

 The expert for industrial and automotive communication

Manual

CANopen Manager-API
Software package for the development of
CANopen Manager applications under Windows

Software Version 2.0

IXXAT
Headquarter US Sales Office
IXXAT Automation GmbH IXXAT Inc.
Leibnizstr. 15 120 Bedford Center Road
D-88250 Weingarten USA-Bedford, NH 03110

Tel.: +49 (0)7 51 / 5 61 46-0 Phone: +1-603-471-0800
Fax: +49 (0)7 51 / 5 61 46-29 Fax: +1-603-471-0880
Internet: www.ixxat.de Internet: www.ixxat.com
e-Mail: info@ixxat.de e-Mail: sales@ixxat.com

Support
In case of unsolvable problems with this product or other IXXAT products
please contact IXXAT in written form by:

Fax: +49 (0)7 51 / 5 61 46-29
e-Mail: support@ixxat.de

Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic
distribution of this document is only allowed with explicit permission of
IXXAT Automation GmbH. IXXAT Automation GmbH reserves the right to
change technical data without prior announcement. The general business
conditions and the regulations of the license agreement do apply. All rights
are reserved.

Document No.: 4.02.0135.20000
Version: 2.0

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Contents

3

1 INTRODUCTION ..8

1.1 Where to find What ...9

1.2 Basic Specifications ..9

1.3 Definitions, Acronyms, Abbreviations............................10

1.4 Typographical Conventions ..16

1.5 Support ..16

1.6 Return of defect Hardware ..16

2 GETTING STARTED..17

2.1 System Requirements...17

2.2 Supported CAN Boards ..17

2.3 VCI..17

2.4 Installation ...18

2.5 Flash Firmware ...18

2.5.1 VCI2 ... 18

2.5.2 VCI3 ... 21

2.6 Becoming acquainted with the CANopen Manager.......22

3 OVERVIEW..25

4 TUTORIAL ...26

4.1 Setup of the Example Network26

4.2 Initialization of the CANopen Manager26

4.3 Configuration of the CANopen Manager via its
local Object Dictionary ..27

4.4 Generation of Process Images..31

4.5 CANopen Network Boot-up..34

4.6 Data Exchange via the Process Image............................36

4.7 Auto Configuration Mode..39

4.8 Dynamic Generation of Object Dictionary Entries..........40

5 CANOPEN MANAGER FIRMWARE ...42

5.1 Overview ..42

5.2 Services of the CANopen Manager.................................43

5.3 Boot-up Procedure ...43

5.4 Network Management ...44

5.5 RequestNMT Object..44

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Contents

4

5.6 Configuration Manager ... 45

5.7 Reset Configuration ... 45

5.8 Verify Configuration .. 45

5.9 Auto Configuration Mode.. 45

5.10 Initialization of the CANopen Manager 46

5.11 Object Dictionary default Values 47

5.12 Special Manufacturer-specific Object Dictionary
Entries of the CANopen Manager 47

5.13 Configuration of the Run Time Behavior 50

5.14 Access to the local Object Dictionary............................. 51

5.14.1 CiA 301 specific object entries .. 51

5.14.2 CiA 302 specific object entries .. 51

5.15 Dynamically created Object Dictionary Entries 54

5.16 Store/Restore.. 55

5.17 Handshaking .. 56

6 STRUCTURE OF THE PROCESS DATA INTERFACE....................... 57

6.1 Process Data Interface ... 57

6.1.1 Encoding rules .. 57

6.1.2 Data exchange between CMM-DLL and firmware.............. 58

6.1.3 Overlaid Network Variables ... 58

6.1.4 Default values ... 59

6.1.5 RPDO no queue .. 60

6.1.6 TriggerTPDO queue... 60

7 DIAGNOSTICS DATA... 61

7.1 Status Information of the CANopen Manager............... 61

7.1.1 State of the CANopen Manager .. 62

7.1.2 Communication state of the CANopen Manager............... 64

7.1.3 Event Indication.. 65

7.1.4 Configuration of the CANopen Manager........................... 67

7.2 Slave Diagnostics ... 68

7.2.1 Overview .. 68

7.2.2 Structure of the bit lists... 69

7.2.3 Bit list assigned slaves ... 70

7.2.4 Bit list configured slaves.. 71

7.2.5 Bit list configuration error ... 71

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Contents

5

7.2.6 Bit list operational slaves ... 74

7.2.7 Bit list stopped slaves .. 74

7.2.8 Bit list preoperational slaves .. 75

7.2.9 Bit list module internal errors .. 75

7.3 Emergency Statistic and History76

7.3.1 Node Error Count ... 76

7.3.2 Error code-specific error counter 76

7.3.3 Emergency history... 77

7.4 Default Values ..78

8 STATES OF THE CANOPEN MANAGER.......................................79

8.1.1 Initialization.. 80

8.1.2 Master Mode: Reset .. 80

8.1.3 Network Initialization.. 80

8.1.4 Auto Configuration... 84

8.1.5 Network: Scanned .. 86

8.1.6 Network: Operational ... 88

8.1.7 Network: Stopped... 89

8.1.8 Network: Pre-operational .. 90

8.1.9 Slave mode: Pre-operational.. 90

8.1.10 Slave mode: operational ... 91

8.1.11 Slave Mode: Stopped.. 91

8.1.12 Fatal Error ... 91

8.2 Description of the State Transitions...............................92

9 CANOPEN MANAGER API – FUNCTIONALITY SUMMARY...........96

10 CANOPEN MANAGER API DLL...98

10.1 Function Categories ...98

10.1.1 Basic functions.. 99

10.1.2 General functions ... 99

10.1.3 Functions for network management 100

10.1.4 Object dictionary and SDO-related functions................... 100

10.1.5 Process image-related functions...................................... 101

11 INDIVIDUAL FUNCTIONS OF THE API-DLL102

11.1 Basic Functions...103

11.1.1 CMM_InitBoard .. 103

11.1.2 CMM_ReleaseBoard .. 105

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Contents

6

11.1.3 CMM_GetBoardInfo.. 106

11.1.4 CMM_InitFirmware ... 107

11.1.5 CMM_DefineCallbacks .. 109

11.1.6 tCMM_CALLBACK ... 110

11.1.7 CMM_ResetDLL... 111

11.1.8 CMM_SetCommTimeout... 112

11.1.9 CMM_SetInspecInterval .. 113

11.1.10 CMM_DefineMsgProcImg ... 114

11.1.11 CMM_DefineMsgMaster ... 115

11.1.12 CMM_DefineMsgSlaves .. 116

11.1.13 CMM_DefineMsgEvent ... 117

11.1.14 CMM_DefineMsgEmergency... 118

11.2 General Functions .. 119

11.2.1 CMM_GetMasterStat .. 119

11.2.2 CMM_GetSlavesStat.. 120

11.2.3 CMM_GetEvent .. 121

11.2.4 CMM_GetEmergencyObj... 125

11.2.5 CMM_SendEmergencyObj .. 126

11.2.6 CMM_HandShake... 127

11.3 Functions for Network Management........................... 128

11.3.1 CMM_StartBootupProc ... 128

11.3.2 CMM_StartAutoConfig ... 129

11.3.3 CMM_StartNode... 130

11.3.4 CMM_StopNode... 131

11.3.5 CMM_EnterPreOp... 132

11.3.6 CMM_ResetComm.. 133

11.3.7 CMM_ResetNode.. 134

11.4 Object Dictionary and SDO related Functions.............. 135

11.4.1 CMM_CreateODentry.. 135

11.4.2 CMM_ReadSDO.. 137

11.4.3 CMM_WriteSDO ... 139

11.4.4 CMM_ReadLocSDO... 140

11.4.5 CMM_WriteLocSDO.. 141

11.4.6 CMM_ImportCDC ... 142

11.5 Process image-related functions.................................. 143

11.5.1 CMM_FormPILUT.. 143

11.5.2 CMM_GetPIdescr .. 144

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Contents

7

11.5.3 CMM_GetPI .. 146

11.5.4 CMM_GetPIentry .. 147

11.5.5 CMM_GetPIIvalue ... 148

11.5.6 CMM_PutPIO .. 149

11.5.7 CMM_PutPIOentry .. 150

11.5.8 CMM_PutPIOvalue .. 151

11.5.9 CMM_GetPIIRPDOno .. 152

11.5.10 CMM_TriggerPIOoffset ... 153

APPENDIX – SCOPE OF DELIVERY ..154

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

8

1 Introduction

The CANopen Manager Application Programming Interface (API) is a program
library for connecting a PC application to a CANopen network.

The available functionality includes a CANopen Master with interfaces for control,
diagnostics data, data exchange by means of client SDOs, as well as a process
image. In addition the CANopen Manager implements the functionality of a
CANopen configuration manager.

The functionality of the CANopen Manager API adheres to the CANopen
Application Layer and Communication Profile (CiA 301, [1]) and the CANopen
Framework for CANopen Managers and Programmable CANopen Devices
(CiA 302, [2]).

The software supports Microsoft Windows 2000, Windows XP, Windows XP64,
and Windows Vista.

The user has to be familiar with the basic mechanisms and terms of CANopen.
Further information can be obtained from the related specifications, which are
available from CiA (www.can-cia.org).

An introduction to CANopen is also given in the book Controller-Area-Network,
Basics, Protocols, Chips and Applications by K. Etschberger, 2001, IXXAT Press,
ISBN 3-00-007376-0.

Additional up-to-date information on the software not contained in this manual
may available in the form of ReadMe files on the product CD-ROM.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

9

1.1 Where to find What

This manual contains a description of the CANopen Manager and of all functions
and data structures provided by the CANopen Manager API.

A description of how to get started with the CANopen Manager API can be
found in chapter 2, Getting Started.

Chapter 3, Overview provides a general introduction to the software. A step-by-
step introduction to the CANopen Manager API is found in chapter 4, Tutorial.
The firmware of the CANopen Manager API is described in chapter 5, CANopen
Manager Firmware. The structure of the data interfaces exported by the CANopen
Manager API DLL to client applications is discussed in chapter 6, Structure of the
Process Data Interface and chapter 7, Diagnostics Data. Chapter 8, States of the
CANopen Manager describes the various states of the CANopen Manager and
their transitions.

An introduction to the functions of the API can be found in chapter 10,
CANopen Manager API DLL, whereas chapter 11, Individual Functions of the API-
DLL contains a detailed description of the API.

1.2 Basic Specifications

[1] CiA 301 CANopen Application Layer and Communication Profile V4.02,
February 2002

[2] CiA 302 CANopen Framework for CANopen Managers and
Programmable CANopen Devices V3.3.0, October 2003

[3] CiA 306 Electronic Datasheet Specification for CANopen, V1.3,
January 2005

[4] CiA 401 CANopen Device Profile for Generic I/O Module, V2.1, May 2002

[5] CiA 405 Interface and Device Profile for IEC 61131-3 Programmable
Devices, V2.0, May 2002

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

10

1.3 Definitions, Acronyms, Abbreviations

API

Application Programming Interface

Boot-up message

The boot-up message is a one byte CAN object that is transmitted by a CANopen
slave on transition from Initialisation to Pre-operational state. See also NMT.

Boot-up procedure

The boot-up procedure is carried out according to CiA 302 [2] and is used for
initialization of the network.

Boot slave process

Boot slave process of the CiA 302 [2]. During the boot slave process the identity
of a slave module is determined and the slave module is configured.

Boot time

Additional object entry of CiA 302: [1F89]. An error is indicated if not all
mandatory slaves have booted after the expiration of this configurable time.

CAN-ID

The CAN message identifier is used to uniquely flag a CAN message, and also
defines the priority of a message. The highest priority CAN-ID 0 (11-bit identifier)

is reserved for network management services (→ NMT).

CANopen manager

In addition to the standard CANopen functionality, a CANopen manager
comprises the NMT master and at least one of the following functionalities:

 SDO manager or → Configuration manager

CiA

CAN in Automation e.V.: Vendor and user organization.
See also www.can-cia.org

Client SDO/CSDO

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

11

A client SDO is the initiator of an SDO transmission. It has access to the object

dictionary entries of a SDO server. → SDO

COB: Communication object

A COB is a CAN message that is transmitted in the CAN network. Data are
transported with a COB.

Communication parameters

The attributes of a → PDO are described by its communication parameters. The

attributes include → transmission type, → inhibit time, and the → COB-ID.

Configuration manager

A configuration manager carries out configuration of the individual slave modules
as part of the boot slave process.

Configure slave

Additional object entry of CiA 302: [1F25]. By writing the signature conf to the
corresponding sub index the boot slave process for a module can be requested.

COB-ID

The COB-ID contains the CAN-ID (message identifier) plus additional
configuration information.

Concise DCF

Additional object entry of CiA 302: [1F22]. The configuration data of the
individual slave modules are stored in this object entry. The slave modules are
configured with these configuration data by the configuration manager during
booting. To reduce memory requirements, a concise DCF only contains those
object entries that differ from the default values.

DCF

Device configuration file according to CiA 306 [3]

Error control service

Cyclic monitoring of a node. Node monitoring can be implemented either via

→ node guarding requests or via → heartbeat.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

12

Error control event

The error control service detected an error when monitoring a node.

Expected configuration date

Additional object entry of CiA 302: [1F26]. → Expected configuration time.

Expected configuration time

Additional object entry of CiA 302: [1F27]. These object entries specify the date
and time for identification of the configuration of a slave module and serve to
reduce the time required for the boot slave process. During the boot slave
process these values are compared with the values of the verify configuration
object [1020] of the slave module, if this is supported by the module.

Heartbeat

Node monitoring mechanism that was introduced with CANopen V4. The
heartbeat mechanism is based on a producer – consumer model in which
CANopen modules cyclically transmit their current NMT state. Contrary to

→ node guarding, this mechanism does not require any CAN remote frame
requests.

Identity objects

Additional object entries of CiA 302: [1F84]..[1F88]. These objects describe the
expected device type and identity of the slave modules:

• Device-ID [1F84]

• Vendor-ID [1F85]

• Product code [1F86]

• Revision number [1F87]

• Serial number [1F88]

Mandatory/optional

To categorize objects and services the CANopen specification uses the terms
mandatory, optional, and conditional. The implementation of mandatory
objects is required by the related specifications.

NMM

Network management master

NMS

Network management slave

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

13

NMT: Network management

Service element of the application layers in the CAN reference model, which
comprises the network-wide process synchronization and error control. CANopen
has four main states: Initialization, Pre-operational, Operational, and
Stopped. The status transition of a CANopen node is requested with NMT
commands. The network management is based on a master slave structure.

NMTStartup

Additional object entry of CiA 302: [1F80]. This object entry is used to configure
the start-up behavior of a module.

Node guarding

Cyclic guarding of a node. The NMT master cyclically transmits node guarding
requests (remote frame request) to each slave, which individually reply with their

node status. See also → Heartbeat.

