
 Main.dfm Configuration of the control elements in the main

window of the application

 Main.h Corresponding header of the main window

\Samples\C\BCB NetManage Borland C++ Builder sample application for the object

dictionary access to external devices via the default
SDO

 FileOpen.bmp Bitmap for button

 FileSave.bmp Bitmap for button
 Main.dfm Configuration of the control elements in the main

window of the application
 Main.cpp Implementation of the main window of the

application
 Main.h Corresponding header of the main window
 NetManage.bpr BCB project file

 NetManage.cpp Implementation of WinMain()
 NetManage.exe Release-Version of the sample application

 NetManage.exe.manifest Declaration of the common controls utilised for
support of XP visual styles

 XatCOP60.dll CANopen Master API 6
 XatCOP60_VCI3.dll Generic VCI3 firmware

 NetManage.res Binary resource file, contains the application-icon
 NetManage.ico Icon of the application

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

143

\Samples\C\MFC DigIO MFC sample application for control of an external DS-

401 device via its two default-PDOs of length 1 for
Visual Studio 2005 and Visual Studio 6

 DigIOdemo.cpp Implementation of the application class
 DigIOdemo.dsp Visual Studio 6 project file

 DigIOdemo.exe Release build of the sample application
 DigIOdemo.exe.manifest Declaration of the common controls utilised for

support of XP visual styles

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 DigIOdemo.h Header of the application class
 DigIOdemo.rc Resource script of the application

 DigIOdemo.sln Visual Studio 2005 project file
 DigIOdemo.vcproj Visual C++ 2005 project file
 DigIOdemoDlg.cpp Implementation of the main window of the

application
 DigIOdemoDlg.h Header of the main window of the application
 ReadMe.txt Info file generated by MFC Class Wizard

 Resource.h Resource-IDs of the control elements
 StateLED.cpp Implementation of a round colored status LED

CStaticLED derived from CStatic
 StateLED.h Corresponding header

 StdAfx.cpp Configuration of the MFC elements used
 StdAfx.h Header for configuration of the MFC elements used

\Samples\C\MFC DigIO\res Resource files
 DigIOdemo.ico Icon of the application

 DigIOdemo.rc2 Visual C++ 6 additional resources
 IXATLOGO.BMP Image file

 LEDclear.bmp Image file of the gray status LED
 LEDin.bmp Image file of the green status LED

 LEDout.bmp Image file of the red status LED
\Samples\C\MFC DigIO\x64 64bit version of the sample application for processor

architecture “amd64”

 DigIOdemo.exe Release build of the sample application
 DigIOdemo.exe.manifest Declaration of the common controls utilised for

support of XP visual styles
 XatCOP60.dll CANopen Master API 6 (64bit version)

 XatCOP_VCI3-64.dll Generic VCI3 firmware (64bit version)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

144

\Samples\C\Win32 App Sample application for monitoring of an external DS-

401 device and control via its default RPDO1 of
length 2 developed without class library with the pure
Windows API for Visual Studio 2005 and Visual
Studio 6

 COPMSMPL.cpp Implementation of the application and of the
application window

 COPMSMPL.h Corresponding header
 COPMSMPL.dsp Visual Studio 6 project file

 COPMSMPL.exe Release build of the sample application
 COPMSMPL.exe.manifest Declaration of the Common Controls version used for

XP visual styles

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware
 COPMSMPL.rc Resource script of the application

 resource.h Resource script of the application
 COPMSMPL.sln Visual Studio 2005 project file

 COPMSMPL.vcproj Visual C++ 2005 project file
\Samples\C\Win32 App\x64 64bit version of the sample application for processor

architecture “amd64“
 COPMSMPL.exe Release build of the sample application
 COPMSMPL.exe.manifest Declaration of the Common Controls version used for

XP visual styles
 XatCOP60-64.dll CANopen Master API 6 (64bit version)

 XatCOP_VCI3-64.dll Generic VCI3 firmware (64bit version)

\Samples\C\VS2010 MFC DigIO MFC sample application for control of an external DS-

401 device via its two default-PDOs of length 1 for
Visual Studio 2010

 DigIOdemo.cpp Implementation of the application class
 DigIOdemo.exe Release build of the sample application

 DigIOdemo.exe.manifest Declaration of the common controls utilised for
support of XP visual styles

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 DigIOdemo.h Header of the application class
 DigIOdemo.rc Resource script of the application

 DigIOdemo.sln Visual Studio 2010 project file
 DigIOdemo.vcxproj Visual C++ 2010 project file

 DigIOdemo.vcxproj.filter Visual C++ 2010 project file
 DigIOdemoDlg.cpp Implementation of the main window of the

application

 DigIOdemoDlg.h Header of the main window of the application
 ReadMe.txt Info file generated by MFC Class Wizard
 Resource.h Resource-IDs of the control elements

 StateLED.cpp Implementation of a round colored status LED
CStaticLED derived from CStatic

 StateLED.h Corresponding header

 StdAfx.cpp Configuration of the MFC elements used

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

145

 StdAfx.h Header for configuration of the MFC elements used
\Samples\C\VS2010 MFC DigIO\res Resource files

 DigIOdemo.ico Icon of the application
 DigIOdemo.rc2 Additional resources

 IXATLOGO.BMP Image file
 LEDclear.bmp Image file of the gray status LED

 LEDin.bmp Image file of the green status LED
 LEDout.bmp Image file of the red status LED

\Samples\C\VS2010 MFC DigIO\x64 64bit version of the sample application for processor
architecture “amd64”

 DigIOdemo.exe Release build of the sample application
 DigIOdemo.exe.manifest Declaration of the common controls utilised for

support of XP visual styles
 XatCOP60.dll CANopen Master API 6 (64bit version)
 XatCOP_VCI3-64.dll Generic VCI3 firmware (64bit version)

\Samples\C\VS2010 Win32 App Sample application for monitoring of an external DS-

401 device and control via its default RPDO1 of
length 2 developed without class library with the pure
Windows API for Visual Studio 2010

 COPMSMPL.cpp Implementation of the application and of the
application window

 COPMSMPL.h Corresponding header
 COPMSMPL.exe Release build of the sample application

 COPMSMPL.exe.manifest Declaration of the Common Controls version used for
XP visual styles

 XatCOP60.dll CANopen Master API 6

 XatCOP_VCI3.dll Generic VCI3 firmware
 COPMSMPL.rc Resource script of the application

 resource.h Resource script of the application
 COPMSMPL.sln Visual Studio 2010 project file

 COPMSMPL.vcxproj Visual C++ 2010 project file
 COPMSMPL.vcxproj.filter Visual C++ 2010 project file

\Samples\C\VS2010 Win32 App\x64 64bit version of the sample application for processor
architecture “amd64“

 COPMSMPL.exe Release build of the sample application
 COPMSMPL.exe.manifest Declaration of the Common Controls version used for

XP visual styles
 XatCOP60-64.dll CANopen Master API 6 (64bit version)
 XatCOP_VCI3-64.dll Generic VCI3 firmware (64bit version)