Node-ID

A device in the CAN-network is uniquely identified by its node-ID (between 1 and

127). This node-ID is used by → predefined connection set for the pre-defined
identifier allocation. In a CANopen network each node-ID may only be used once.
The CANopen Manager is a regular network node and thus also has a node-ID.

OD: Object dictionary

Device internal logical addressing scheme to reference both configuration and
application parameters.

The object dictionary is a data structure via which all objects of a CANopen device
can be addressed. The object dictionary is subdivided into an area with general
information on the device like identification information and communication
parameters and an area that describes application specific device functionality.
The data in the object dictionary are addressed via an index and a sub index. Via
the entries (objects) of the object dictionary, the application objects of a device
such as input and output signals, device parameters, function or network
variables are made accessible in standardized form via the network. The object
dictionary forms the interface between network and application process.

PDO: Process data object

PDOs represent the actual means of transport for the transmission of process
data. A PDO is transmitted by a PDO producer and can be received by one or
more PDO consumers. The process data transmitted by a producer in a PDO can

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

14

contain a maximum of 8 bytes. A PDO is transmitted without acknowledgement

and requires a unique → CAN-ID allocated to the PDO. The PDO producer
manages the configuration information required by the PDOs in the form of so-
called TPDO data structures, the data to be received by a PDO consumer are
managed by so-called RPDO data structures. The communication-specific
parameters specify the mode of the PDO and CAN-ID to be used. The data
content of the transmitted data is specified in PDO mapping structures.

PI

Process Image. Process data which can be read and written by the client

application. Divided into → PI input and → PI output.

PI input

Input data of the process image, received in → RPDO.

PI output

Output data of the process image, transmitted via → TPDO.

Predefined connection set

Preset allocation of the → COB-ID based on the → node-ID and on a 4-bit
function code. The 127 nodes are differentiated via the least significant seven bits
of the identifier. For the following communication objects, the predefined
connection set predefines the COB-ID: Node guarding, heartbeat, emergency
message, SYNC object, time stamp, first server SDO, RPDO1 to RPDO4, and
TPDO1 to TPDO4.

RequestNMT

Additional object entry of CiA 302: [1F82]. With this object entry both the state
of the individual modules and the execution of NMT commands can be
requested.

RPDO: Receive PDO

→ PDO

SDO: Service data object

An SDO is a CAN communication object which is used for initialization and
parameterization of CANopen devices or for transmission of longer data records.
SDOs are used for read or write access to the entries in the object dictionary of a
device. A particular entry is addressed by its index and sub index.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

15

SDO timeout

An SDO request has to be responded to within the timeout time, otherwise the
SDO will be aborted.

Server SDO/SSDO

Each device must support at least one server SDO and thus allow access to the
entries in its object dictionary. The specification of an SDO server object requires
the definition of one CAN-identifier per transmission direction (acknowledged
service), and specification of the corresponding client or server node if dynamic
allocation of SDO channels is supported.

Slave assignment

Additional object entry of CiA 302: [1F81]. Management, boot-up and
troubleshooting of the individual slave modules managed by the master are
configured with this list.

Transmission type

The mode of a →PDO is specified via the transmission type in the communication
profile of a device. CANopen provides the following transmission types for PDOs:

Synchronous: Depending on a SYNC object, transmission is either

Acyclic: once, if process data have changed

or

cyclic: with each reception or after a number of SYNC objects
specifiable by their transmission rate.

Asynchronous: Transmission is triggered by a vendor-specific event or by an event
defined via the device profile.

Remote: Transmission occurs only after being requested by another node (PDO
consumer).

Transmission Rate

For the cyclic-synchronous mode of a → PDO, the value of the transmission rate
represents the number of synchronization messages that must have been received
until the PDO is transmitted again.

.

TPDO: Transmit PDO

→ PDO

VCI

Virtual CAN Interface, driver software for IXXAT CAN boards.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Introduction

16

1.4 Typographical Conventions

The following typographical conventions apply to this handbook.

Type Meaning

V20_CN32.EDS User input or operating system-specific
elements such as file names

Bitrate Lettering of an operating element
or screen output

TPDO

NMTStartUp

CANopen-specific term or

Object name according to specification

1.5 Support

For additional information on IXXAT products, FAQ lists and installation tips,
please refer to the support section of the IXXAT website (www.ixxat.com), which
also contains information on current product versions and available updates.

If you have any further questions after studying the information on our website
and the manuals, please contact our support department. The support section on
our website contains the relevant forms for your support request. In order to
facilitate our support work and enable a fast response, please provide precise
information on the individual points and describe your question or problem in
detail.

If you would prefer to contact our support department by phone, please also
send a support request via our website first, so that our support department has
the relevant information available.

1.6 Return of defect Hardware

If it is necessary to return hardware, please download the relevant RMA form
from our website and follow the instructions on this form.

In the case of repairs, please also describe the problem or fault in detail on the
RMA form. This will enable us to carry out the repair quickly.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

17

2 Getting Started

2.1 System Requirements

 Minimum requirement Recommended

Operating system Windows 2000 Windows 2000/XP

Processor x86 processor 400 MHz x86 processor 1 GHz

Main memory 64 MB RAM
100 MB temporary memory

128 MB RAM

The system requirements are mainly determined by the client application as the
core functionality of the CANopen Manager API runs directly on the CAN board
independently of the host computer.

2.2 Supported CAN Boards

At the time of writing of this manual the CANopen Manager API works together
with the following active CAN board. This board features a local micro controller
that runs the CANopen Manager firmware included with this product.

PC interface CAN board Micro controller

PCI iPC-I XC16/PCI Infineon XC161CJ

PCI-Express iPC-I XC16/PCIe Infineon XC161CJ

For an up-to-date list of currently supported CAN boards, please consult the
IXXAT website at www.ixxat.com.

2.3 VCI

The CANopen Manager API installation is based on the VCI driver software. For an
up-to-date overview of the VCI version(s) required by the CANopen Manager API,
please visit the IXXAT website. A free download of the VCI driver package is
available in the download section of the website.

The drivers of the CAN boards (VCI) must be installed before the
CANopen Manager API, otherwise you will get an error when calling
the API functions.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

18

2.4 Installation

Installation is carried out as follows:

(1) Install VCI (see chapter 2.3 VCI)

(2) Install the CAN board as described in the installation instructions of the
CAN board.

(3) Start the file setup20.exe which is found on the product CD and
follow the instructions of the program. Generally you require
administrator rights to be able to install the software successfully.

2.5 Flash Firmware

The CANopen Manager firmware can be executed on the CAN board from flash
or from RAM. For optimal performance execution from flash is recommended
which requires a specific firmware version on the CAN board. There are two
different flashable firmware files provided for VCI2 and VCI3. Please see the
following sections for correct flashing procedure.

2.5.1 VCI2

When using VCI2, you have direct hold on the firmware type to utilise. This is due
to the fact that the general download of firmware to the IXXAT CAN board RAM
is configurable via Windows Control Panel. In order to use the Manager firmware
from flash the download of firmware to the RAM must be deactivated. To do
that follow these steps:

(1) Open the system's Control Panel

(2) Open IXXAT Interfaces applet

(3) Choose your CAN board and expand it’s attributes

(4) Remove the checkmark at the entry DOWNLOAD

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

19

Figure 2-1: IXXAT Interfaces - Download

Usage of the Manager firmware from flash requires an appropriate board setup,
otherwise yet alone the initialization function call CMM_InitBoard would fail. In
case you did not already purchase a CAN board with flashed CANopen Manager
firmware, you can flash it for yourself using the XCflash.exe utility that is
provided with the CANopen Manager API.

Once a CAN board is flashed with CANopen Manager firmware it is
no more useable for further VCI2 based applications. It will be
displayed as outdated in the board test of the control panel’s
IXXAT Interfaces applet:

Return to VCI compatibility is accomplished by flashing of the
VCI/UCI firmware provided likewise with the CANopen Manager API.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

20

Start the IXXAT flash utility via the start menu entry named Flash Utility
VCI2. It is located in the installation folder sub path \Tools. The application
window opens up (Figure 2-2).

Choose the iPC-I XC16/PCI board that is to be flashed under Devices. Click Open to
select the firmware file. There are two different VCI2 compliant firmware files
provided:

ucii161f.H86 is the VCI/UCI firmware, assuring VCI2 compatibility. As it is
flashed the CANopen Manager Firmware must be executed
from the board’s RAM.

XATCMMFL.H86 is the CANopen Manager firmware for VCI2.

After you have chosen your firmware file, click button Flash to start
reprogramming.

A few seconds later the flash utility reports Device successfully flashed!

Figure 2-2: IXXAT VCI2 Windows flash utility

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

21

2.5.2 VCI3

VCI3 is automatically checking the currently flashed firmware on the CAN board,
and loading the CANopen Manager firmware to RAM only if there is no
equivalent one present there. In other words, once the VCI3 compliant Manager
firmware is flashed, it will be used.

In case you did not already purchase a CAN board with flashed CANopen
Manager firmware, you can flash it for yourself using the VCI3floadGUI.exe
utility that is provided with the VCI3.

To do so, please start it by the Windows Explorer from the VCI3 program folder.
The application opens up as shown in figure 2-3.

Choose the iPC-I XC16/PCI CAN board that is to be flashed under Device. Click
Select Source to select the firmware file from the installation directory \Tools
folder:

XATCMMFL3.H86 is the CANopen Manager firmware for VCI3.

After you have chosen your firmware file, click button Flash to start
reprogramming.

Figure 2-3: IXXAT VCI3 Windows flash utility

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

22

2.6 Becoming acquainted with the CANopen Manager

The product is delivered with an example application in source code for the
programming language Microsoft Visual C++. This code demonstrates the use
of the most common CANopen Manager API functions. The example should not
be understood as a production quality, complete application.

The following functionalities are demonstrated:

• Initialization of the CANopen Manager

• Configuration of the CANopen Manager via the local object dictionary

• Communication with other CANopen nodes on the network via the CSDO
interface

• Network boot-up procedure

• Execution of NMT commands

• Generation of the process image

• Data exchange via the process image

• Generation of a dynamic object dictionary entry

The typical function call order of the CANopen Manger API is outlined below.
Alternatively the modes AutoConfiguration or ManualConfiguration can be used.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

23

The first figure shows the typical function call order when the mode
AutoConfiguration is used.

CMM_InitBoard

CMM_InitFirmware

CMM_DefineMsgXXXX CMM_DefineCallbacks

CMM_StartNode(0)

CMM_StartAutoConfig

CMM_GetMasterStat

CMM_FormPILUT

CMM_GetPI

CMM_PutPIO

CMM_ResetNode(0)

CMM_ReleaseBoard

CMM_GetPIIvalue

CMM_PutPIOvalue

CMM_GetPIdescr

Figure 2-4: Typical function call order for mode
AutoConfiguration

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Getting Started

24

The second figure shows the typical function call order when the mode
ManualConfiguration is used.

CMM_InitBoard

CMM_InitFirmware

CMM_WriteLocSDO

CMM_WriteSDO

CMM_StartBootupProc

CMM_GetMasterStat

CMM_GetPI

CMM_PutPIO

CMM_ResetNode(0)

CMM_ReleaseBoard

CMM_ImportCDC

CMM_DefineMsgXXXX CMM_DefineCallbacks

CMM_StartNode(0)

Figure 2-5: Typical function call order for mode
ManualConfiguration

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Overview

25

3 Overview

The local micro controller of the IXXAT CAN board executes a dedicated firmware
application that implements the complete CANopen master and manager
functionality. It provides the CANopen Manager API DLL with the following
interfaces for the control and exchange of configuration, diagnostics and process
data, see also Figure 3-1:

• Command interface to control the CANopen Manager.

• Local SDO interface to access the object dictionary of the CANopen
Manager.

• CSDO interface for access to object dictionary entries of CANopen slaves on
the network.

• RPDO number interface for analysis of received PDO’s

• Event data interface to receive occurred events

• Emergency message interface

• Diagnostics interface for analysis of the states of CANopen Manager and
CANopen slaves.

• Process image to read (PI input) and write (PI output) process variables.

CMD
req

queue

CMD
resp

queue
CSDO

req
queue

CSDO
res

queue

RPDO
no

queue

Event

queue

Diag

buffer

EMCY

queue

PI
inputs
buffer

PI
outputs
buffer

CANopen Manager API DLL

CANopen Manager firmware on µC

Client application

1 256 40 40

1

1

1 40

Trig-
ger

TPDO
queue

Figure 3-1: Communication between CANopen Manager API DLL
and CANopen Manager firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

26

4 Tutorial

To allow the user to get started with the CANopen Manager API this chapter
describes some typical solutions to tasks that may be addressed with this product.
For reasons of simplicity, error handling is not be discussed here. The example
programs presented in this chapter can be found in the sub directory SAMPLES
within the root installation directory.

The CANopen Manager is configured completely via its object dictionary. This
implies that the specification of its functional behavior is performed by means of
local SDO accesses, and not by calling specific functions of the CANopen
Manager API. The CANopen Manager is thus fully compatible to CiA 302 [2].

After power-on all network devices enter the NMT state Pre-operational. In this
state device configuration operations are to be performed before the network can
be started with the NMT command Start Remote Node and enter normal
operation. During the configuration phase SDO communication objects are used
primarily, both for accessing remote device as well as for accessing the local
object dictionary of the CANopen Manager. Both transfer mechanisms can be
realized with the CANopen Manager API.

4.1 Setup of the Example Network

The CANopen Manager API example assumes a network composed of four
devices, three I/O modules according to the CANopen device profile CiA 401 [4],
and the CANopen Manager itself. Please refer to Figure 5-1 in chapter 5.

As an initial simplification it is assumed that only the default PDOs according to
the Predefined Connection Set [1] and the definitions in the device profile
CiA 401 are supported. All process data produced and consumed by the
CANopen slave devices are mapped into the process image of the CANopen
Manager.

The I/O modules are configured to use node-IDs 10, 11, and 12, the CANopen
Manager uses node-ID 127.

For network-wide device monitoring the heartbeat mechanism is used.

4.2 Initialization of the CANopen Manager

(1) Selection of a CAN board with CMM_InitBoard()

CMM_InitBoard() receives the board type (pBoardtype) and a system-
wide unique board identifier (pBoardID) as arguments. On successful

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

27

execution of the board initialization a board handle (phBoard) is
returned to the caller which identifies the CAN board in all subsequent
API calls. At most 4 CAN boards may be used in parallel:

tCMM_HANDLE g_hBoard;
GUID g_sBoardtype = GUID_IPCIXC16PCI_DEVICE;
GUID g_sBoardID = CMM_1stBOARD;

CMM_InitBoard(&g_hBoard,
 &g_sBoardtype,
 &g_sBoardID);

(2) CMM_InitFirmware() initializes the CANopen Manager firmware.
This function sets the bit rate (Baudrate) of the CAN network and the
node-ID of the CANopen Manager device itself (NodeNo). Also the
handshake interval for the handshaking and the reactions of the
Manager firmware on an handshake timeout are set (see section 5.17,
Handshaking). The value 0 for the handshake interval means the
handshaking will not be watched by the Manager firmware. It is
recommended to set the InitMode argument to COP_k_RESETNODE
(see sections 5.10, Initialization of the CANopen Manager and 11.1.4,
CMM_InitFirmware) on the first call to CMM_InitFirmware():

BYTE bInitMode = COP_k_RESETNODE;
BYTE g_bBaudrate = CMM_BAUDRATE_125;
BYTE g_bNodeNo = 127;
WORD g_wHsInterval = 0;
WORD g_wHsReaction = 0;

CMM_InitFirmware(g_hBoard,
 bInitMode,
 g_bBaudrate,
 g_bNodeNo,
 g_wHsInterval,
 g_wHsReaction);

The CANopen Manager is now initialized and may commence operation. The next
steps cover the configuration of the CANopen Manager functionality, the
declaration of CANopen slave devices connected to the network, and the
initialization of the process image.

4.3 Configuration of the CANopen Manager via its local
Object Dictionary

The CANopen Manager integrates a complete object dictionary, that is located in
the volatile memory of the CAN board. An overview of the available objects can
be found in chapter 5, CANopen Manager Firmware, a complete description is
contained in the device description file (EDS) that is shipped with this product.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

28

For an explanation of the functionality linked to the individual entries please
consult the respective CANopen specifications [1][2][3][4][5].

A write access to the object dictionary of the CANopen Manager is performed
with the API function CMM_WriteLocSDO(), for a read access the function
CMM_ReadLocSDO() is available.

(1) Configuration of the heartbeat period of CANopen Manager [1017]
The CANopen Manager shall transmit a heartbeat message twice a
second. According to CiA 301 this requires to write the parameter value
500 (ms) as an UNSIGNED16 into the local object dictionary entry [1017]:

BYTE abTxdata[2] = {0xF4, 0x01}; // 500 milliseconds
DWORD dwAbortcode = 0;

CMM_WriteLocSDO(g_hBoard,
 0x1017, 0x00, // Producer Heartbeat Time
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

(2) Registration of all CANopen nodes available in the network with the NMT
error control service of the CANopen Manager [1016]
The use of the heartbeat mechanism as the network-wide device
monitoring mechanism requires the configuration of the object
consumer heartbeat time [1016] in the object dictionary of the
CANopen Manager. This object is specified in CiA 301 [1]. In the example
configuration the slave devices shall produce their heartbeat message at
intervals of 400ms. The corresponding configuration steps on the slave
devices, i.e. writing to object [1017], are performed by the CANopen
Manager automatically after their actual detection, by using a given
Device Configuration File (DCF) in binary concise format. This is discussed
in detail after the following step. A producer heartbeat time of 400ms
requires the corresponding consumer time to be set to about 500ms to
cope for potential delays of the heartbeat message by the CAN
arbitration process. The consumer heartbeat time object is coded as
an UNSIGNED32 value, with heartbeat time in the LSW, and the
corresponding node-ID of the monitored device in the MSW.

BYTE abTxdata[4] = {0xF4, 0x01, 0x00, 0x00}; // 500 milliseconds
DWORD dwAbortcode = 0;

abTxdata[2] = 10; // Slave Node 10
CMM_WriteLocSDO(g_hBoard,
 0x1016, 0x01, // 1st Consumer Heartbeat Time
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

abTxdata[2] = 11; // Slave Node 11

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

29

CMM_WriteLocSDO(g_hBoard,
 0x1016, 0x02, // 2nd Consumer Heartbeat Time
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

abTxdata[2] = 12; // Slave Node 12
CMM_WriteLocSDO(g_hBoard,
 0x1016, 0x03, // 3rd Consumer Heartbeat Time
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

(3) Adjustment of the CANopen Manager’s boot-up behavior [1F80]
In the power-on settings, CANopen Manager behaves most defensive
and passive regarding the NMT Master functionality. The belonging
object dictionary entry is NMTStartup [1F80]. In order to allow the
Manager to freely start its assigned slaves, Bit 3 of the object needs to be
cleared:

BYTE abValue[4] = {0};
DWORD len = sizeof(abValue);
DWORD dwAbortcode = 0;

if(CMMERR_OK == CMM_ReadLocSDO(g_hBoard,
 0x1F80, 0x00, // NMT Startup
 &len, abValue,
 &dwAbortcode))
{
 abValue[0] ^= 0x08; // Clear Bit 3
 CMM_WriteLocSDO(g_hBoard,
 0x1F80, 0x00, // NMT Startup
 len, abValue,
 &dwAbortcode);
}

(4) Registration of all slaves devices with the CANopen Manager [1F81]
According to the CiA 302 [2] specification, the way slave devices are
managed by the CANopen Manager is configured in object
SlaveAssignment [1F81]. In the most simple case a CANopen slave is
declared as optional device and is booted automatically by the CANopen
Manager, corresponding to a bit pattern 0x05. It is recommended to
register not only currently installed devices, but also those that might be
added to the network at a later point in time. Note that those devices
have to be declared as optional devices. The object [1F81] is specified as
an array of UNSIGNED32, of which the upper three byte are not
interpreted if the network is monitored by means of heartbeat:

BYTE i;
 // Boot optional Slave
BYTE abTxdata[4] = {0x05, 0x00, 0x00, 0x00};
DWORD dwAbortcode = 0;

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

30

for(i = 1 ; i <= 127 ; i++)
 CMM_WriteLocSDO(g_hBoard,
 0x1F81, i, // Slave Assignment Node i
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

(5) Providing the device configuration files of all slaves devices [1F22]
Any slave declared in the SlaveAssignment list [1F81] will be included
in the regular network boot-up process according to the CiA 302 [2]
specification. At the right time of the boot-up process, the CANopen
Manager will write an individual device configuration to each node
deposited in object Concise DCF [1F22]. This device configuration is
given by the application and usually generated by a network
configuration tool in form of a binary device configuration file. As it
contains only the essential objects differing from their default (shipping)
value, it is referred to as concise DCF. In the most simple case it consists
of only a few entries setting up the basic project settings like sync cycle
and node monitoring interval. Prior to downloading the concise DCF
contents to the slaves, to obtain a clearly defined starting point before
generating the process image in the CANopen Manager, all slave devices
are reset to their factory settings. All this is performed by the CANopen
Manager during the boot-up procedure. Since there have been devices
registered to the error control service of the CANopen Manager in one of
the previous steps, there must be a minimal concise DCF written to
[1F22] configuring the producer heartbeat interval of the slave. The
corresponding cDCF is 13 bytes long and addresses the slave object
[1017sub0] with the value 400 (0x190), so it is ensured the Manager will
receive a heartbeat of each configured slave within the configured
consumer heartbeat time of 500 milliseconds:

BYTE i;
 // Producer Heartbeat time 400ms
BYTE abTxdata[13] = {0x01, 0x00, 0x00, 0x00, // 1 entry
 0x17, 0x10, 0x00, // Prod HB
 0x02, 0x00, 0x00, 0x00, // WORD value
 0x90, 0x01}; // 400ms
DWORD dwAbortcode = 0;

for(i = 1 ; i <= 127 ; i++)
 CMM_WriteLocSDO(g_hBoard,
 0x1F22, i, // Concise DCF Node i
 sizeof(abTxdata),
 abTxdata,
 &dwAbortcode);

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

31

4.4 Generation of Process Images

Next the configuration of the first four RPDOs and TPDOs of all slave devices is
read and exactly matching network variables are generated in the process image
of the CANopen Manager. The relation between the PDOs on the CANopen
Manager and the corresponding PDOs on the CANopen Slaves is depicted in
Figure 4-1 considering as example a device’s first RPDO and TPDO.

For the readout of the individual nodes’ PDO configuration, the CSDO
(Client Service Data Object) interface of the CANopen Manager with the
functions CMM_ReadSDO() and CMM_WriteSDO() is utilized. This CANopen
service provides a unidirectional individual communication channel from the
Manager to a slave node.

CAN-ID =
0x180 + node-ID

CAN-ID =
0x200 + node-ID

CANopen Manager CANopen
Slave module

TPDO

[6000sub01] – BYTE

[6000sub02] – BYTE
[6000sub03] – BYTE
[6000sub04] – BYTE

RPDO
[A040sub01] – BYTE
[A040sub02] – BYTE
[A040sub03] – BYTE
[A040sub04] – BYTE

TPDO
[A4C0sub01] – BYTE
[A4C0sub02] – BYTE

RPDO
[6200sub01] – BYTE
[6200sub02] – BYTE

Figure 4-1: Schematic linking of process data objects of the
CANopen Manager and a CANopen slave

(1) Configuration of the RPDOs on the CANopen Manager
In a first step the PDO mapped objects of the first four transmit PDOs
of the CANopen slave device are evaluated and for each object mapped
in one of the TPDOs a corresponding network variable is created in the
process image inputs. The indices under which the network variables
can be addressed within the object dictionary are specified in CiA 405
[5]. From the index of a network variable in the object dictionary follows
implicitly the offset of the received process value within the process
image. Note that for the allocation of entries in the process image the
principle of overlaid network variable applies. Please see section 6.1.3,
Overlaid Network Variables for further details.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

32

To determine the object dictionary index of a process variable based on
its data type and and its offset in the process image a ancillary function
CMM_NVaddrFromPIoffset() is used for which the prototype is
declared in the header XatCMMutil.h.

void EstablishRPDOLinks(BYTE aNodeNo,
 WORD* aRPDO, WORD *aPIIoffset)
{
 tCMM_ERROR res;
 DWORD dwRxlen;
 BYTE abRxdata[4];
 WORD wPDO = 0;
 WORD wPDOvalid = 0;
 DWORD dwCANID;
 BYTE bMappingCnt;
 WORD wNVmain;
 BYTE bNVsub;
 DWORD dwRPDOmapping;

 while(wPDO < 4) // Process only the first 4 PDOs
 {
 // Read the TPDO’s CAN-ID from slave
 dwCANID = 0;
 dwRxlen = sizeof(dwCANID);
 res = CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1800+wPDO, 0x01, //PDO_CommPar.CAN-ID
 &dwRxlen, (BYTE*)&dwCANID, NULL);

 if((CMMERR_OK == res) // PDO exists
 && (0 == (dwCANID & 0x80000000))) // PDO is valid
 {
 // Read TPDO number of mapped objects
 bMappingCnt = 0;
 dwRxlen = sizeof(bMappingCnt);
 CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1A00+wPDO, 0x00, // PDO_Mapping.count
 &dwRxlen, &bMappingCnt, NULL);

 if((bMappingCnt <= 64) && (bMappingCnt > 0))
 {
 // Process all TPDO mapped objects
 for(BYTE i = 1 ; i <= bMappingCnt ; i++)
 {
 // Read TPDO mapped object
 dwRxlen = sizeof(abRxdata);
 CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1A00+wPDO, i, //PDO_Mapping.i-th_obj
 &dwRxlen, abRxdata, NULL);

 // Calculate a NV matching the mapped object
 CMM_VNaddrFromPIoffset(wNVmain, bNVsub,
 *aPIIoffset,
 abRxdata[0]/8,// size(bytes)
 true);// PII
 dwRPDOmapping = (wNVmain << 16) | (bNVsub << 8)
 | abRxdata[0];
 *aPIIoffset += abRxdata[0]/8;

 // Write NV as mapped object to local RPDO
 CMM_WriteLocSDO(g_hBoard,
 0x1600+wPDO+*aRPDO, i,
 sizeof(dwRPDOmapping),

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

33

 (BYTE*)&dwRPDOmapping, NULL);
 }

 // Write number of mapped objects to local RPDO
 CMM_WriteLocSDO(g_hBoard,
 0x1600+wPDO+*aRPDO, 0x00,
 sizeof(bMappingCnt),
 &bMappingCnt, NULL);

 // Write the TPDO’s CAN-ID to local RPDO
 dwCANID &= 0x1FFFFF; // Mask in CAN-ID
 CMM_WriteLocSDO(g_hBoard,
 0x1400+wPDO+*aRPDO, 0x01,
 sizeof(dwCANID),
 (BYTE*)&dwCANID, NULL);

 wPDOvalid++;
 }
 }

 wPDO++; // Next PDO
 }
 *aRPDO += wPDOvalid;
}

(2) Configuration of TPDOs of the CANopen Manager
The TPDOs of the CANopen Manager are configured equivalent to the
procedure with the RPDOs, as outlined in the paragraph above. The
RPDOs of the slave devices are evaluated, and for each object mapped
into one of the RPDOs of the slave a corresponding network variable is
created in the process image outputs.
Except for the object dictionary addresses of the PDOs and the last
parameter of the ancillary function CMM_VNaddrFromPIoffset() the
function EstablishTPDOLinks listed below is identical to
EstablishRPDOLinks, see (1).

void EstablishTPDOLinks(BYTE aNodeNo,
 WORD* aTPDO, WORD *aPIOoffset)
{
 tCMM_ERROR res;
 DWORD dwRxlen;
 BYTE abRxdata[4];
 WORD wPDO = 0;
 WORD wPDOvalid = 0;
 DWORD dwCANID;
 BYTE bMappingCnt;
 WORD wNVmain;
 BYTE bNVsub;
 DWORD dwTPDOmapping;

 while(wPDO < 4) // Process only the first 4 PDOs
 {
 // Read the RPDO’s CAN-ID from slave
 dwCANID = 0;
 dwRxlen = sizeof(dwCANID);
 res = CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1400+wPDO, 0x01, //PDO_CommPar.CAN-ID
 &dwRxlen, (BYTE*)&dwCANID, NULL);

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

34

 if((CMMERR_OK == res) // PDO exists
 && (0 == (dwCANID & 0x80000000))) // PDO is valid
 {
 // Read RPDO number of mapped objects
 bMappingCnt = 0;
 dwRxlen = sizeof(bMappingCnt);
 CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1600+wPDO, 0x00, // PDO_Mapping.count
 &dwRxlen, &bMappingCnt, NULL);

 if((bMappingCnt <= 64) && (bMappingCnt > 0))
 {
 // Process all RPDO mapped objects
 for(BYTE i = 1 ; i <= bMappingCnt ; i++)
 {
 // Read RPDO mapped object
 dwRxlen = sizeof(abRxdata);
 CMM_ReadSDO(g_hBoard, aNodeNo,
 CMM_DEFAULT_SDO, SDOMODE_SEGMENTED,
 0x1600+wPDO, i, //PDO_Mapping.i-th_obj
 &dwRxlen, abRxdata, NULL);

 // Calculate a NV matching the mapped object
 CMM_VNaddrFromPIoffset(wNVmain, bNVsub,
 *aPIOoffset,
 abRxdata[0]/8,//size (bytes)
 false);// PIO
 dwTPDOmapping = (wNVmain << 16) | (bNVsub << 8)
 | abRxdata[0];
 *aPIOoffset += abRxdata[0]/8;

 // Write NV as mapped object to local TPDO
 CMM_WriteLocSDO(g_hBoard,
 0x1A00+wPDO+*aTPDO, i,
 sizeof(dwTPDOmapping),
 (BYTE*)&dwTPDOmapping, NULL);
 }

 // Write number of mapped objects to local TPDO
 CMM_WriteLocSDO(g_hBoard,
 0x1A00+wPDO+*aTPDO, 0x00,
 sizeof(bMappingCnt),
 &bMappingCnt, NULL);

 // Write the RPDO’s CAN-ID to local TPDO
 dwCANID &= 0x1FFFFF; // Mask in CAN-ID
 CMM_WriteLocSDO(g_hBoard,
 0x1800+wPDO+*aTPDO, 0x01,
 sizeof(dwCANID),
 (BYTE*)&dwCANID, NULL);

 wPDOvalid++;
 }
 }

 wPDO++; // Next PDO
 }
 *aTPDO += wPDOvalid;
}

4.5 CANopen Network Boot-up

At this stage the configuration of the CANopen Manager and the slave devices is
completed. All network devices are registered with the CANopen Manager, the

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

35

network-wide device monitoring is set to a heartbeat interval of 400ms, and the
relations between the process input and output variables of all devices have been
established.