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

146

\Samples\C# C# Sample applications
\Samples\C#\DigIO C# Sample application to control an external DS-401

device via its two default PDOs of length 1 for Visual
Studio 2008 and .NET 2.0 Framework

 cop.cs Copy of the CANopen Master API C# main header

 DigIOdemo.csproj Visual C# 2008 project file
 DigIOdemo.exe Release build of the sample application

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 DigIOdemo.ico Icon of the application
 DigIOdemo.sln Visual Studio 2008 project file

 DigIOdemo.csproj.user Visual C# 2008 project settings
 MainForm.cs Implementation of the main window of the

application
 MainForm.resx Configuration of the control elements in the main

window of the application
 LED.cs Implementation of a round colored status LED as a

user-defined control element
 LED.resx Configuration of the control elements for user-defined

coloured status LED
 XatBrds.cs Copy of the IXXAT board type file (CAN boards) for C#

\Samples\C#\DigIO\Properties Resource files
 AssemblyInfo.cs File version resource

 Resources.Designer.cs Application-specific resource manager
 Resources.resx Configuration of the application-specific resources

 LEDgrey.ico Image file of the gray status LED
 LEDgreen.ico Image file of the green status LED

 LEDred.ico Image file of the red status LED

\Samples\C#\NetManage C# Sample application for the object dictionary access

to external devices via the default SDO for Visual
Studio 2008 and .NET 2.0 Framework

 cop.cs Copy of the CANopen Master API C# main header

 NetManage.csproj Visual C# 2008 project file
 NetManage.exe Release build of the sample application

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 NetManage.ico Icon of the application
 NetManage.sln Visual Studio 2008 project file

 NetManage.csproj.user Visual C# 2008 project settings
 MainForm.cs Implementation of the main window of the

application

 MainForm.resx Configuration of the control elements in the main
window of the application

 XatBrds.cs Copy of the IXXAT board type file (CAN boards) for C#

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

147

\Samples\C#\NetManage\Properties Resource files
 AssemblyInfo.cs File version resource

 FileOpen.bmp Bitmap for button
 FileSave.bmp Bitmap for button

 Resources.Designer.cs Application-specific resource manager
 Resources.resx Configuration of the application-specific resources

\Samples\Delphi Delphi sample applications
\Samples\Delphi\DigIO Delphi sample application for control of an external

DS-401 device via its two default-PDOs of length 1
 DigIOdmo.dof Configuration file of the application

 DigIOdmo.dpr Delphi project file
 DigIOdmo.exe Debug build of the sample application

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 DigIOdemo.ico Icon of the application
 DigIOdmo.res Binary resource file, contains the application icon

 Main.dfm Configuration of the control elements in the main
window of the application

 Main.pas Implementation of the main window of the
application

\Samples\Delphi\NetManage Delphi sample application for the object dictionary

access to external devices via the default SDO
 FileOpen.bmp Bitmap for button
 FileSave.bmp Bitmap for button

 Main.dfm Configuration of the control elements in the main
window of the application

 Main.pas Implementation of the main window of the
application

 NetManage.dof Configuration file of the application

 NetManage.dpr Delphi project file
 NetManage.exe Debug build of the sample application

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

 NetManage.res Binary resource file, contains the application icon
 NetManage.ico Icon of the application

\Samples\Delphi.net Headers for Delphi.net with constants, types and

interface descriptions
 cop.pas Delphi (Pascal) main header of the CANopen Master

API
 Copcmd.pas Delphi (Pascal) header with the command-Opcodes of

the CANopen Master API

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

148

\Samples\VB.NET Visual Basic.NET sample applications
\Samples\VB.NET\DigIO Visual Basic.NET sample application to control an

external DS-401 device via its two default PDOs of
length 1 for Visual Studio 2008 and .NET 2.0
Framework

 cop.vb Copy of the CANopen Master API Visual Basic.NET
main header

 DigIOdemo.vbproj Visual Basic 2008 project file

 DigIOdemo.exe Release build of the sample application
 XatCOP60.dll CANopen Master API 6

 XatCOP_VCI3.dll Generic VCI3 firmware
 DigIOdemo.ico Icon of the application

 DigIOdemo.sln Visual Studio 2008 project file
 DigIOdemo.vbproj.user Visual Basic 2008 project settings

 MainForm.vb Implementation of the main window of the
application

 MainForm.resx Configuration of graphical control elements in the
main window of the application

 MainForm.Designer.vb Configuration of the control elements in the main
window of the application

 LED.vb Implementation of a round colored status LED as a
user-defined control element

 LED.resx Configuration of the control elements for user-defined
colored status LED

 XatBrds.vb Copy of the IXXAT board type file (CAN boards) for
Visual Basic .NET

\Samples\C#\DigIO\Properties Resource files
 app.manifest User Accound Control definitions

 AssemblyInfo.vb File version resource
 LEDgrey.ico Image file of the gray status LED
 LEDgreen.ico Image file of the green status LED

 LEDred.ico Image file of the red status LED

\Samples\LabView LabView examples
 IXXAT CANio500.lvproj LabView example project for controlling of

IXXAT CANopen I/O-module CANio500
 Readme.txt Note for using the LabView CLN library

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

149

\Samples\LabView\CLN_IXXAT_Master_API
_Functions

Library of virtual instruments (.vi) using Call-
Library-Function nodes für the single Master
API functions

 COP_Custom_Error_Codes.vi Translates the MasterAPI error codes to a
LabView compliant range using offset 6100

 COP_AddNode.vi
 COP_ChangeNodeParameter.vi

 COP_CheckSync.vi
 COP_CreatePDO.vi

 COP_CreateSDO.vi
 COP_DefSyncObj.vi

 COP_DeleteNode.vi
 COP_DeletePDO.vi

 COP_DisableSync.vi
 COP_EnableSync.vi

 COP_EnterPreOperational.vi
 COP_GetBoardInfo.vi

 COP_GetEmergencyObj.vi
 COP_GetEmergencyObj_S.vi

 COP_GetEvent.vi
 COP_GetNodeInfo.vi

 COP_GetNodeState.vi
 COP_GetPDOInfo.vi

 COP_GetSDOInfo.vi
 COP_GetStatus.vi

 COP_GetSyncInfo.vi
 COP_GetTimeStampObj.vi

 COP_InitBoard.vi
 COP_InitInterface.vi
 COP_InitTimeStampObj.vi

 COP_ReadPDO.vi
 COP_ReadPDO_S.vi

 COP_ReadSDO.vi
 COP_ReleaseBoard.vi

 COP_RequestPDO.vi
 COP_Reset_DLL.vi

 COP_ResetComm.vi
 COP_ResetNode.vi

 COP_SearchNode.vi
 COP_SetCommTimeOut.vi

 COP_SetEmcyIdentifier.vi
 COP_SetSDOTimeOut.vi

 COP_SetSyncDivisor.vi
 COP_StartNode.vi

 COP_StartStopTSObj.vi
 COP_StopNode.vi

 COP_WritePDO.vi
 COP_WritePDO_S.vi

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

150

 COP_WriteSDO.vi
 IXXAT_Master_API.mnu All these Master API functions as LabView

palette

 XatCOP60.dll CANopen Master API 6
 XatCOP_VCI3.dll Generic VCI3 firmware

\Samples\LabView\CLN_IXXAT_Master_API
_Functions\AdditionalFeatures

Library of virtual instruments (.vi) using Call-
Library-Function nodes für the single Master
API functions of Flying Master additional
feature