Next the network is started (see also section 5.3, Boot-up Procedure). The boot-
up procedure passes through multiple internal states of the CANopen Manager
which are indicated to application by means of the CANopen Manager state
buffer. See section 7.1.1, State of the CANopen Manager, for details. After
having completed the boot-up procedure the CANopen Manager has full control
of the network and exchanges PDOs with the slave devices. The CANopen
Manager also keeps track of the NMT state of the slave devices
(see section 7.2, Slave Diagnostics), and handles the device monitoring (see
section 7.3, Emergency Statistic and History).

(1) Start of the boot-up procedure

Triggered by a call to the API function CMM_StartBootupProc(), the
CANopen Manager starts the network and transfers it into the NMT state
operational:

CMM_StartBootupProc(g_hBoard);

(2) Monitoring the boot-up procedure
It is recommended for the application to cyclically monitor the state of
the CANopen Manager until a final state is detected in the low byte of
wMasterManagerState. Stable final states are CLEAR, RUN, and
FATAL_ERROR, however only if the state RUN is attained the network has
been started successfully. In the final state CLEAR the boot-up procedure
has been completed successfully as well, however the CANopen Manager
was not configured to start the network automatically and is waiting for
the command CMM_StartNode() by the application to explicitly start the
network. In the case the CANopen Manager has assumed the state
FATAL_ERROR a serious error has been detected. This error case has to be
analyzed by the user with the help of the information contained in the
fields wMasterManagerState and wGlobalEvents before any further
processing is permitted. In this case starting the network is not possible.

tCMM_ERROR res;
WORD wMasterManagerState
WORD wGlobalEvents;
WORD wConfigBits;

do
{
 Sleep(222);
 res = CMM_GetMasterStat(g_hBoard,
 &wMasterManagerState,
 &wGlobalEvents,
 &wConfigBits);

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

36

}
while((CMMERR_OK == res)
&& (CLEAR != (wMasterManagerState & 0xF0))
&& (RUN != (wMasterManagerState & 0xF0))
&& (FATAL_ERROR != (wMasterManagerState & 0xF0)));

(3) Explicit start of the network

If the CANopen Manager has assumed the state CLEAR, the network has
to be started explicitly by the application. Before the network is started
the application may verify the state of the individual CANopen slave
devices:

if(CLEAR == (wMasterManagerState & 0xF0))
{
 tCMM_SLAVEFLAGS fAssigned = {0};
 tCMM_SLAVEFLAGS fConfigured = {0};
 tCMM_SLAVEFLAGS fMismatch = {0};
 tCMM_SLAVEFLAGS fEmergency = {0};
 tCMM_SLAVEFLAGS fOperational = {0};
 tCMM_SLAVEFLAGS fStopped = {0};
 tCMM_SLAVEFLAGS fPreOperational = {0};

 res = CMM_GetSlavesStat(g_hBoard,
 &fAssigned,
 &fConfigured,
 &fMismatch,
 &fEmergency,
 &fOperational,
 &fStopped,
 &fPreOperational);

 if(CMMERR_OK == res)
 CMM_StartNode(g_hBoard, 127); // NMT: Start entire network
}

4.6 Data Exchange via the Process Image

As soon as the network has been started the main task of the application has to
cyclically inquire the entries in the process image, to process the received data,
and to update the process image outputs.

Further the application processes the monitoring of the network status and will
react on possible error situations that cannot be handled by the CANopen
Manager itself. Alternatively to the polling of the network state, the application
may register callback functions with the CANopen Manager, or it may be notified
via user defined Windows messages.

Generally these events can be classified into five different categories: Data change
in the process image input, change of state of the CANopen Manager, change of
NMT state of a slave device, reception of an emergency message from a slave
device, and finally unexpected events.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

37

(1) Declaration of change of state messages
In the example discussed here it is preferred to declare callback functions
to notify the application of state changes of the slave devices and other
events. For changes within the process image no callback functions are
required as they are cyclically polled, as discussed in the following
paragraph. Please note that the callback functions execute in a thread
independent of the thread of the main application, as they are called
from within the CANopen Manager API DLL. In this context it is
mentionable that the polling threads - required by the callback
mechanism - cannot proceed their processing as long as the application
executes the corresponding callback functions.

void CALLBACK CB_CMMSlavesChange(tCMM_HANDLE hBoard,
 DWORD dwSource,
 DWORD dwRes)
{
 // Static variables, they keep the reference values
 static tCMM_SLAVEFLAGS asStatSlavesState[7] = {0};

 // Current values
 tCMM_SLAVEFLAGS asCurrSlavesState[7] = {0};

 CMM_GetSlavesStat(hBoard,
 &asCurrSlavesState[0], //Assigned
 &asCurrSlavesState[1], //Configured
 &asCurrSlavesState[2], //Mismatch
 &asCurrSlavesState[3], //Emergency
 &asCurrSlavesState[4] //Operational
 &asCurrSlavesState[5], //Stopped
 &asCurrSlavesState[6], //PreOperational);

 //..
 // Detect changes
 //..

 // Adapt new values
 CopyMemory(asStatSlavesState,
 asCurrSlavesState,
 sizeof(asStatSlavesState));
}

void CALLBACK CB_CMMnotification(tCMM_HANDLE hBoard,
 DWORD dwSource,
 DWORD dwRes)
{
 tCMM_ERROR res = CMMERR_OK;
 BYTE bEvtType, bEvtData1, bEvtData2;

 // Read out all the events
 do
 {
 bEvtType = bEvtData1 = bEvtData2 = 0;
 res = CMM_GetEvent(hBoard, &EvtType,
 &EvtData1, &EvtData2,
 NULL, NULL);
 if(CMMERR_NO_OBJECT != res)
 {
 //..
 // Interpret and process the Event
 //..
 }

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

38

 }
 while(CMMERR_OK == res)
}

void CALLBACK CB_CMMEmergencyMsg(tCMM_HANDLE hBoard,
 DWORD dwSource,
 DWORD dwRes)
{
 tCMM_ERROR res = CMMERR_OK;
 BYTE bNodeNo, bErrRegister, abErrField[5];
 WORD wErrCode;

 // Read out all the Emergency messages
 do
 {
 bNodeNo = bErrRegister = 0;
 wErrCode = 0;
 ZeroMemory(abErrField, sizeof(abErrField));
 res = CMM_GetEmergencyObj(hBoard, &bNodeNo,
 &wErrCode, &bErrRegister,
 abErrField);
 if(CMMERR_NO_OBJECT != res)
 {
 //..
 // Interpret and process the EMCY msg
 //..
 }
 }
 while(CMMERR_OK == res)
}

// Define Callbacks
CMM_DefineCallbacks(
 g_hBoard,
 NULL, // Change of Process Image Inputs
 NULL, // Change of MasterManager status
 CB_CMMSlaveChange, // Change of Slaves state
 CB_CMMnotification, // Event notification
 CB_CMMEmergencyMsg); // Received emergency messages

(2) Processing of the process image inputs

The application calls the function CMM_GetPIentry(), to retrieve a
subset of the process image from the CANopen Manager. As argument
the application passes the process image type, an offset inside the
process image, the length of the requested subset and a pointer to a
buffer to where the current data content shall be copied to by the API
function.

DWORD dwLengthPII;
BYTE abPII[128] = {0};

while(!Terminated)
{
 dwLengthPII = sizeof(abPII);
 CMM_GetPIentry(g_hBoard,
 PITYPE_INPUTS,
 0, &dwLengthPII, // First 128 Bytes of PII
 abPII, NULL);
 //..
 // Process the Processimage Inputs
 //..

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

39

 //..
 // Write the Processimage Outputs
 //..
}

(3) Updating the process image outputs
At the end of a PLC cycle data entries in the process image output are
updated by means of the API function CMM_PutPIOentry(). Calling this
function causes the application data buffer - pointed to by the call
parameter *pPIentry - to be copied into the process image outputs
of the CANopen Manager. The corresponding section of the process
image is marked as updated, so that the firmware can perform a byte-by-
byte compare and transmit the corresponding TPDOs.

DWORD dwLengthPIO;
BYTE abPIO[128] = {0};

while(!Terminated)
{
 //..
 // Read the Processimage Inputs
 //..
 //..
 // Process the Processimage Inputs
 //..
 dwLengthPIO = sizeof(abPIO);
 CMM_PutPIOentry(g_hBoard,
 0, dwLengthPIO, // First 128 Bytes of PIO
 abPIO);
}

This concludes the commissioning of a CANopen network with the CANopen
Manager API and the subsequent processing of input/output variables in the
context of this tutorial. In the following sections specific aspects are introduced.

4.7 Auto Configuration Mode

If the alternative function CMM_StartAutoConfig() is used instead of
CMM_StartBootupProc(), the detection and the configuration of the network
as described in sections 4.3 to 4.4, is carried out automatically by the CANopen
Manager firmware.

In this case the following issues should be considered:

- Network variables are created in the process images for all
input/output parameters identified in the slave devices. This may result
in an undesired increase of the process image size, as all configured
PDOs, possibly more than the first four default PDOs as described in
the tutorial sections, are evaluated.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

40

- During the automatic creation of the network variables, it is not
considered that the same remote object could be mapped multiple
times. This results in a separate network variable for each mapped
object.

- Due to limitations of the CANopen SDO protocol, the CANopen
Manager firmware cannot determine the exact data types of the
process data mapped into the PDOs of the slave devices, but only their
size in Bytes. The firmware therefore creates network variables based
on corresponding data size using unsigned integral data types.

- Following the automatic generation of the process images, i.e.
immediately after the call to CMM_StartAutoConfig() the
application should inquire a description of the identified slave
input/output data. For this purpose the CANopen Manager API
provides the functions CMM_FormPILUT() and CMM_GetPIdescr().

A detailed discussion of the auto configuration process is given in sections 5.9,
Auto Configuration Mode and 8.1.4, Auto Configuration.

4.8 Dynamic Generation of Object Dictionary Entries

The CANopen Manager can create application specific object dictionary entries.
These entries, which may be of a size up to 8 bytes, are managed within the
process images. Access to such an entry is possible by means of local SDO
accesses, whereupon the application acts as SDO server, or by PI access. If it is
required the entry can also be mapped into a PDO.

When creating such a dynamic object dictionary entry with the function
CMM_CreateODentry(), the application has to specify index and sub-index, data
and access type, as well as the default value of the object. In addition the
application has to indicate at which offset within the process image this dynamic
object shall be located. The decision whether the object is located in the process
image inputs or outputs is based on the access type specified for the object.
Dynamic objects with access type ACCESSTYPE_RWW are located in the process
image inputs, those with ACCESSTYPE_RO will be located in the process image
outputs. It is in the responsibility of the application to avoid address conflicts in
the process images between network variables and dynamically generated
application objects.

Dynamic objects may only be created in the CANopen Manager state RESET, i.e.
before the network is started.

(1) Dynamic generation of an application specific object dictionary entry

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Tutorial

41

BYTE abInitialValue[8] = {0x11, 0x22, 0x33, 0x44,
 0x55, 0x66, 0x77, 0x88};

CMM_CreateODentry(g_hBoard,
 0x5E00, 0x00, // Mainindex, SubIndex
 DATATYPE_UNSIGNED64,
 ACCESSTYPE_RWW,
 PDOMAPPING_SUPPORTED,
 abInitialValue,
 0x680); // Offset in the PI

(2) Writing an application specific object dictionary entry
A dynamically created object dictionary entry can be accessed in two
different ways, either via its entry in the local object dictionary, or via the
process image. If accessing the entry in the process image inputs or
outputs, the offset of the entry in the corresponding process image has
to be known, however this kind of access is optimized in terms of
performance. The access via the local object dictionary is easier to
manage as only index and sub-index of the object have to be known.
Below an example of a write access by means of local SDO is listed:

BYTE abTxdata[8] = {0x08, 0x07, 0x06, 0x05,
 0x04, 0x03, 0x02, 0x01};

CMM_WriteLocSDO(g_hBoard,
 0x5E00, 0x00, // Mainindex, SubIndex
 sizeof(abTxdata), abTxdata, NULL);

(3) Reading an application specific object dictionary entry
Contrary to the write access discussed above, now the process image
inputs area, in which the object is located, is read directly:

DWORD dwLength;
BYTE abDataPII[8] = {0};

dwLength = sizeof(abDataPII);
CMM_GetPIentry(g_hBoard,
 PITYPE_INPUTS,
 0x680, // Offset in the PI
 &dwLength, abDataPII, NULL);

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

42

5 CANopen Manager Firmware

5.1 Overview

The CANopen Manager simplifies monitoring and control of CANopen networks.
It enables client applications to configure slave modules and to react individually
to failures of modules. With the CANopen Manager it is possible to manage
CANopen networks with up to 127 network devices. Figure 5-1 shows the typical
structure of a CANopen network, in which the CANopen Manager is used as the
central control device. The slave modules themselves do not have any functions to
control the network. However, with the CANopen Manager they are able to
control the network via the RequestNMT object [1F82].

Figure 5-1: Typical structure of a CANopen network

The software concept of the CANopen Manager is based on a separation of
CANopen firmware and client application via an API. All the CANopen Manager
functionality is implemented in the firmware, however the application must
configure and control this firmware via the API.

The internal function modules Network Manager, Configuration Manager and
Process Image Manager/Scanner provide the client application with encapsulated,
convenient services for management of the complete CANopen network.