 COP_ConfigFlyMaster.vi

 COP_GetStatusFlyMasterNeg.vi
 COP_StartFlyMaster.vi

\Samples\LabView\CLN_IXXAT_Master_API
_Functions\LSS

Library of virtual instruments (.vi) using Call-
Library-Function nodes für the single Master
API functions of LSS services

 COP_LSS_ActivateBitTiming.vi

 COP_LSS_ConfigBitTiming.vi
 COP_LSS_ConfigNodeID.vi
 COP_LSS_Fastscan.vi

 COP_LSS_IdentifyNonConfRemote
Slaves.vi

 COP_LSS_IdentifyRemoteSlaves.vi

 COP_LSS_InquireAddress.vi
 COP_LSS_InquireNodeID.vi

 COP_SetLSSTimeOut.vi

\Samples\LabView\CLN_IXXAT_Master_API
_Functions\special

Library of virtual instruments (.vi) using Call-
Library-Function nodes für the single Master
API functions for experts

 COP_PutSDO.vi

 COP_GetSDO.vi
 COP_CancelSDO.vi

\Samples\LabView\custom Manufacturer specific additions to the

LabView environment
 IXXAT_Master_API-errors.txt Master API error codes with LabView-

compliant offset 6100

\Samples\LabView\examples LabView examples
 example_find_all_nodes.vi
 IXXAT CANio500.vi

 pdo_statt_lss.vi
 read_sdo_predefined.vi

 write_sdo_predefined.vi

\Samples\LabView\complex_functions_based
_on_API

Sub-vis used by the LabView samples and
the Master API CLN library (required)

 config_baudrate.vi
 config_nodeID.vi

 convert_CAN_to_sdo_value.vi
 convert_sdo_value_to_CAN.vi

 find_all_nodes.vi

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix C - Scope of delivery

151

 full_scan_different_busspeed.vi
 inquire_LSSaddress.vi

 Translate_error_message.vi
 Translate_event_type.vi

\Tools\ Utilities
 XCFlash.exe VCI2 flash programmer for IXXAT CAN interface

boards

 ucii161f.H86 VCI2 flash firmware for use with iPCI-XC16/PCI CAN
board

 iPC-I_XC16_PCI_FLASH.H86 VCI3 flash firmware for use with iPCI-XC16/PCI CAN
board

 COP_i161xc_2ch_flash.H86 VCI2 CANopen Master API 6 dual channel flash
firmware for use with iPCI-XC16 CAN board

 COP_i161xc_2ch_flash_vci3
.H86

VCI3 CANopen Master API 6 dual channel flash
firmware for use with iPCI-XC16 CAN board

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

152

Appendix D - Data structures of the
command queues

Via the command queues the CANopen Master Firmware is configured and
parameterized on the CAN-board. Almost all functions of the CANopen Master
API are prepared within the CANopen Master API DLL XatCOP60.dll to
operations of type COP_t_Message, placed in the transmit-command queue and
await processing or acknowledgement by the firmware. This is also done as
COP_t_Message. The definitions of the supported command records are given in
the copcmd header.

The record COP_t_Message

COP_t_Message is the central structure for communication between the
Windows side and the CANopen Master Firmware. Here both sides enter their
data to be transmitte before the block is written in the command queues. The PC-
side compiles one Request (REQ) in each case and enters it in the transmit-
command queue, whereupon the Master Firmware responds with a Confirmation
(CON) in the receive-command queue. The Master Firmware does not enter any
blocks in the receive-command queue itself but reacts only to blocks from the
transmit-command queue.

COP_t_Message is composed of a header, containing the Opcode and the size of
the occupied memory, as well as an operation-dependent data structure:

COP_t_Message Alignment: 1 byte

Field Type Meaning

hd COP_t_Header Header of the operation, in which
the Opcode and the length of the
parameter block are specified.

pm COP_t_Par Operation-dependent parameter
block

COP_t_Header contains the variables for the operation- or confirmation opcode
and the length of the parameter block, which follows immediately in
COP_t_Message as COP_t_Par:

COP_t_Header Alignment: 1 byte

Field Type Meaning

cmd WORD Operation- or Confirmation opcode

size WORD Size of the operation-dependent
parameter block

SeqNo WORD Sequence number allocated by
requester for validation of the
transmission path

Walign WORD Alignment filler

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

153

COP_t_Par is not a fixed record but a union of structures, as the structures vary
from operation to operation. In order to facilitate access, any of the following
types are entered in the parameter block of a message:

union COP_t_Par Alignment: 1 byte

Union element Type

t_TestCmd_Con COP_t_TESTCMD_CON

t_Status_Con COP_t_STATUS_CON

t_Init_Interface_Req COP_t_INIT_INTERFACE_REQ
t_Init_Interface_Con COP_t_INIT_INTERFACE_CON

t_FW_Info_Con COP_t_FW_INFO_CON

t_Set_UserBittiming_Req COP_t_SET_USERBITTIMING_REQ
t_Set_UserBittiming_Con COP_t_SET_USERBITTIMING_CON

t_Add_Node_Req COP_t_ADD_NODE_REQ
t_Add_Node_Con COP_t_ADD_NODE_CON

t_Delete_Node_Req COP_t_DELETE_NODE_REQ
t_Delete_Node_Con COP_t_DELETE_NODE_CON

t_Search_Node_Req COP_t_SEARCH_NODE_REQ
t_Search_Node_Con COP_t_SEARCH_NODE_CON

t_Set_Operational_Req COP_t_SET_OPERATIONAL_REQ
t_Set_Operational_Con COP_t_SET_OPERATIONAL_CON

t_Set_Preopertnl_Req COP_t_SET_PREOPERTNL_REQ
t_Set_Preopertnl_Con COP_t_SET_PREOPERTNL_CON

t_Reset_Comm_Req COP_t_RESET_COMM_REQ
t_Reset_Comm_Con COP_t_RESET_COMM_CON

t_Reset_Node_Req COP_t_RESET_NODE_REQ
t_Reset_Node_Con COP_t_RESET_NODE_CON

t_Set_Prepared_Req COP_t_SET_PREPARED_REQ
t_Set_Prepared_Con COP_t_SET_PREPARED_CON

t_Get_Node_State_Req COP_t_GET_NODE_STATE_REQ
t_Get_Node_State_Con COP_t_GET_NODE_STATE_CON

t_Ident_Node_Info_Req COP_t_GET_NODE_INFO_REQ
t_Ident_Node_Info_Con COP_t_GET_NODE_INFO_CON

t_Change_Node_Param_Req COP_t_CHANGE_NODE_PARAM_REQ
t_Change_Node_Param_Con COP_t_CHANGE_NODE_PARAM_CON

t_Create_PDO_Req COP_t_CREATE_PDO_REQ
t_Create_PDO_Con COP_t_CREATE_PDO_CON

t_Get_PDO_Info_Req COP_t_GET_PDO_INFO_REQ
t_Get_PDO_Info_Con COP_t_GET_PDO_INFO_CON

t_Create_SDO_Req COP_t_CREATE_SDO_REQ
t_Create_SDO_Con COP_t_CREATE_SDO_CON

t_Def_SyncObj_Req COP_t_DEF_SYNCOBJ_REQ
t_Def_SyncObj_Con COP_t_DEF_SYNCOBJ_CON

t_Get_Sync_Info_Con COP_t_GET_SYNC_INFO_CON

t_Set_SyncDivisor_Req COP_t_SET_SYNCDIVISOR_REQ
t_Set_SyncDivisor_Con COP_t_SET_SYNCDIVISOR_CON