CANopen
Manager

CANopen

Slave module

CANopen

Slave module

CANopen

Slave module

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

43

The following diagram shows the structure of the function modules of the
CANopen Manager firmware:

SYNC

handler

NMT

master

SSDO

handler

CSDO

handler

NMT

slave

EMCY

handler

PDO

handler

Local object
dictionary

Standard CANopen Master/Slave software

Local control CMD

handler

Network manager
boot-up procedure
& error control

Configuration
manager

Process image
manager/scanner

Command
interface

CSDO
interface

Diagnostic
interface

Process images

Application Programming Interface

CANopen Manager kernel

CANopen

CAN driver

Figure 5-2: Software structure of the CANopen Manager

5.2 Services of the CANopen Manager

The kernel of the CANopen Manager is formed by a standard CANopen protocol
stack. It is compliant to [1], which is responsible for executing the CANopen-
specific commands. This stack has been extended such that the configurable
automated boot-up procedure, a configurable network management, and the
configuration manager are supported. The functionality of the extensions is
described in more detail in CiA 302 [2]. In Master Mode the CANopen Manager
supports both node guarding and the heartbeat mechanism. SDO block transfer
is currently not supported by the CANopen Manager.

5.3 Boot-up Procedure

The boot-up procedure is described in CiA 302 and is used to transfer all slaves of
a CANopen system into Operational state according to a defined procedure. A

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

44

differentiation is made between mandatory and optional slave modules, which
have a different effect on the boot-up procedure.

The main features of the boot-up process are outlined below briefly. If the
CANopen Manager is configured as the network master, the complete network
with the exception of the CANopen Manager itself is reset and the boot slave
process is started for each individual slave module. During a boot slave process
the identity of a slave module is verified, if necessary its configuration is updated,
monitoring of the module is started by the error control service, and the module
is set to a pre-configured state. When the boot-up process is completed, all
modules classified as mandatory should be in a defined state and the CANopen
Manager can be started.

Start-up of the individual slave modules, of the network and of the CANopen
Manager itself depends on the configuration of the NMTStartup object [1F82].

The CANopen Manager supports all boot-up process steps categorized as
mandatory in accordance with CiA 302 [2].

5.4 Network Management

The network management of the CANopen Manager contains control and
monitoring mechanisms for the complete network. The error control service
monitors slave modules by means of heartbeat or node guarding. Boot-up
messages and error control events of the individual modules are processed by
the network management. Its reaction depends on the configuration of the
NMTStartup [1F80] and SlaveAssignment objects [1F81].

In addition to the automated network management, the state (Operational, Pre-
operational, Stopped) of the complete network or of an individual module can be
controlled by the client application via the NMT-functions or by other modules on
the network via the RequestNMT object [1F82]. It is thus possible to selectively
activate or deactivate modules already during the boot-up process.

5.5 RequestNMT Object

The RequestNMT object [1F82] is an optional object dictionary entry of the
CANopen Manager that is specified in CiA 302 [2]. As only the network master
may execute NMT commands, the CANopen Manager supports the
RequestNMT object, as in special cases slave modules or tools must be allowed
to control the state of the network or of an individual module as well. With a
write access (by means of an SDO) to the object, the required NMT service is
requested and executed by the CANopen Manager. The state of a module can be
requested by read access to RequestNMT.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

45

5.6 Configuration Manager

During the boot-up process, the configuration manager configures all modules of
the network based on their DCF object. As memory typically is limited, the
CANopen Manager supports only the concise DCF format (object ConciseDCF
[1F22]).

To reduce the time required for configuration, the CANopen Manager attempts
to read the date and time of an already stored configuration of a module and
compares these data with the expected values (objects [1F26] and [1F27]). If the
entry read from the module is not equal to the expected value or if the queried
module does not support the VerifyConfiguration object ([1020], see also
section 5.8, Verify Configuration), complete configuration of the module is
carried out. If the expected value and the read value are identical, configuration
of the module is skipped.

5.7 Reset Configuration

To configure a module at run time, the CANopen Manager implements the
optional ConfigureSlave object [1F25], which is specified in CiA 302. Via this
object the Request Configuration Service can be called for a certain module
or for all modules. Write access to the relevant sub index of this object is
necessary to initiate this service.

5.8 Verify Configuration

The VerifyConfiguration object [1020] is categorized in CiA 301 as optional
object. It is supported by the CANopen Manager. The object indicates the date
and time of the current configuration of the CANopen Manager. It can be
configured by a client application and used to identify its configuration before
downloading a configuration to the CANopen Manager. In this way, unnecessary
download of a configuration can be avoided.

5.9 Auto Configuration Mode

To simplify network management, the CANopen Manager provides an auto
configuration mode in which the network is automatically scanned and a
complete configuration of the network is created. This service is specific to the
IXXAT CANopen Manager implementation and not described in CiA 302.

After a scan of the network by trying to inquire the device type [1000] for each
possible node-ID, the CANopen Manager sets all identified modules to their
default configuration (write access to Restore default parameters object

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

46

[1011sub01] and subsequent NMT Reset Node command). Then it reads out
their identity objects [1018] and PDO configurations of all modules. By referring
all valid PDOs to itself, the CANopen Manager creates a RPDO and TPDO table for
the scanned network. The auto configuration mode requires the PDOs of the
modules of the network to be configured such that no direct PDO
communication takes place between the individual modules. Only in this way a
non-ambiguous allocation between TPDOs and RPDOs is possible in the
configuration of the CANopen Manager.

The auto configuration mode enables the client application to obtain an
automatically generated overview of the configuration of the network from the
information provided by the individual modules. This configuration contains
information on the available modules stored in the local SlaveAssignment
object [1F81] and in the other Network List objects [1F84]..[1F88]; the
assignment of the process image and the allocation of the individual mapped
objects and network variables to the individual modules. The automatically
created configuration can then be further used as a basis for the specific
configuration of the client application.

5.10 Initialization of the CANopen Manager

Initialization of the CANopen Manager can be requested by various services:

1. Via the command interface with the commands
CMM_InitFirmware()

CMM_ResetNode() for either all nodes or specifically the CANopen
Manager

CMM_ResetComm() for either all nodes or specifically the CANopen
Manager

2. Via an external NMT command in Slave Mode

Reset Node all nodes or specifically the CANopen Manager

Reset Communication all nodes or specifically the CANopen Manager

3. Via external RequestNMT in Master Mode

Reset Node all nodes or specifically the CANopen Manager

Reset Communication all nodes or specifically the CANopen Manager

4. As the result of an error control event of a mandatory module whose
configuration of the NMTStartup object requires the complete network to
be reset by means of Reset Node All Nodes.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

47

5.11 Object Dictionary default Values

The following table provides a partial overview of the default values of some
entries in the communication profile section of the object dictionary.

Idx
(hex)

Sub
index

Name Attrib Obj
Type

Data Type Default
Value

1000 00 Device Type ro VAR UNSIGNED32 0x00000000

1001 00 Error Register ro VAR UNSIGNED8 0x00

1005 00 COB-ID SYNC message rw VAR UNSIGNED32 0x40000080

1018 Identity Object RECORD

00 Number of entries ro VAR UNSIGNED8 4

01 Vendor ID ro VAR UNSIGNED32 0x00000004

02 Product code ro VAR UNSIGNED32 0x01020134

03 Revision number ro VAR UNSIGNED32 0x00020303

04 Serial Number ro VAR UNSIGNED32 0x00000000

5.12 Special Manufacturer-specific Object Dictionary
Entries of the CANopen Manager

The CANopen Manager implements manufacturer-specific object dictionary
entries in the range [5F00] to [5FFF] as listed below.

Note: It is not possible to create dynamic object dictionary entries in this range!

Idx
(hex)

Sub
index

Name Attrib Obj
Type

Data Type Default
Value

5F00 Status of the CANopen Manager RECORD

00 Number of elements ro VAR UNSIGNED8 3

01 CANopen Manager event
indication

ro VAR UNSIGNED16

02 CANopen Manager status ro VAR UNSIGNED16

03 CANopen Manager
communication status

ro VAR UNSIGNED8

5F01 Assigned slaves bit list1 ARRAY

 00 Number of elements ro VAR UNSIGNED8 4

01 Assigned slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Assigned slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

1 Bit lists are organized such that bit 0 in sub index 1 corresponds to node-ID 1, therefore bit 31 in sub
index 4 is not used.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

48

Idx
(hex)

Sub
index

Name Attrib Obj
Type

Data Type Default
Value

03 Assigned slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Assigned slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F02 Configured slaves bit list ARRAY

00 Number of elements ro VAR UNSIGNED8 4

01 Configured slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Configured slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Configured slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Configured slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F03 Fault slaves bit list ARRAY

00 Number of elements ro VAR UNSIGNED8 4

01 Fault slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Fault slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Fault slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Fault slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F04 Operational slaves bit list ARRAY

00 Number of elements ro VAR UNSIGNED8 4

01 Operational slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Operational slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Operational slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Operational slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F05 Stopped slaves bit list ARRAY

00 Number of elements ro VAR UNSIGNED8 4

01 Stopped slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Stopped slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Stopped slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Stopped slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F06 Preoperational slaves bit list ARRAY

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

49

Idx
(hex)

Sub
index

Name Attrib Obj
Type

Data Type Default
Value

00 Number of elements ro VAR UNSIGNED8 4

01 Preoperational slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Preoperational slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Preoperational slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Preoperational slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F07 Emergency slaves bit list ARRAY

00 Number of elements ro VAR UNSIGNED8 4

01 Emergency slaves bit list:
 node-ID 1..32

ro VAR UNSIGNED32

02 Emergency slaves bit list:
 node-ID 33..64

ro VAR UNSIGNED32

03 Emergency slaves bit list:
 node-ID 65..96

ro VAR UNSIGNED32

04 Emergency slaves bit list:
 node-ID 97..127

ro VAR UNSIGNED32

5F10 Node Error Count ARRAY

00 Number of elements ro VAR UNSIGNED8 127

01 Received emergency messages of
node-ID 1

ro VAR UNSIGNED8

..

7F Received emergency messages of
node-ID 127

ro VAR UNSIGNED8

5F11 00 Generic Error Count ro VAR UNSIGNED8

5F12 00 Device Hardware Error Count ro VAR UNSIGNED8

5F13 00 Device Software Error Count ro VAR UNSIGNED8

5F14 00 Communication Error Count ro VAR UNSIGNED8

5F15 00 Protocol Error Count ro VAR UNSIGNED8

5F16 00 External Error Count ro VAR UNSIGNED8

5F17 00 Device-specific Error Count ro VAR UNSIGNED8

5F18 Nodes' Emergency History ARRAY

00 Number of elements ro VAR UNSIGNED8 127

01 Emergency History of node-ID 1 ro VAR DOMAIN

..

7F Emergency History of node-ID
127

ro VAR DOMAIN

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

50

5.13 Configuration of the Run Time Behavior

A number of tasks are processed cyclically by the CANopen Manager. These
include processing of the CAN receive queues, updates of the PI input, updates of
the diagnostics buffer, transmission of PDOs, SDO handling, etc. This processing
depends strongly on the run-time behavior of the CANopen Manager firmware,
which can be configured via the Task Time Configuration object. This entry can
be written in both slave and master mode using the local SDO access functions.

Object dictionary entry [5F80] Configuration of the run time behavior:

Idx
(hex)

Sub
index

Name Attrib Data Type Value
range

Default
Value

5F80 Task Time Configuration 3

00 Number of supported sub
indices

ro UNSIGNED8 3 3

01 Task run time of the main task
of the CANopen Manager (in
ms)

rw UNSIGNED8 2..10 2

02 Maximum processing time of
the high priority receive queue
(in ms)

rw UNSIGNED8 2..5 2

03 Maximum processor time
available to the main task of the
CANopen Manager,

given in per cent without
decimal points

rw UNSIGNED8 20..80 50

These values should only be modified by experienced users.
As long as the CANopen Manager is in auto configuration mode,
this object entry should not be configured.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

51

5.14 Access to the local Object Dictionary

This section describes the restrictions or special features related to data
consistency that apply when object entries managed by the CANopen Manager
are accessed.

5.14.1 CiA 301 specific object entries

When the CANopen Manager is in either one of the Network Initialization, Auto
Configuration, Start Master Manager or Start Network states, neither the PDOs
nor the Consumer Heartbeat time nor the Producer Heartbeat time of the
CANopen Manager can be reconfigured. These object entries are directly linked to
both the configuration information contained in the concise Device Configuration
Files and the slave assignment list. In the Auto Configuration state, these object
entries can be read but they only reflect the network when scanning of the
individual modules is completed and the CANopen Manager is in the sub-state
GETPI_INFO. Only from this point in time is the created configuration consistent.

5.14.2 CiA 302 specific object entries

All object entries related to the configuration of the network initialization cannotcannotcannotcannot
be configured by SDO in the states Auto Configuration, Network Initialization,
Start Master Manager or Start Network.

This restriction concerns the following object entries:

� NMTStartup Object [1F80]

� SlaveAssignment Object [1F81]

� All identity entries Object [1F84]..[1F88]

� BootTime Object [1F89]

� ConciseDCF Object [1F22]

� ConfigureSlave Object [1F25]

� ExpectedConfigurationDate Object [1F26]

� ExpectedConfigurationTime Object [1F27]

During auto configuration, these object entries can be read but their contents
may be inconsistent if not all modules are scanned yet. The automatically created
configuration is only consistent when the CANopen Manager is in the sub-state
GETPI_INFO.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

52

The restrictions or special features that depend on the object entry are described
in the following.

NMTStartup [1F80]

The NMTStartup object cannot be configured in the Slave Mode: Operational
state, as the CANopen Manager does not manage the network in the Master
Mode: Reset state.

This version of the CANopen Manager does not support the Flying MasterFlying MasterFlying MasterFlying Master
functionality described in [2]. Alteration of the NMTStartup object so that the
flying master process would be supported (bit 5 = 1) is not accepted.

After network initialization has been completed, the master
functionality can be disabled again via the NMTStartupNMTStartupNMTStartupNMTStartup object.
This alteration only becomes effective when the configuration of
the CANopen Manager has been saved and the CANopen Manager
has been re-initialized.
After the initialization of the network the current network state is
not retroactively changed by a reconfiguration of bits 4/6 of the
NMTStartup object. These bits describe the reaction to an Error
Control Event of a mandatory slave.

SlaveAssignment [1F81]

The current version of the CANopen Manager does not support bits 4 to 6
(State Critical Node, Verify Software Version and Automatic Update) of
the SlaveAssignment object. A SlaveAssignment object that supports one of
these services is not accepted.

After network initialization has been started, an reconfiguration of the
SlaveAssignment of a module from “not assigned“ slave or “optional” slave to
“assigned and mandatory” slave is rejected if the module is not completely
initialized and the configuration of the NMTStartup object stipulates a “Reset”
or a “Stop” of the whole network with an Error Control Event of a “mandatory”
module.

BootTime [1F89]

The BootTime can also be configured in the state BOOT_END_MISSING_MAND
(see section 7.1.1, State of the CANopen Manager). Thus the timeout for missing
mandatory modules can be extended (new BootTime = 0) or aborted (new
BootTime != 0).

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

53

ConciseDCF [1F22]

The individual concise DCFs share a common memory area. Thus the maximum
size of a new concise DCF only depends on how much free memory is still
available to it.

After a concise DCF has been successfully transmitted to the CANopen Manager,
it is checked whether an older version of this concise DCF exists in the memory. If
so, it is deleted and all subsequent concise DCFs are moved up. If transmission to
the CANopen Manager failed, the transmitted data bytes are ignored and the
configuration of the concise DCF is identical to the configuration before the failed
download.

For this reason it is not possible to configure more than one entry of the concise
DCF at the same time. If reading of a concise DCF is not yet completed, write
access to a concise DCF is refused with a reference to the “Present Device State”.
If the configuration of a concise DCF is not yet completed, every read access to a
concise DCF is refused with a reference to the “Present Device State”. The
download of a concise DCFs during a boot slave process is counted as a read
access.

More than one concise DCF can be read out at the same time. However, a
concise DCF cannot be read simultaneously by more than one SSDO.

RequestNMT [1F82]

If the CANopen Manager is not configured as a master, RequestNMT cannot be
read or written.

As long as the CANopen Manager does not have definite knowledge of the state
of a slave module, the request for the state of a module returns the value
“unknown”. The state of a module can only be given after it has been added to
the internal node list during its boot slave process.

If the CANopen Manager or the complete network is to be set to the Stopped
state via RequestNMT, the RequestNMT command is not executed, as the
CANopen Manager can then no longer communicate via SDO.

In the Auto Configuration state, only those RequestNMT commands are allowed
that reset the CANopen Manager or the complete network.

In the Network Initialization state, start-up of the complete network is not
allowed.

Configure Slave [1F25]

The request to boot an individual module is complied with if the module to be
booted is configured as a slave, is not Operational or is not currently being
booted.

The request to boot the complete network is not complied with if even only one
individual module is Operational.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

54

5.15 Dynamically created Object Dictionary Entries

The user can create application specific entries in the object dictionary of the
CANopen Manager. These entries are saved in the process images along with the
network variables and can be mapped to PDOs.

The following parameters of the dynamically created object dictionary entry must
be defined:

Parameter Value range Description

Object
dictionary
index

0x2000..0x5EFF
0x6000..0x9FFF

Index of the object dictionary entry

Object
dictionary
sub index

0x00..0xFF Sub index of the object dictionary entry

Data type INTEGER8
INTEGER16
INTEGER32
INTEGER64
UNSIGNED8
UNSIGNED16
UNSIGNED32
UNSIGNED64

These data types are supported for dynamically
created object dictionary entries

Access type rww/ro Defines in which PI the variable is stored:
rww variables are saved in the PI input and can
be mapped to RPDOs
ro variables are saved in the PI output and can be
mapped to TPDOs

Mappable yes/no Defines whether the variable can be mapped to a
PDO or not

Default value any Default value of the variables, the object
dictionary entry is reset to this value with a reset
command

PI offset 0..(size of the PI –
variable size)

Byte offset, defines the position of the variables in
the PI input or PI output

The following conditions are to be respected:

• Dynamic object dictionary entries can only be created in Reset state
(see section 8.1.2, Master Mode: Reset) of the CANopen Manager!

• The user is responsible for observing CANopen conformity. For example,
for every object dictionary index an entry with the sub index 0 must exist.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

55

• Network variables and dynamically created object dictionary entries are
saved in the same memory area. The user must ensure that there are no
overlaps!

• After the dynamic object dictionary entries have been created, the
command STORE must be executed in order to save the settings. Without
this command the dynamic object dictionary entries would be reset, i.e.
deleted, as soon as an NMT Reset is carried out.

• There is no command to delete a dynamically created object dictionary
entry. All settings can only be reset and thus all dynamically created object
dictionary entries deleted with the command RESTORE and a subsequent
NMT Reset (see also section 5.16, Store/Restore).

5.16 Store/Restore

STORE is a write access to the object dictionary entry [1010sub1] of the CANopen
Manager firmware, RESTORE is a write access to the object dictionary entry
[1011sub1].

Please note that with the command STORE the settings are only saved in the
RAM. After restarting the CANopen Manager firmware, i.e. after calling
CMM_InitBoard() all settings must be made again.

The settings saved with STORE can be destroyed with the command RESTORE.
With the next NMT Reset command, the default values of the settings are then
restored.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager Firmware

56

5.17 Handshaking

For critical applications the handshake mechanism between the API-DLL and the
CANopen Manager firmware can be activated. After the first handshake the
CANopen Manager firmware starts its handshake timeout timer. If the handshake
from the API-DLL is missing longer than the configured time then the firmware
will execute several reactions.

The handshake interval and the timeout reactions of the CANopen Manager
firmware are set with the function CMM_InitFirmware() (see section 11.1.4,
CMM_InitFirmware). An handshake will be executed with call of
CMM_HandShake() (see section 11.2.6, CMM_HandShake).

After the first call of CMM_HandShake()CMM_HandShake()CMM_HandShake()CMM_HandShake() the timeout timer of the
CANopen Manager firmware starts. The application then must
guarantee that the function CMM_HandShake()CMM_HandShake()CMM_HandShake()CMM_HandShake() will be called
cyclically within the handshake interval.

The meaning of the reactions (set with parameter HsReaction of
CMM_InitFirmware()) are shown in the following:

Reaction Meaning valid in
Master
mode

valid in
Slave
mode

category

CMM_HS_SEND_EMCY an Emergency
message will be send
with data field:
0x00, 0x62, 0x81,
0x00, 0x00, 0x00,
0x00, 0x00

yes yes EMCY

CMM_HS_MASTER_NMT_PREOP_ALL NMT message Enter
Pre-Operational all
nodes will be sent

yes no NMT

CMM_HS_MASTER_NMT_STOP_ALL NMT message Stop all
nodes will be sent

yes no NMT

CMM_HS_MASTER_NMT_RESETCOMM_ALL NMT message Reset
Communication all
nodes will be sent

yes no NMT

CMM_HS_MASTER_NMT_RESETNODE_ALL NMT message Reset
Node all nodes will be
sent

yes no NMT

CMM_HS_SLAVE_STOP_SENDING_HBT Sending of the own
CANopen Heartbeat
message is stopped

no yes HBT

The reactions can be combined using disjunction. From category NMT only one
reaction can be selected. Invalid reactions – depending of the mode of the
CANopen Manager firmware – will be ignored.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Structure of the Process Data Interface

57

6 Structure of the Process Data Interface

6.1 Process Data Interface

The CANopen Manager and the application exchange process data via the
process image. For the designation of the memory areas it is to be noted that the
directions input and output refer to the point of view of the CMM-DLL, whereas
the designation of the network variables refers to the point of view of the
CANopen Manager.

The network variables [A000]..[A47F] are allocated to the PI output. The array of
the network variables of the PI Input extends from [A480]..[A8FF]. The effectively
available network variable array depends on the size of the available PI of the
hardware.

The following diagram shows the data directions.

PI inputs
Network variables (write only)

PI outputs
Network variables (read only)

CANopen Manager API DLL

CANopen Manager firmware

CMM-DLL reads data CMM-DLL writes data

Manager firmware writes
data received with

RPDOs

Manager firmware reads
data for transmission

with TPDOs

Figure 6-1: Data exchange of process variables via the PI

6.1.1 Encoding rules

The data are stored in the process image specific to the processor (little Endian on
the iPC-I XC16 PCI). All network variable types apart from BOOLEAN are
supported.

The process image is allocated according to the principle of overlaid network
variables (see also section 6.1.3, Overlaid Network Variables).

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Structure of the Process Data Interface

58

6.1.2 Data exchange between CMM-DLL and firmware

After the Manager Firmware has written new data to the PI input, it indicates this
internally via a flag.

If a relevant callback function is defined via CMM_DefineCallbacks() or a user-
defined Windows message is defined via CMM_DefineMsgProcImg(), the client
application is informed directly of the change. For this purpose a poll thread is
running inside the DLL, which inspects the flag at regular intervals. The standard
duration of the interval is 4 ms, but can be set to within a millisecond with the
function CMM_SetInspecInterval().

Data received with synchronous RPDOs are copied into the process
image with the next SYNC signal.
As the run time of the main task of the CANopen Manager
firmware is limited, only a limited number of RPDOs can be edited
per cycle of the main task.

When the CMM-DLL has written new data to the PI outputs, it also indicates
internally with a flag that new data are to be transmitted.

The Manager Firmware then scans the complete valid PI outputs, i.e. the array of
the PI outputs which is occupied with process variables mapped in TPDOs, for
new data. Scanning is carried out with the aid of a copy of the PI outputs, by
comparing each byte of the current outputs with its copy. Based on the offset of
an altered byte, the associated TPDOs in which this object is mapped are
determined and marked.

Transmission of the TPDOs according to their transmission type can not begin
before the valid PI output is scanned completely. As an object could be mapped
in several TPDOs, or a PDO could transmit data spread over the complete PI
output array, a comparison of the complete valid PI output must be made before
the TPDOs are transmitted. This is the only way to avoid multiple transmission of
the same TPDOs.

6.1.3 Overlaid Network Variables

The network variables are held in one byte array each, separated according to PI
inputs and PI outputs. The variables of one data direction are stored in the same
physical memory irrespective of the data type. This means that the application is
responsible for ensuring that there are no overlaps.

As the granularity of the PDOs and of the process image is 8 bits, the BOOLEAN
data type is not supported.

Supported network variables:

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Structure of the Process Data Interface

59

Name Data type Start index of the block of
a network variable type

SIGNED8 [A000]

SIGNED16 [A0C0]

SIGNED24 [A140]

SIGNED32 [A1C0]

SIGNED40 [A2C0]

SIGNED48 [A340]

SIGNED56 [A3C0]

SIGNED64 [A400]

UNSIGNED8 [A040]

UNSIGNED16 [A100]

UNSIGNED24 [A180]

UNSIGNED32 [A200]

UNSIGNED40 [A280]

UNSIGNED48 [A300]

UNSIGNED56 [A380]

UNSIGNED64 [A440]

PI outputPI outputPI outputPI output

From the point of view of the
application:

 output data

From the point of view of
CANopen:

 input network variables

Maximum index range:

 [A000]..[A47F]

REAL32 [A240]

SIGNED8 [A480]
SIGNED16 [A540]
SIGNED24 [A5C0]
SIGNED32 [A640]
SIGNED40 [A740]
SIGNED48 [A7C0]
SIGNED56 [A840]
SIGNED64 [A880]
UNSIGNED8 [A4C0]
UNSIGNED16 [A580]
UNSIGNED24 [A600]
UNSIGNED32 [A680]
UNSIGNED40 [A700]
UNSIGNED48 [A780]
UNSIGNED56 [A800]
UNSIGNED64 [A8C0]

PI inputPI inputPI inputPI input

From the point of view of the
application:

 input data

From the point of view of
CANopen:

 output network variables

Maximum index range:

 [A480]..[A8FF]

REAL32 [A6C0]

6.1.4 Default values

The process images are initialized to 0 on start-up of the firmware.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Structure of the Process Data Interface

60

6.1.5 RPDO no queue

Each time the CANopen Manager receives an RPDO the number of the RPDO will
be written into the RPDO no queue with a timestamp. Cyclically the PI Input will
be updated with new received data. By that time an timestamp will be placed
into the PI Input and also into the RPDO no queue (with a separator indication).
So the user application knows what RPDO’s belongs to a PI Input.

When using the RPDO no queue the application must call this function often
enough to prevent queue overflows.

If the information about the received RPDO’s is not needed, the application can
ignore the RPDO no queue.

6.1.6 TriggerTPDO queue

Normally when new (changed) data are written into the Process Image Output
the assigned TPDO’s will be transmitted automatically.

Sometimes it is necessary to send an mapped object via TPDO (again) although
the content of the object has not changed. The TriggerTPDO queue provides this
possibility to trigger the assigned TPDO’s manually.

To trigger the sending of all TPDO’s that have mapped an specific object the
function CMM_TriggerPIOoffset() is used.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

61

7 Diagnostics Data

The diagnostics interface informs the application of the state of the CANopen
Manager or of the network, the state of the individual modules and of the
occurrence of certain errors or events such as failed modules or the faulty
network state of a module. It serves as a basis for the decisions regarding
network management.

The API-DLL can read out the diagnostics data both via the access functions of
the diagnostics buffer CMM_GetMasterStat() and CMM_GetSlavesStat()
and by local SDO access, as they are stored in the manufacturer-specific object
dictionary entries [5F00]..[5F07].

If corresponding callback functions are defined by means of
CMM_DefineCallbacks() or user-defined Windows messages have been given
via CMM_DefineMsgMaster() / CMM_DefineMsgSlave(), the client application
is informed directly of the altered state. For this purpose poll threads are running
in the DLL, which inspect the diagnostics buffers at regular intervals. The standard
duration of the interval is 4 ms, but can be set to within a millisecond with the
function CMM_SetInspecInterval().

The contents of the diagnostics buffers is reset during initialization.

7.1 Status Information of the CANopen Manager

The state of the CANopen Manager can be read out by the client application and
provides information on the configuration of the CANopen Manager, on the state
of its communication with the network and which state its state machine is in.

API function:
CMM_GetMasterStat (tCMM_HANDLE hBoard
 , WORD* pMasterManagerState
 , WORD* fGlobalEvents
 , WORD* fConfigBits);

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

62

7.1.1 State of the CANopen Manager

The state of the CANopen Manager informs the application which state the
internal state machine of the CANopen Manager is in. It is read only and can be
retrieved both via the API function and by means of (local) SDO access.

Function parameters:
Lowbyte of *pMasterManagerState

Object dictionary entry:

[5F00sub02] (Low byte)

Meaning of the states:

ValueValueValueValue DescriptionDescriptionDescriptionDescription

INIT

 (=0x00)

The CANopen Manager is not initialized.

This corresponds to the Initialization state of a CANopen module.

In this state the CANopen Manager cannot communicate with the
network.

RESET

 (=0x40)

Master Mode: Reset

The CANopen Manager is configured as a master in the NMTStartup
object.

The object dictionary of the CANopen Manager can be configured with
SDOs via the CAN bus and the SDO command interface.

The application can obtain read and write access to the object directories
of all modules in the network via the SDO command interface.

Network initialization and network management are not started yet.

Slave Mode: The CANopen Manager is configured as a slave

SLAVE_STOPPED

 (=0x41)

The CANopen Manager is in the CANopen state Stopped

SLAVE_PREOP

 (=0x42)

The CANopen Manager is in the CANopen state Pre-operational

SLAVE_OP

 (=0x43)

The CANopen Manager is in the CANopen state Operational

Master Mode: States of the network initialization

PREPARE_NET_INIT

 (=0x60)

Boot-up in accordance with CiA 302 [2]:

The CANopen Manager carries out a check of the SlaveAssignment.

Auto Configuration:

The state machine of the “Auto Configuration” mode are reset.