T_Enable_Sync_Req COP_t_ENABLE_SYNC_REQ
t_Enable_Sync_Con COP_t_ENABLE_SYNC_CON

t_Disable_Sync_Req COP_t_DISABLE_SYNC_REQ
t_Disable_Sync_Con COP_t_DISABLE_SYNC_CON

t_En_Dis_TSObj_Req COP_t_EN_DIS_TSOBJ_REQ
t_En_Dis_TSObj_Con COP_t_EN_DIS_TSOBJ_CON

t_Set_SDO_TmOut_Req COP_t_SET_SDO_TMOUT_REQ

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

154

t_Set_SDO_TmOut_Con COP_t_SET_SDO_TMOUT_CON

t_Get_TS_Obj_Con COP_t_GET_TS_OBJ_CON

t_Get_SDO_Info_Req COP_t_GET_SDO_INFO_REQ
t_Get_SDO_Info_Con COP_t_GET_SDO_INFO_CON

t_Set_Emcy_ID_Req COP_t_SET_EMCY_ID_REQ
t_Set_Emcy_ID_Con COP_t_SET_EMCY_ID_CON

t_Request_PDO_Req COP_t_REQUEST_PDO_REQ
t_Request_PDO_Con COP_t_REQUEST_PDO_CON

t_Cancel_SDO_Req COP_t_CANCEL_SDO_REQ
t_Cancel_SDO_Con COP_t_CANCEL_SDO_CON

t_Start_Master_Neg_Con COP_t_START_MASTER_NEG_CON

t_Config_Fly_Master_Req COP_t_CONFIG_FLY_MASTER_REQ
t_Config_Fly_Master_Con COP_t_CONFIG_FLY_MASTER_CON

t_Get_Status_Master_Neg_Co
n

COP_t_GET_STATUS_MASTER_NEG_
CON

t_Req_Lmt_Config_Node_Id_M
acro

COP_t_REQ_LMT_CONFIG_NODE_ID
_MACRO

t_Con_Lmt_Config_Node_Id_M
acro

COP_t_CON_LMT_CONFIG_NODE_ID
_MACRO

t_Req_Lmt_Config_Bit_Timin
g_Macro

COP_t_REQ_LMT_CONFIG_BIT_TIM
ING_MACRO

t_Con_Lmt_Config_Bit_Timin
g_Macro

COP_t_CON_LMT_CONFIG_BIT_TIM
ING_MACRO

t_Req_Lmt_Inquire_Address_
Macro

COP_t_REQ_LMT_INQUIRE_ADDRES
S_MACRO

t_Con_Lmt_Inquire_Address_
Macro

COP_t_CON_LMT_INQUIRE_ADDRES
S_MACRO

t_Req_Lmt_Identify_Slave_M
acro

COP_t_REQ_LMT_IDENTIFY_SLAVE
_MACRO

t_Con_Lmt_Identify_Slave_M
acro

COP_t_CON_LMT_IDENTIFY_SLAVE
_MACRO

t_Req_Lss_Config_Node_Id_M
acro

COP_t_REQ_LSS_CONFIG_NODE_ID
_MACRO

t_Con_Lss_Config_Node_Id_M
acro

COP_t_CON_LSS_CONFIG_NODE_ID
_MACRO

t_Req_Lss_Config_Bit_Timin
g_Macro

COP_t_REQ_LSS_CONFIG_BIT_TIM
ING_MACRO

t_Con_Lss_Config_Bit_Timin
g_Macro

COP_t_CON_LSS_CONFIG_BIT_TIM
ING_MACRO

t_Req_Lss_Activate_Bit_Tim
ing_Macro

COP_t_REQ_LSS_ACTIVATE_BIT_T
IMING_MACRO

t_Con_Lss_Activate_Bit_Tim
ing_Macro

COP_t_CON_LSS_ACTIVATE_BIT_T
IMING_MACRO

t_Req_Lss_Identify_Slave_M
acro

COP_t_REQ_LSS_IDENTIFY_SLAVE
_MACRO

t_Con_Lss_Identify_Slave_M
acro

COP_t_CON_LSS_IDENTIFY_SLAVE
_MACRO

t_Req_Lss_Inquire_Address_
Macro

COP_t_REQ_LSS_INQUIRE_ADDRES
S_MACRO

t_Con_Lss_Inquire_Address_
Macro

COP_t_CON_LSS_INQUIRE_ADDRES
S_MACRO

t_Req_Lss_Inquire_Node_Id_
Macro

COP_t_REQ_LSS_INQUIRE_NODE_I
D_MACRO

t_Con_Lss_Inquire_Node_Id_
Macro

COP_t_CON_LSS_INQUIRE_NODE_I
D_MACRO

t_Req_Lss_Identify_Non_Con
fig_Slave_Macro

COP_t_REQ_LSS_IDENTIFY_NON_C
ONFIG_SLAVE_MACRO

t_Con_Lss_Identify_Non_Con
fig_Slave_Macro

COP_t_CON_LSS_IDENTIFY_NON_C
ONFIG_SLAVE_MACRO

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

155

t_Req_LSS_Set_TimeOut COP_t_REQ_LSS_SET_TIMEOUT
t_Con_LSS_Set_TimeOut COP_t_CON_LSS_SET_TIMEOUT

t_Req_LSS_Fastscan COP_t_REQ_LSS_FASTSCAN
t_Con_LSS_Fastscan COP_t_CON_LSS_FASTSCAN

para[COP_k_SIZE_PARA_BUF] BYTE[]

Command Opcodes

The operation- and confirmation opcodes specify how the parameter block is to
be interpreted. To facilitate machine processing and orientation in the API, the
code numbers are divided into bit-groups (Figure 0-1). The module identifier
describes the Opcode category and the Service Opcode identifies the service itself.

Fig. D-1: Subdivision of the message block Opcodes

Basic API-functions:

Function name

Opcode name

Opcode
value

COP_InitInterface COP_k_INIT_INTERFACE_REQ 0x0008
 COP_k_INIT_INTERFACE_CON 0x000b

COP_GetBoardInfo COP_k_FW_INFO_REQ 0x000c
 COP_k_FW_INFO_CON 0x000f

COP_GetStatus COP_k_STATUS_REQ 0x0004

 COP_k_STATUS_CON 0x0007

COP_TestCommand COP_k_TESTCMD_REQ 0x0000

 COP_k_TESTCMD_CON 0x0003

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

156

- COP_k_SHUTDOWN_REQ 0x0010
 COP_k_SHUTDOWN_CON 0x0013

COP_SetUserBittiming COP_k_SET_USERBITTIMING_REQ 0x0014

 COP_k_SET_USERBITTIMING_CON 0x0017

Functions for the network management:

Function name

Opcode name

Opcode
value

COP_AddNode COP_k_ADD_NODE_REQ 0x1000
 COP_k_ADD_NODE_CON 0x1003

COP_DeleteNode COP_k_DELETE_NODE_REQ 0x1008
 COP_k_DELETE_NODE_CON 0x100b

COP_SearchNode COP_k_SEARCH_NODE_REQ 0x1004
 COP_k_SEARCH_NODE_CON 0x1007

COP_GetNodeInfo COP_k_GET_NODE_INFO_REQ 0x1034
 COP_k_GET_NODE_INFO_CON 0x1037

COP_ChangeNodeParameter COP_k_CHANGE_NODE_PARAM_
REQ

0x102c

 COP_k_CHANGE_NODE_PARAM_
CON

0x102f

COP_SetEmcyIdentifier COP_k_SET_EMCY_ID_REQ 0x3060c
 COP_k_SET_EMCY_ID_CON 0x3063f

COP_StartNode COP_k_SET_OPERATIONAL_REQ 0x100c
 COP_k_SET_OPERATIONAL_CON 0x100f

COP_StopNode COP_k_SET_PREPARED_REQ 0x1018

 COP_k_SET_PREPARED_CON 0x101b

COP_ResetComm COP_k_RESET_COMM_REQ 0x101c

 COP_k_RESET_COMM_CON 0x101f

COP_ResetNode COP_k_RESET_NODE_REQ 0x1020

 COP_k_RESET_NODE_CON 0x1023

COP_EnterPreOperational COP_k_SET_PREOPERTNL_REQ 0x1010

 COP_k_SET_PREOPERTNL_CON 0x1013

COP_GetNodeState COP_k_GET_NODE_STATE_REQ 0x1024
 COP_k_GET_NODE_STATE_CON 0x1027

COP_ConfigFlyMaster COP_k_CONFIG_FLY_MASTER_RE
Q

0x1050

 COP_k_CONFIG_FLY_MASTER_CO
N

0x1053

COP_StartFlyMaster COP_k_START_MASTER_NEG_RE
Q

0x1054

 COP_k_START_MASTER_NEG_CO
N

0x1057

COP_GetStatusFlyMasterNe
g

COP_k_GET_STATUS_MASTER_NE
G_REQ

0x1058

 COP_k_GET_STATUS_MASTER_NE
G_CON

0x105b

- COP_k_CONFIG_SDM_REQ 0x105c
 COP_k_CONFIG_SDM_CON 0x105f

- COP_k_START_SDM_REQ 0x1060

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

157

 COP_k_START_SDM_CON 0x1063

CANopen-object management:

Function name

Opcode name

Opcode
value

COP_CreatePDO COP_k_CREATE_PDO_REQ 0x3000
 COP_k_CREATE_PDO_CON 0x3003

COP_GetPDOInfo COP_k_GET_PDO_INFO_REQ 0x3004
 COP_k_GET_PDO_INFO_CON 0x3007

COP_CreateSDO COP_k_CREATE_SDO_REQ 0x3044

 COP_k_CREATE_SDO_CON 0x3047

COP_GetSDOInfo COP_k_GET_SDO_INFO_REQ 0x3054

 COP_k_GET_SDO_INFO_REQ 0x3057

COP_SetSDOTimeOut COP_k_SET_SDO_TMOUT_REQ 0x3040

 COP_k_SET_SDO_TMOUT_CON 0x3043

COP_DefSyncObj COP_k_DEF_SYNCHOBJ_REQ 0x3008

 COP_k_DEF_SYNCHOBJ_CON 0x300b

COP_SetSyncDivisor COP_k_SET_SYNCDIVISOR_REQ 0x3048
 COP_k_SET_SYNCDIVISOR_CON 0x304b

COP_GetSyncInfo COP_k_GET_SYNC_INFO_REQ 0x300c
 COP_k_GET_SYNC_INFO_CON 0x300f

COP_EnableSync COP_k_ENABLE_SYNCH_REQ 0x3014
 COP_k_ENABLE_SYNCH_CON 0x3017

COP_DisableSync COP_k_DISABLE_SYNCH_REQ 0x3018
 COP_k_DISABLE_SYNCH_CON 0x301b

COP_StartStopTSObj COP_k_EN_DIS_TS_OBJ_REQ 0x303c

 COP_k_EN_DIS_TS_OBJ_CON 0x303f

COP_GetTimeStampObj COP_k_GET_TS_OBJ_REQ 0x3050

 COP_k_GET_TS_OBJ_CON 0x3053

COP_CreateSpdTmObj COP_k_CREATE_SPDTMOBJ_REQ 0x302c

 COP_k_CREATE_SPDTMOBJ_CON 0x302f

COP_SetSpeedTime COP_k_SET_SPEEDTIME_REQ 0x3030

 COP_k_SET_SPEEDTIME_CON 0x3033

COP_StartStopSpdTmObj COP_k_EN_DIS_SPDTMOBJ_REQ 0x3034
 COP_k_EN_DIS_SPDTMOBJ_CON 0x3037

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

158

CANopen communication:

Function name

Opcode name

Opcode
value

COP_ReadPDO
COP_ReadPDO_S

COP_k_RX_PDO_IND 0x2005

COP_RequestPDO COP_k_REQUEST_PDO_REQ 0x2014
 COP_k_REQUEST_PDO_CON 0x2017

COP_WritePDO
COP_WritePDO_S

COP_k_WRITE_PDO_REQ 0x0000

COP_ReadSDO COP_k_READ_SDO_REQ 0x2000
 COP_k_READ_SDO_CON 0x2003
 COP_k_BLOCKREAD_SDO_REQ 0x2020

 COP_k_BLOCKREAD_SDO_CON 0x2023

COP_WriteSDO COP_k_WRITE_SDO_REQ 0x2004
 COP_k_WRITE_SDO_CON 0x2007

 COP_k_BLOCKWRITE_SDO_REQ 0x2024
 COP_k_BLOCKWRITE_SDO_CON 0x2027

COP_CancelSDO COP_k_CANCEL_SDO_REQ 0x2028
 COP_k_CANCEL_SDO_CON 0x202b

COP_GetEmergencyObj
COP_GetEmergencyObj_S

COP_k_EMERGENCY_OBJ_IND 0x2011

COP_GetEvent COP_k_EVENT_IND 0x1031

Of this category, only COP_CancelSDO works on the command queue. All other
functions use the Opcodes given in the table but they work on the corresponding
data queues.