NTW_RESET

 (=0x61)

The network is reset with NMT command Reset Communication all
Nodes.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

63

NTW_WAIT

 (=0x62)

The CANopen Manager waits for a definable time, so that the modules
can carry out the Reset Communication command.

In addition, in the Auto Configuration mode all structures that were
configured during the network scan are rest.

BOOT_CON

 (=0x64)

The CANopen Manager carries out initialization of the individual
modules in accordance with CiA 302

BOOT_AUTO

 (=0x65)

The CANopen Manager scans the individual modules and creates a
configuration of the network and of the process image

GETPI_INFO

 (=0x66)

The application obtains information on the allocation of the process
image after running the Auto Configuration mode

BOOT_END_MISSING_MAND

 (=0x70)

The network is scanned. At least one mandatory module is missing and
the boot time has not yet expired

The network is scanned.

The high nibble of the state variable reflects the general network state (CLEAR, RUN, STOP,
PREOPERATIONAL)

The low nibble contains additional, more detailed information:

� Bit 0: error bit for optional or unexpected modules
 = 0: not an error
 = 1: at least one optional or unexpected module does not correspond to the
 expected network configuration

� Bit 1: error bit for mandatory modules
 = 0: not an error
 = 1: at least one mandatory module does not correspond to the expectation

� Bit 2: general Operational bit:
 = 0: no module is in the CANopen state Operational
 = 1: at least one module is Operational (the CANopen Manager is not included)

� Bit 3: Operational bit of the CANopen Manager itself
 = 0: the CANopen Manager is not Operational
 = 1: the CANopen Manager is Operational

CLEAR

 (=0x8x)

The network is scanned. The command “Start CANopen Manager” or
“Start network” is still missing.

RUN

 (=0xAx)

The network was set to the Operational state.

STOP

 (=0xC0)

The network was set to the Stopped state.

PREOPERATIONAL

 (=0xEx)

The network was set to the Pre-operational state.

FATAL_ERROR

 (=0x90)

A fatal error has occurred. The CANopen Manager must be re-initialized.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

64

7.1.2 Communication state of the CANopen Manager

The communication state of the CANopen Manager records the state of the CAN
controller and the state of the individual software queues, via which the
CANopen Manager communicates with the network.

This status display is read only and can be read out both via the API function and
by means of (local) SDO access.

Function parameters:

Highbyte of *pMasterManagerState

Object dictionary entry:

[5F00sub02] (High byte)

Meaning of the communication display:

BitBitBitBit DescriptionDescriptionDescriptionDescription

Bit 0 = 1 an overrun of the low-priority receive queue occurred

Via a low priority receive queue the CANopen Manager receives the Heartbeat and the
Node Guarding messages as well as SSDOs and CSDOs.

Bit 1 = 1 an overrun of the CAN controller occurred

Bit 2 = 1 the CAN controller is Bus Off

Bit 3 = 1 the CAN controller has reached the Error status

This bit is reset when the Error status is left again

Bit 4 = 1 the CAN controller has left the Error state again

Bit 5 = 1 an overrun of the low priority transmit queue occurred

Via the low priority transmit queue the CANopen Manager transmits its Heartbeat, the
Node Guarding requests, SSDOs and CSDOs.

Bit 6 = 1 an overrun of the high priority receive queue occurred

Via the high priority receive queue the CANopen Manager receives RPDOs, NMT
commands, the Sync message and emergency messages.

Bit 7 = 1: an overrun of the high priority transmit queue occurred.

Via the high priority transmit queue the CANopen Manager transmits TPDOs, NMT
commands, the Sync message and its emergency message

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

65

7.1.3 Event Indication

The event indication informs the client application of the occurrence of certain
events and errors.

Function parameter:
*fGlobalEvents

Object dictionary entry:

[5F00sub01]

Description of individual bits:

Bit / name Cause Effect

Bit 0 = 1

 FATE

This bit is always set when

� an error has occurred in the
communication with the network.
The communication state of the
CANopen Manager indicates the
exact reason.

� Local software error of the CANopen
Manager.

The CANopen Manager is in the
state Fatal Error.

Bit 1 = 1

 NIDE

Only valid in Master Mode.

A module uses the node number of the
CANopen Manager.

The CANopen Manager is in the
state Fatal Error.

Bit 2 = 1

 MSE

Only valid in Master Mode.

Error control event of a mandatory module.

The reaction to this event
depends on the configuration of
the NMTStartup object.

If the application reserves the
decision for itself, it must react!

This bit is only relevant if the
configuration of the
NMTStartup object does not
stipulate a reset of the complete
network including the CANopen
Manager. In this case a reset is
carried out without the
application being notified
beforehand.

Bit 3 = 1

 MNCE

Only valid in Master Mode.

Identity error or faulty concise DCF of a
mandatory module.

The CANopen Manager is in the
state Fatal Error.

Bit 4 = 1

 OIE

Only valid in Master Mode.

Identity error of an optional module.

The module involved is set to the
state Stopped

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

66

Bit 5 = 1

 PIE

Only valid in Master Mode.

Creation of a configuration, of the process
image and of the PDOs failed during auto
configuration mode.

The CANopen Manager is in the
state Fatal Error.

Bit 6 = 1

 ACE

Only Master Mode.

during scanning of the network in auto
configuration mode.

� an error control event of an already
scanned module occurred

� a module registered late on the network
with its boot-up message

The CANopen Manager is in the
state Fatal Error.

Bit 7= 1

 NMTE

This bit is always set when a bit in one of the
bit lists changes.

Bit 8 = 1

 ASE

Only valid in Master Mode.

At the beginning of the boot-up procedure
the CANopen Manager checks the individual
SlaveAssignment objects [1F81].

This bit is set when the SlaveAssignment of
a module contains features that are not
supported by the CANopen Manager (e.g. bit
4 to bit 6 of object [1F81])

The CANopen Manager is in the
state Fatal Error.

Bit 9 = 1

 PDOLEN_ERR

The CANopen Manager has received an RPDO
with too few data bytes.

The CANopen Manager is in the
state Fatal Error.

Bit 10 = 1

 CONFIG_ERR

Only valid in Master Mode.

A concise DCF is faulty in itself or does not
match the object dictionary of the slave
module.

The CANopen Manager is in the
state Fatal Error.

Bit 11

 API_ROVR

This bit indicates an queue overrun of the
CSDO interface.

The application decides on the
consequences

Bit 12 = 1

Reserved

Bit 13 = 1

Reserved

Bit 14 = 1

 RSCN

Only valid in Master Mode.

the state of the complete network was altered
by RequestNMT object.

Bit 15 = 1

 RSCM

Only valid in Master Mode.

The state of an individual module was altered
by RequestNMT object.

The CANopen Manager sets the complete network to the state
Stopped if it is configured as a master and assumes the state Fatal
Error.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

67

7.1.4 Configuration of the CANopen Manager

The configuration informs the application in a simple way of the most important
settings of the CANopen Manager:

� the configuration of the NMTStartup object

� whether it participates in the synchronization mechanism

� whether it is configured as a SYNC producer or consumer

As the configuration of the NMTStartup object can be altered during run time,
it is important, especially in view of the master functionality and the reaction auf
to a mandatory Error Control event, that the application is informed of the basic
configuration of the NMTStartup object.

For treatment of the process data, it is important that the application knows
whether the CANopen Manager participates in the synchronization mechanism or
not.

Function parameter:
*fConfigBits

Object dictionary entry:

none

Description of the individual bits:

Bit Description

 Bit 0 – 5 comprise the configuration of the NMTStartup object:
 Bit 0 – 3 correspond here to the bits 0-3 of the NMTStartup object [1F80H]

Bit 0

 Master/slave bit:

 = 0 the CANopen Manager is configured as a slave

 = 1 the CANopen Manager is configured as a master

The following bits describe the start-up behavior of the CANopen Manager during the boot-up
procedure:

 Bit 1 Start mode of the slaves:

 = 0: The slave modules are started individually during the boot slave process

 = 1: The CANopen Manager starts the network at the end of the boot-up procedure

 Bit 1 is only valid if bit 3 = 0!

 Bit 2 Self-start permission:

 = 0: The CANopen Manager may start itself. This also applies to the slave mode!

 = 1: the CANopen Manager may not start itself

 Bit 3 General start permission:

 = 0: CANopen Manager may set the slave modules to operational

 = 1: The application starts the slave modules

 Bit 3 is only valid if bit 0 = 1!

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

68

 The following bit indicates who must react to an Error Control event of a mandatory module:

 Bit 4 Reaction permission:

 = 0: The application reserves the right to react

 = 1: CANopen Manager acts. The reaction is configured in the NMTStartup object

 Bit 5 Reserved: always 0

 Synchronization mechanism

 Bit 6 Synchronization bit:

 = 0: the value of Communication Cycle Period (Index 1006H) is 0

 = 1: the value of Communication Cycle Period (Index 1006H) is not equal to 0

 Bit 7 Sync consumer/producer bit:

 = 0: the CANopen Manager is configured as a SYNC consumer

 = 1: the CANopen Manager is configured as a SYNC producer

 Bit 8 – bit 15 free

7.2 Slave Diagnostics

7.2.1 Overview

The slave diagnostics informs the API-DLL of the state of the individual modules in
the network. For the slave diagnostics, it is necessary to distinguish between the
Master Mode and the Slave Mode.

In Master Mode the state of all modules, i.e. node numbers 1 – 127 (including
the CANopen Manager) is displayed after the boot-up procedure or the auto
configuration mode is started.

In Slave Mode or in the state Master Mode: Reset, only the states of those
modules are logged that are entered in the consumer heartbeat list of the
CANopen Manager and whose consumer heartbeat time is not equal to 0.

As the state of an individual module can be requested by RequestNMT (read
access to object [1F82]), the slave diagnostics is not created according to nodes
but according to states. Every possible state receives its own bit list
tCMM_SLAVEFLAGS, in which a module can be configured according to its state.

The CANopen Manager differentiates between the following states:

� Assigned slaves → fAssigned bit list

� Configured slaves → fConfigured bit list

� Preoperational slaves → fPreoperational bit list

� Stopped slaves → fStopped bit list

� Operational slaves → fOperational bit list

� Configuration error → fMismatch bit list

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

69

� Module internal error → fEmergency bit list

Each node number is allocated a certain bit within the bit list:

� Node number i ⇔ bit (i – 1)

The slave diagnostics data are read only and can be read out both via the API-
function and by means of (local) SDO access.

API function:
CMM_GetSlavesStat (tCMM_HANDLE hBoard
 , tCMM_SLAVEFLAGS* fAssigned
 , tCMM_SLAVEFLAGS* fConfigured
 , tCMM_SLAVEFLAGS* fMismatch
 , tCMM_SLAVEFLAGS* fEmergency
 , tCMM_SLAVEFLAGS* fOperational
 , tCMM_SLAVEFLAGS* fStopped
 , tCMM_SLAVEFLAGS* fPreOperational);

If the CANopen Manager is configured as a slave or if it is in the state Master
Mode: Reset, the following applies to the fAssigned, fPreoperational,
fStopped, fOperational and fMismatch bit lists:

� In the fAssigned bit list, those modules are marked which are entered in
the consumer heartbeat list of the CANopen Manager and whose
consumer heartbeat time is not equal to 0.

� Only those modules are logged which are marked in the fAssigned bit
list.

� The bits of the modules which are not logged are set to 0.

� If the state of a module is no longer to be displayed (e.g. if it was deleted
from the consumer heartbeat list or its consumer heartbeat time was set to
0), its bits are reset in the above-mentioned bit lists.

� The fConfigured bit list and the fEmergency bit list are not supported.

7.2.2 Structure of the bit lists

In the following, the allocation of the node numbers to the entries of the bit lists
is shown in more detail. This allocation is the same for all bit lists of the slave
diagnostics.

Byte – bit allocation:

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

70

Byte Description

Byte 0

Bit number: 0 - 7

Node number 1 – 8:

Bit 0 ⇔ node number 1

Bit 7 ⇔ node number 8

Byte 1

Bit number: 8 - 15

Node numbers 9 – 16:

 LSBit ⇔ node number 9

 MSBit ⇔ node number 16

... ...

Byte 15

Bit number: 120 - 127

Node numbers 121 – 127:

 LSBit ⇔ node number 121

 MSBit ⇔ node number 128: free

If the bit list information is accessed via SDO, the following allocation pattern is
used:

Sub-index Data type Value Attribute

0 UNSIGNED8 4 RO

1 UNSIGNED32 Node number 1 – 32 RO

2 UNSIGNED32 Node number 33 – 64 RO

3 UNSIGNED32 Node number 65 – 96 RO

4 UNSIGNED32 Node number 97 – 127 RO

The meaning of the bit states does not change if a bit list is accessed via SDO.

7.2.3 Bit list assigned slaves

In Master Mode, except for the state Master Mode: Reset, those modules are
marked in the assigned slaves bit list which are configured as slaves in the slave
assignment. If a module is no longer configured as a slave, the corresponding bit
is also reset in the fAssigned bit list.

In Slave Mode and in the state Master Mode: Reset, the states of the modules
entered in the consumer Heartbeat list are also logged.

Function parameter:
*fAssigned

Object dictionary entry:

Object: [5F01]

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

71

7.2.4 Bit list configured slaves

After a module that is allocated to the master as a slave module in the slave
assignment, has been successfully configured during the boot-up procedure, it is
marked accordingly in the fConfigured bit list.

A module is taken out of this list again when it is no longer allocated to the
master as a slave module, if an error control event of the module occurred or the
module was reset via NMT command.

This bit list is not supported in Slave Mode.

Function parameter:
*fConfigured

Object dictionary entry:

Object: [5F02]

7.2.5 Bit list configuration error

If a module has a state that does not match its expected state, it is marked in the
fMismatch bit list. In addition, a module is marked as faulty if it is allocated to
the master as a slave but is not (yet) not initialized or its concise DCF is faulty. A
module is also marked as faulty if it is not allocated to the master as a slave but is
still in the network.

Function parameter:
*fMismatch

Object dictionary entry:

Object: [5F03]

Description of configuration errors:

Error Cause Effect

A module is not allocated to the master as a slave but is present in the system

The module uses the
node numbers of the
CANopen Manager

� The module was detected during
network initialization

� It registered on the network with its
boot-up message

The fMismatch bit list is deleted.
Only this module is still marked.

The NIDE bit of the “Event
Indication“ indicates this error.

The CANopen Manager is set to
the state Fatal Error.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

72

The module uses a
free node number

� The module was detected during
network initialization

� It registered on the network with its
boot-up message

� The module was allocated to the
master as a slave and was present.
However, the slave configuration was
subsequently altered.

The search algorithm checks
cyclically whether the module is
still in the network.

A module is allocated to the master as a slave

Incorrect slave
assignment

� At the beginning of the boot-up
procedure, the CANopen Manager
checks the individual slave
assignments.

The CANopen Manager then detects a
slave assignment that configures
features of a slave which are not
supported by the CANopen Manager
(e.g. bit 4 to bit 6 of the object
1F81H).