LMT services:

Function name

Opcode name

Opcode
value

COP_LMT_ConfigNode
COP_LMT_ConfigModuleID

COP_k_REQ_LMT_CONFIG_NO
DE_ID_MACRO

0x4004

 COP_k_CON_LMT_CONFIG_NO
DE_ID_MACRO

0x4007

COP_LMT_GetAddress COP_k_REQ_LMT_INQUIRE_AD
DRESS_MACRO

0x4000

 COP_k_CON_LMT_INQUIRE_AD
DRESS_MACRO

0x4003

COP_LMT_ConfigNode COP_k_REQ_LMT_CONFIG_BIT_
TIMING_MACRO

0x4008

 COP_k_CON_LMT_CONFIG_BIT_
TIMING_MACRO

0x400b

COP_LMT_IdentifyRemoteSl
aves

COP_k_REQ_LMT_IDENTIFY_SLA
VE_MACRO

0x400c

 COP_k_CON_LMT_IDENTIFY_SL
AVE_MACRO

0x400f

LSS services:

Function name

Opcode name

Opcode
value

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix D - Data structures of the command queues

159

COP_LSS_ConfigNodeID COP_k_REQ_LSS_CONFIG_NOD
E_ID_MACRO

0x4020

 COP_k_CON_LSS_CONFIG_NOD
E_ID_MACRO

0x4023

COP_LSS_ConfigBitTiming COP_k_REQ_LSS_CONFIG_BIT_T
IMING_MACRO

0x4024

 COP_k_CON_LSS_CONFIG_BIT_
TIMING_MACRO

0x4027

COP_LSS_ActivateBitTimin
g

COP_k_REQ_LSS_ACTIVATE_BIT
_TIMING_MACRO

0x4028

 COP_k_CON_LSS_ACTIVATE_BIT
_TIMING_MACRO

0x402b

COP_LSS_IdentifyRemoteSl
aves

COP_k_REQ_LSS_IDENTIFY_SLA
VE_MACRO

0x402c

 COP_k_CON_LSS_IDENTIFY_SLA
VE_MACRO

0x402f

COP_LSS_InquireAddress COP_k_REQ_LSS_INQUIRE_ADD
RESS_MACRO

0x4030

 COP_k_CON_LSS_INQUIRE_AD
DRESS_MACRO

0x4033

COP_LSS_InquireNodeID COP_k_REQ_LSS_INQUIRE_NOD
E_ID_MACRO

0x4034

 COP_k_CON_LSS_INQUIRE_NO
DE_ID_MACRO

0x4037

COP_LSS_IdentifyNonConfR
emoteSlaves

COP_k_REQ_LSS_IDENTIFY_NO
N_CONFIG_SLAVE_MACRO

0x4038

 COP_k_CON_LSS_IDENTIFY_NO
N_CONFIG_SLAVE_MACRO

0x403b

COP_LSS_Fastscan COP_k_REQ_LSS_FASTSCAN 0x4040
 COP_k_CON_LSS_FASTSCAN 0x4043

COP_SetLSSTimeOut COP_k_REQ_LSS_SET_TIMEOUT 0x403c
 COP_k_CON_LSS_SET_TIMEOUT 0x403f

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix E - Differences to version 5.x

160

Appendix E - Differences to version 5.x

New functions

These eight functions have been added to the CANopen Master API 6:

COP_SetEmcyIdentifier() Description on page 59

COP_GetNodeInfo() Description on page 55

COP_DeletePDO() Description on page 73

COP_GetPDOInfo() Description on page 74

COP_GetSDOInfo() Description on page 76

COP_GetSyncInfo() Description on page 82

COP_GetTimeStampObj() Description on page 87

COP_LSS_Fastscan() Description on page 132

Removed functions

Deleted functions

This function is no longer included in the CANopen Master API 6:

COP_IdentifyRemNode()

Inapplicable functions

None

Altered functions

Renamed functions

None

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix E - Differences to version 5.x

161

Functions with altered parameter set

With these functions of the CANopen Master API 6, the parameter set was
altered. By way of comparison, the new and old syntax are shown opposite each
other.

Old syntax New syntax

COP_CreatePDOCOP_CreatePDOCOP_CreatePDOCOP_CreatePDO
(COP_t_HANDLE boardhdl,
 BYTE node_no,
 BYTE pdo_no,
 BYTE type,
 BYTE mode,
 BYTE length,
 WORD cob_id);

COP_CreatePDOCOP_CreatePDOCOP_CreatePDOCOP_CreatePDO
(COP_t_HANDLE boardhdl,
 BYTE node_no,
 BYTE pdo_no,
 BYTE type,
 BYTE mode,
 BYTE length,
 WORD CANid);

COP_DefSyncObjCOP_DefSyncObjCOP_DefSyncObjCOP_DefSyncObj
(COP_t_HANDLE boardhdl,
 WORD sync_period,
 WORD sync_window);

COP_DefSyncObjCOP_DefSyncObjCOP_DefSyncObjCOP_DefSyncObj
(COP_t_HANDLE boardhdl,
 WORD sync_period,
 WORD sync_window,
 BYTE CounterOverflow);

COP_EnableSyncCOP_EnableSyncCOP_EnableSyncCOP_EnableSync
(COP_t_HANDLE boardhdl,
 WORD cycle_count,
 BYTE mode);

COP_EnableSyncCOP_EnableSyncCOP_EnableSyncCOP_EnableSync
(COP_t_HANDLE boardhdl,
 BYTE mode);

COP_CheckSyncCOP_CheckSyncCOP_CheckSyncCOP_CheckSync
(COP_t_HANDLE boardhdl);

COP_CheckSyncCOP_CheckSyncCOP_CheckSyncCOP_CheckSync
(COP_t_HANDLE boardhdl,
 BYTE* SyncCounter);

COP_ReadPDOCOP_ReadPDOCOP_ReadPDOCOP_ReadPDO
(COP_t_HANDLE boardhdl,
 BYTE* node_no,
 BYTE* pdo_no,
 BYTE* rxlen,
 BYTE* rxdata);

COP_ReadPDOCOP_ReadPDOCOP_ReadPDOCOP_ReadPDO
(COP_t_HANDLE boardhdl,
 BYTE* node_no,
 BYTE* pdo_no,
 BYTE* rxlen,
 BYTE* rxdata
 BYTE* SyncCounter);

COP_ReadPDO_SCOP_ReadPDO_SCOP_ReadPDO_SCOP_ReadPDO_S
(COP_t_HANDLE boardhdl,
 COP_t_RX_PDO* sp_pdo);
typedef struct {
 BYTE node_no;
 BYTE pdo_no;
 BYTE length;
 BYTE reserved;
 BYTE a_data[8];
} COP_t_RX_PDO;

COP_ReadPDO_SCOP_ReadPDO_SCOP_ReadPDO_SCOP_ReadPDO_S
(COP_t_HANDLE boardhdl,
 COP_t_RX_PDO* sp_pdo);
typedef struct {
 BYTE node_no;
 BYTE pdo_no;
 BYTE length;
 BYTE SyncCounter;
 BYTE a_data[8];
} COP_t_RX_PDO;

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix F - CANopen-specific aspects

162

Appendix F - CANopen-specific aspects

Processing of synchronous PDOs

The treatment and processing of synchronous PDOs by the CANopen-Master
Firmware is described.

TPDOs

PDO-data for synchronous PDOs transfered with COP_WritePDO() are stored in
an internal buffer for the individual PDO. With each Sync-object all synchronous
TPDOs are checked to see whether data are present in the buffer. For the
application this means that with cyclic synchronous PDOs the data do not have to
be transferred separately with each Sync-event.

CANopen Master API 6 supports all PDO transmission types. The transmission
type is configured, according to the coding of subindex2 of the CANopen PDO
communication parameters in the object dictionary, in argument mode of
function COP_CreatePDO().

RPDOs

Received PDOs, which are defined as synchronous, are buffered in a separate
internal RPDO-Queue of the Master Firmware until the next Sync-object. Not until
after transmitting the Sync object, all PDOs received in the meantime and stored
in this internal RPDO-Queue are transfered via the ‘correct’ RPDO-Queue and can
be read with COP_ReadPDO().

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix F - CANopen-specific aspects

163

Node guarding and node states

If a device signals an unexpected node state in the course of node guarding, the
Master Firmware generates a network event of type COP_k_NMT_EVT with the
event cause COP_k_NMT_GUARDERR or COP_k_NMT_HEARTBEATERR in the
second return parameter evt_data1 and the node-ID in the third return
parameter evt_data2 of the function COP_GetEvent(). An unexpected node
state is given as the node state signaled by the slave is different to the one set by
the client application with the NMT functions, and also as any slave is not in Pre-
Operational state after its Bootup. The same network events are generated when
the node involved is lost, i.e. no longer reacts at all to the Guarding telegram or
no longer transmits Heartbeat messages. For a better distinction of the various
error scenarios, the fourth return parameter evt_data3 contains the unexpected
node state.

Since the firmware keeps track of all the current node states, the application does
not have to process all the network events. To get the NMT state of a registered
node, call function COP_GetNodeState().

The node guarding starts automatically on registration of the node, i.e.
COP_AddNode().

For reception of bootup indications by a network event of type COP_k_NMT_EVT
with the event cause COP_k_NMT_BOOTIND in evt_data1 and the node-ID in
evt_data2 as well as for reception of emergency messages
(COP_GetEmergencyObj) no node registration is required. Both these two
message types are received invariably regardless of the node-ID.

The node guarding is switched off indirectly by calling the function
COP_ChangeNodeParameter(), i.e. overwriting the former monitoring interval
by 0.

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix G - Frequent sources of errors

164

Appendix G - Frequent sources of errors

To facilitate debugging, there follow some tips for troubleshooting.

Presetting and initialising the CAN board

For unique identification of the desired CAN board there are two arguments with
COP_InitBoard() which are strictly checked by Master API DLL and thus must
be initialised properly before the call:
GUID boardtype = GUID boardtype = GUID boardtype = GUID boardtype = GUID_CANATNET2_DEVICEGUID_CANATNET2_DEVICEGUID_CANATNET2_DEVICEGUID_CANATNET2_DEVICE;;;;

GUID GUID GUID GUID boardID boardID boardID boardID = COP_1stBOARD;= COP_1stBOARD;= COP_1stBOARD;= COP_1stBOARD;

WORD WORD WORD WORD wBoardhdlwBoardhdlwBoardhdlwBoardhdl;;;;

short res = COP_InitBoard(&short res = COP_InitBoard(&short res = COP_InitBoard(&short res = COP_InitBoard(&wBoardhdl, &boardtype, &bowBoardhdl, &boardtype, &bowBoardhdl, &boardtype, &bowBoardhdl, &boardtype, &boardID, ardID, ardID, ardID, 0000););););

If, for example, the explicit initialisation of boardIDboardIDboardIDboardID is missing, the compiler might
do its own initialisation (typically by setting the variable’s memory to zero), or the
memory might even contain random data. In both cases for Master API the value
is not a valid board identification, which is why the function call will result in
BER_k_BOARD_NOT_FOUNDBER_k_BOARD_NOT_FOUNDBER_k_BOARD_NOT_FOUNDBER_k_BOARD_NOT_FOUND

The unique board identification of the local CAN board is delivered by the
function and normally is equate to the serial number:
if(BER_k_OKif(BER_k_OKif(BER_k_OKif(BER_k_OK == res)== res)== res)== res)

{{{{

 char sz[32] = {0};char sz[32] = {0};char sz[32] = {0};char sz[32] = {0};

 sprintf_s(sz,sprintf_s(sz,sprintf_s(sz,sprintf_s(sz, sizeof(sz), sizeof(sz), sizeof(sz), sizeof(sz), """"%s%s%s%s"""", &boardID); // e.g. , &boardID); // e.g. , &boardID); // e.g. , &boardID); // e.g. HWHWHWHW800511800511800511800511

}}}}

Reading out receive-data queues

The four receive-data queues RPDO-Queue, EMCY-Queue, Event-Queue and Sync-
Queue must be read continually and completely until empty because their
capacity is relatively small. The Queues can be read asynchronously or
synchronously (Polling). With the asynchronous method the functions
COP_DefineCallbacks() or COP_DefineMsgRPDO
COP_DefineMsgEvent
COP_DefineMsgEmergency
COP_DefineMsgSync shall be called for initialization, so that you can be
informed by the firmware as soon as a receive object has been entered in the
corresponding data queue (see also the reference of these function family in
section 5.1).

Especially when Callback functions or Windows messages are defined, the receive
objects must be read out of the corresponding queue with the functions
COP_ReadPDO(), COP_GetEmergencyObj(), COP_GetEvent() and

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix G - Frequent sources of errors

165

COP_CheckSync(). Failing this, after a while each anew arriving CANopen
object will cause a queue overrun notification (COP_GetEvent).

In the following you will find pseudo-code, which describes how the individual
Queues are to be read out:

RPDO-Queue:
dodododo

{{{{

 iRes = COP_ReadPDO(...);iRes = COP_ReadPDO(...);iRes = COP_ReadPDO(...);iRes = COP_ReadPDO(...);

 if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)

}}}}

while(COP_k_OK == iRes);while(COP_k_OK == iRes);while(COP_k_OK == iRes);while(COP_k_OK == iRes);

EMCY-Queue:
dodododo

{{{{

 iRes = COP_GetEmergencyObj(...);iRes = COP_GetEmergencyObj(...);iRes = COP_GetEmergencyObj(...);iRes = COP_GetEmergencyObj(...);

 if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)

}}}}

while(COP_k_OK == iRes);while(COP_k_OK == iRes);while(COP_k_OK == iRes);while(COP_k_OK == iRes);

Event-Queue:
dodododo

{{{{

 iRes =iRes =iRes =iRes = COP_GetEvent(...);COP_GetEvent(...);COP_GetEvent(...);COP_GetEvent(...);

 if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)

}}}}

while(iRes == COP_k_OK);while(iRes == COP_k_OK);while(iRes == COP_k_OK);while(iRes == COP_k_OK);

Sync-Queue:
dodododo

{{{{

 iRes = COP_CheckSync(...);iRes = COP_CheckSync(...);iRes = COP_CheckSync(...);iRes = COP_CheckSync(...);

 if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)if(COP_k_OK == iRes)

}}}}

while(iRes == COP_k_OK);while(iRes == COP_k_OK);while(iRes == COP_k_OK);while(iRes == COP_k_OK);

Copyright
HMS Technology Center Ravensburg GmbH

CANopen Master API for Windows
Manual - Version 6.5

Appendix H - Timer resolutions and value ranges

166

Appendix H - Timer resolutions and value
ranges

The following table lists the value ranges and resolutions of all those Master API
functions that work with parameterizable delay times.

 value range
[ms]

resolution
[ms]

Sync-object:
COP_DefSyncObj()

Cycle time (sync_period)

2 .. 65280

1

Sync-object:
COP_DefSyncObj()

Synchronization window
(sync_window)

2 .. 65280

1

Heartbeat / Guarding:
COP_AddNode() /
COP_ChangeNodeParameter()
Monitoring time
(GuardHeartbeatTime)

5 .. 32767

1

Master Initialisation:
COP_InitInterface()

Heartbeattime (hbtime)

5 .. 32767

1

SDO Timeout:
COP_SetSDOTimeOut()

5 .. 32767

1

Central time information:
COP_StartStopTSObj()

Cycle time (cycle)

2 .. 65280

1

Flying Master additional
functionality:
COP_ConfigFlyMaster()

wDetectionTimeout,
wNegotiationDelay,
wPriorityTimeslot,
wNodeTimeslot,
wCycletimeCd,
wCycletimeTimeoutHbeat

5 .. 32767
5 .. 32767
5 .. 32767
5 .. 32767
5 .. 32767
5 .. 32767

1
1
1
1
1
1

LSS Timeout:
COP_SetLSSTimeOut()

5 .. 32767

1

	4.12.0132.20000_Body.pdf
	1 Introduction
	1.1 Where to find what
	1.2 Basic specifications
	1.3 Definitions, acronyms, abbreviations
	1.4 Typographical conventions
	1.5 Support
	1.6 Return of defect Hardware

	2 Commissioning
	2.1 System requirements
	2.2 Supported CAN-boards
	2.3 Before installation
	2.4 The actual installation
	2.5 Getting Acquainted with the API

	3 Overview
	3.1 Function categories
	3.1.1 Basic API-functions
	3.1.2 Functions for the network management
	3.1.3 CANopen-object management
	3.1.4 CANopen communication
	3.1.5 LMT services
	3.1.6 LSS services

	3.2 Internal use of the command queues

	4 Application examples
	4.1 Sample programs supplied
	4.1.1 Calling sample programs
	4.1.2 Structure of the sample programs

	4.2 Reading an object dictionary entry via SDO
	4.3 I/O-node with TPDO and RPDO Polling
	4.4 I/O-node with TPDO and RPDO Callback
	4.5 Altering the PDO-mode

	5 Individual functions
	5.1 Basic API-functions
	5.1.1 COP_InitBoard
	5.1.2 COP_ReleaseBoard
	5.1.3 COP_GetBoardInfo
	5.1.4 COP_InitInterface
	5.1.5 COP_DefineCallbacks
	5.1.6 COP_t_EventCallback
	5.1.7 COP_DefineMsgRPDO COP_DefineMsgEvent COP_DefineMsgEmergency COP_DefineMsgSync
	5.1.8 COP_GetThreadIds
	5.1.9 COP_Reset_DLL
	5.1.10 COP_SendMsg
	5.1.11 COP_GetMsg
	5.1.12 COP_SetCommTimeOut
	5.1.13 COP_GetStatus
	5.1.14 COP_TestCommand

	5.2 Functions for the network management
	5.2.1 COP_AddNode
	5.2.2 COP_DeleteNode
	5.2.3 COP_SearchNode
	5.2.4 COP_GetNodeInfo
	5.2.5 COP_ChangeNodeParameter
	5.2.6 COP_SetEmcyIdentifier
	5.2.7 COP_ConfigFlyMaster
	5.2.8 COP_StartFlyMaster
	5.2.9 COP_GetStatusFlyMasterNeg
	5.2.10 COP_StartNode
	5.2.11 COP_StopNode
	5.2.12 COP_ResetComm
	5.2.13 COP_ResetNode
	5.2.14 COP_EnterPreOperational
	5.2.15 COP_GetNodeState

	5.3 CANopen object management
	5.3.1 COP_CreatePDO
	5.3.2 COP_DeletePDO
	5.3.3 COP_GetPDOInfo
	5.3.4 COP_CreateSDO
	5.3.5 COP_GetSDOInfo
	5.3.6 COP_SetSDOTimeOut
	5.3.7 COP_DefSyncObj
	5.3.8 COP_SetSyncDivisor
	5.3.9 COP_GetSyncInfo
	5.3.10 COP_EnableSync
	5.3.11 COP_DisableSync
	5.3.12 COP_InitTimeStampObj
	5.3.13 COP_StartStopTSObj
	5.3.14 COP_GetTimeStampObj

	5.4 CANopen communication
	5.4.1 COP_ReadPDO
	5.4.2 COP_ReadPDO_S
	5.4.3 COP_RequestPDO
	5.4.4 COP_WritePDO
	5.4.5 COP_WritePDO_S
	5.4.6 COP_ReadSDO
	5.4.7 COP_WriteSDO
	5.4.8 COP_PutSDO
	5.4.9 COP_GetSDO
	5.4.10 COP_CancelSDO
	5.4.11 COP_GetEmergencyObj
	5.4.12 COP_GetEmergencyObj_S
	5.4.13 COP_CheckSync
	5.4.14 COP_GetEvent

	5.5 LMT services
	5.5.1 COP_LMT_ConfigNode
	5.5.2 COP_LMT_GetAddress
	5.5.3 COP_LMT_ConfigModuleID
	5.5.4 COP_LMT_IdentifyRemoteSlaves

	5.6 LSS services
	5.6.1 COP_SetLSSTimeOut
	5.6.2 COP_LSS_InquireAddress
	5.6.3 COP_LSS_InquireNodeID
	5.6.4 COP_LSS_ConfigNodeID
	5.6.5 COP_LSS_ConfigBitTiming
	5.6.6 COP_LSS_ActivateBitTiming
	5.6.7 COP_LSS_IdentifyRemoteSlaves
	5.6.8 COP_LSS_IdentifyNonConfRemoteSlaves
	5.6.9 COP_LSS_Fastscan

	Appendix A - Error codes
	The error codes of the CANopen Master API DLL
	The error codes of the CANopen Master Firmware

	Appendix B - Performance characteristics
	Appendix C - Scope of delivery
	Appendix D - Data structures of the command queues
	The record COP_t_Message
	Command Opcodes

	Appendix E - Differences to version 5.x
	New functions
	Removed functions
	Deleted functions
	Inapplicable functions

	Altered functions
	Renamed functions
	Functions with altered parameter set

	Appendix F - CANopen-specific aspects
	Processing of synchronous PDOs
	TPDOs
	RPDOs

	Node guarding and node states

	Appendix G - Frequent sources of errors
	Presetting and initialising the CAN board
	Reading out receive-data queues

	Appendix H - Timer resolutions and value ranges