The check of the other slave
assignments is no longer carried
out.

Only this module is marked as
faulty.

The ASE bit of the ”Event
Indication“ indicates this error.

The CANopen Manager is set to
the state Fatal Error.

The module is missing � The module has not registered during
the boot slave process.

� During its boot slave process an SDO
timeout occurred: the module is reset
via NMT command.

� An error control event of the module
occurred. The module was reset by
NMT command.

� The module was reset by NMT-
function or by RequestNMT object.

The search algorithm checks
cyclically whether the module is
still in the network.

The module is marked in the
following bit lists with the value 0:
fPreoperational-,
fStopped-, fOperational-
and fConfigured bit list

Identity error � During the boot slave process, the
identity of the module is checked. It is
a different module than expected.

Mandatory module:
The fMismatch bit list is deleted.
Only the faulty module is still
marked.

The NMCE bit of the “Event
Indication” indicates this error.

The CANopen Manager is set to
the state Fatal Error.

Optional module:

The module is set to the state
Stopped. The error is indicated via
the OIE bit of the Event Indication.

Concise DCF error When downloading the concise DCF, the
CANopen Manager detects that the
concise DCF of this module is faulty:

� Length of the concise DCF and the
number of entries do not match.

� The concise DCF contains at least one
entry that is not supported by the
target node.

The fMismatch bit list is deleted.
Only the module concerned is still
marked.

The CONFIG_ERR Bit of the Event
Indication indicates this error.

If the module is additionally
configured as mandatory, the
MNCE bit is also set.

The CANopen Manager is set to
the state Fatal Error.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

73

Specific auto configuration mode error

SDO timeout � SDO timeout when reading out the
object dictionary of a module during
the Scan slave process.

Error control event � Error control event of an already
scanning module.

Boot-up message � A module registers out of sequence.

The fMismatch bit list is deleted.
Only the module that caused the
error is still marked.

The ACE bit of the Event Indication
indicates this error.

The CANopen Manager is set to
the state Fatal Error.

COB ID allocation � The PDO configuration of the auto
configuration mode requires that there
be exactly one receiver and one
transmitter for each PDO.

In this error case, an identifier is used
more than once.

Concise DCF � The configured size of the concise DCF
buffer is insufficient.

PDO � The number of defined PDOs is
insufficient.

Process image � The size of the process image is too
small.

Network variables � The defined array of the network
variables is too small

Allocation error � The allocation of the process image is
faulty.

This error was detected during
execution of the process image
information commands GETPI_INFO.

The fMismatch bit list is deleted.
Only the module that caused the
error is still marked.

The PIE bit of the Event Indication
indicates this error.

The CANopen Manager is set to
the state Fatal Error.

General errors

Local software error
of the CANopen
Manager

� A state machine of the CANopen
Manager goes into an undefined state.

� A variable which the CANopen
Manager manages itself has an invalid
value.

The fMismatch bit list is deleted.
Only the CANopen Manager itself
is marked.

The CANopen Manager is set to
the state Fatal Error.

If this error occurs in the state
BOOT_AUTO, the ACE bit is set in
the “Event Indication”, otherwise
the FATE bit

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

74

7.2.6 Bit list operational slaves

This bit list indicates which modules are in the Operational state. If the state of
the module changes, the corresponding bit is reset.

Particular attention must be paid to modules which are configured
as a slave and are not monitored by the error control service. If the
state of such a module changes, this is not noticed by the CANopen
Manager unless the module registers on the network with its boot-
up message.

Function parameter:
*fOperational

Object dictionary entry:

Object: [5F04]

7.2.7 Bit list stopped slaves

This bit list indicates which modules are in the Stopped state. If the state of a
module changes, the corresponding bit in the bit list is reset.

Particular attention must be paid to modules which are configured
as a slave and are not monitored by the error control service. If the
state of such a module changes, this is not noticed by the CANopen
Manager unless the module registers on the network with its boot-
up message. If the expected state of the module is Stopped, it is set
to this state by the master and marked accordingly in the stopped
bit list of the diagnostics interface.

Function parameter:
*fStopped

Object dictionary entry:

Object: [5F05]

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

75

7.2.8 Bit list preoperational slaves

This bit list indicates which modules are in the Pre-operational state. If the state
of a module changes, the corresponding bit in the bit list is reset.

Particular attention must be paid to modules which are configured
as a slave and are not monitored by the error control service. If the
state of such a module changes, this is not noticed by the CANopen
Manager unless the module registers on the network with its boot-
up message. Then it is first marked as Pre-operational in the bit list.
If the expected state of the module is Stopped, it is set to this state
by the master and the corresponding bit lists of the diagnostics
interface are adapted. Otherwise the module remains in the Pre-
operational state until it is expressly set to another state.
If a module is not marked in the Pre-operational, Operational or in
the Stopped bit list, it is assumed that the module is not present in
the network or its state is unknown.

Function parameter:
*fPreOperational

Object dictionary entry:

Object: [5F06]

7.2.9 Bit list module internal errors

In the Master Mode the CANopen Manager analyses the received emergency
messages. If a module signals that it is not error-free, its bit is set in the
fEmergency bit list. Likewise it is reset if the module indicates error-free. The
CANopen Manager itself is not included in this list. At the beginning all modules
are marked as error-free (default value).

Only after the module has been added to the internal node list of
the CANopen Manager during the boot slave process are its
emergency messages received.

Function parameter:
*fEmergency

Object dictionary entry:

Object: [5F07]

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

76

7.3 Emergency Statistic and History

The emergency statistic and history is only supported in Master Mode. Its entries
can only be read by SDO. The emergency statistic records the frequency of
selected error types in the network (error code-specific error counter). In addition,
the received emergency messages of each individual module are counted (node
error count). A separate emergency queue is set up in the emergency history for
each node number, so that the error history of the last fourfourfourfour received emergency
messages of a module are hold. The CANopen Manager itself is not recorded in
the emergency statistic. Its emergency messages are not collected in the
emergency history.

7.3.1 Node Error Count

The CANopen Manager counts the received emergency messages of each node.
The error-free messages are also counted. If the counter limit of 255 is reached,
the counter is not incremented further.

Object dictionary entry:

Object: [5F10]

Description of the object entry:

Sub-index Data type Value Attribute

0 UNISGNED8 127 RO

1 UNISGNED8 Number of received emergency messages of
node number 1

RO

⋅⋅⋅

127 UNISGNED8 Number of received emergency messages of
node number 127

RO

7.3.2 Error code-specific error counter

The CANopen Manager counts and sorts the received emergency messages
according to the main error types.

If a counter has reached the value 255, it is not incremented further.

List of recorded error types:

Index of the object entry Name Error Code

[5F11] Generic Error Count 10xxH

[5F12] Device Hardware Error Count 50xxH

[5F13] Device Software Error Count 60xxH

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

77

[5F14] Communication Error Count 81xxH

[5F15] Protocol Error Count 82xxH

[5F16] External Error Count 90xxH

[5F17] Device specific FFxxH

Description of an individual object entry:

Sub-Index Data type Value Attribute

0 UNSIGNED8 Number of received emergency messages of this
error type

RO

7.3.3 Emergency history

The received emergency messages of an individual module are chronologically
logged in a separate emergency queue.

This emergency queue is designed as a FIFO buffer. The last four received
emergency messages of each module are hold. When the queue is full, the
emergency message last received overwrites the oldest entry.

Object dictionary entry:

Object: [5F18]

Description of the object entry:

Sub-index Data type Value Attribute

0 UNSIGNED8 127 ro

1 DOMAIN Emergency history of node number 1 ro

⋅⋅⋅

127 DOMAIN Emergency history of node number 127 ro

Description of the domain:

Byte Meaning

0 Number of the emergency message last received

1 – 8 Emergency message position 1

9 – 16 Emergency message position 2

17 – 24 Emergency message position 3

25 – 32 Emergency message position 4

Note:

� If no emergency message has yet been received by a module, byte 0 returns
the value zero. The size of the domain is one.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Diagnostics Data

78

With each received emergency message the domain raises at 8 bytes. When
the maximum of 33 byte is reached, then the older emergency messages are
overwritten by the newer ones. So always the last four received emergency
messages can be read out via SDO.

The value of byte 0 gives back the position of the last received emergency
message.

� The data of the emergency messages are copied to the queue in the same
order in which they were received (LSB first). Each emergency message
consists of exactly 8 bytes.

Example of a domain entry:

In the following example there were received more than four emergency
messages. The domain has reached its maximum of 33 bytes. In byte 0 the value
is 2. So the last received emergency message can be read out at byte 9. The
emergency message before the last one stands at position 1, etc.

Byte Value Attribute

0 2 The emergency message 2 is the last received

1 – 8 Emergency message position 1 Penultimate emergency message

9 – 16 Emergency message position 2 Emergency message last received

17 - 24 Emergency message position 3 Oldest emergency message of this history

25 - 32 Emergency message position 4 This message is newer than the previous one

A read access to the emergency history of the CANopen Manager is
answered with the abort code: 0800 0021H.

7.4 Default Values

After power-on, the data of the diagnostics interface are completely deleted and
initialized with 0. This process is also carried out with each initialization of the
CANopen Manager.

If the initialization of the CANopen Manager was successful, the slave diagnostics
indicates the state of the modules that were also logged by the consumer
heartbeat log.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

79

8 States of the CANopen Manager

The CANopen Manager is implemented as a state machine, which is illustrated in
the diagram below:

Initialization

Master Mode:
Reset

Auto
Configuration

Network
Initialization

(0)

Slave Mode:
Preoperational

Slave Mode:
Operational

Slave Mode:
Stopped

Fatal Error

Start
Network

Start
Network

Start
Master Manager

Network:
Operational

Network:
Preoperational

Network:
Stopped

(1)

(2)

(3/4)

(5)
(6)

(7)(9)

(10)

(11/12/13)

(12)(13)

(26) (28)

(14/15)(16/17)

(18/19)

(20/21)

(22/23)

(24/25)

(8)Network: Scanned

(27)

(27)

(27)

(11)

(11/12/13)

Figure 8-1 State diagram of the CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

80

8.1.1 Initialization

This state is automatically assumed after power-on and corresponds to the
Initialization state of a CANopen module. Initialization of the CANopen
Manager can be requested from every state of the CANopen Manager.

The CANopen Manager cannot communicate with the network in this state.
Access to the object dictionary of the CANopen Manager is not possible.

8.1.2 Master Mode: Reset

To reach this state, the CANopen Manager must be configured as a master in the
NMTStartup object [1F80].

The object dictionary of the CANopen Manager can be configured both by SDOs
via the CAN bus and directly via the local SDO access functions. In this state the
client application can also have read and write access to the object directories of
all modules via the SDO functions.

Although the network initialization and the network management are not yet
started, the diagnostics interface nevertheless provides information on the state
of the modules that are entered in the consumer Heartbeat list of the CANopen
Manager.

In Master Mode: Reset state the CANopen Manager transmits heartbeat
messages. It is also possible to create dynamic object dictionary entries in this
state.

All NMT commands, except Start Remote Node, are supported.
Their execution can be requested via the command interface or by
means of RequestNMTRequestNMTRequestNMTRequestNMT object via the CAN bus.
The CANopen Manager is either pre-operational – it automatically
assumes this state after successful initialization – or stopped. The
stopped state can be requested via the corresponding NMT
function.

8.1.3 Network Initialization

In this state the CANopen Manager runs the initialization of the network conform
to CiA 302 [2].

The network initialization state is divided into the following sub-states, which are
run through in direct succession:

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

81

Sub-state Description

PREPARE_NET_INIT

(= 0x60)

The CANopen Manager carries out a check of the SlaveAssignment. If it
detects a configuration that is not supported, the network initialization is
aborted.

All modules that are configured as an assigned slave are marked in the
diagnostic interface as assigned slave.

NTW_RESET

(= 0x61)

The network is reset by NMT command Reset Communication (all nodes).

NTW_WAIT

(= 0x62)

The CANopen Manager waits for a configurable time, so that the modules can
carry out the Reset Communication command.

After this timeout has expired, the CANopen Manager begins to scan the
network.

This timeout and the SDO timeout should not be selected too short, in order
to prevent a transmit queue overrun when scanning the network.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

82

BOOT_CONF

(= 0x63)

The CANopen Manager scans the complete node number array from 1 to 127
to ensure that no unexpected modules are present in the network.

The CANopen Manager scans and configures one module after the other. It
always begins with node number 1.

When a module is present

� the CANopen Manager checks whether it is configured as a slave.

The module is configured as a slave:

o Its identity is checked

o The configuration manager checks whether the module has
to be configured and if so configures it

o The module is marked as correctly configured in the
diagnostics interface

o The module is added to an internal node list and from now
on the emergency and boot-up messages can be received

o The relevant error control service is started: Heartbeat or node
guarding

o It is checked whether the module is to be started individually.
If so, it is started. Otherwise the module is set to the expected
state. The expected state is stipulated by the configuration of
NMTStartup, but can be altered by NMT functions or by
RequestNMT object.

The module is not configured as a slave:

o The scan endlessly mechanism checks cyclically whether the
module is still present. The module is marked as faulty in the
diagnostics interface.

If a module is not present:

� The module is added to the internal node list, so that emergency and
boot-up messages can be received.

The module is configured as a slave:

� The scan endlessly mechanism checks cyclically whether the module is
present in the network. The module is marked as faulty in the
diagnostics interface.

No modules are booted in parallel.

If a module does not present itself as expected on the basis of the
configuration, it is marked as faulty in the diagnostics interface.

BOOT_END_MISSING_
MAND

(= 0x70)

When the network is scanned and not all mandatory modules have been
correctly initialized, the CANopen Manager checks whether the boot time has
expired.

As long as this boot time has not expired and not all mandatory modules are
booted, the CANopen Manager remains in this state.

As soon as all mandatory modules are initialized or the boot time has expired,
the display of the network state is updated.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

83

If during the initial network initialization process a slave module
was missing but has been detected again, the boot slave process is
continued as normal. Then this initially missing module is booted. If
more than one module is to be booted subsequently, the CANopen
Manager begins with the as not yet configured mandatory
modules. Only after this the optional slave modules are booted.
Only after all found modules are booted the CANopen Manager
continues with the regular network initialization.

If the modules are to be started individually by the CANopen
Manager at the end of the boot slave process, the CANopen
Manager checks whether all mandatory modules are booted. The
configured modules are only started when all mandatory modules
are configured.
This check is not performed if an individual module is set to
operational by means of a command of the command interface or
of the RequestNMTRequestNMTRequestNMTRequestNMT object.

Restrictions:

All object entries of the CANopen Manager which concern the configuration of
the network initialization cannot be reconfigured during initialization process.
This applies to the following objects:

� NMTStartup Object [1F80]

� Consumer heartbeat time: Object [1016]

� SlaveAssignment Object [1F81]

� Identity objects: Objects [1F84]..[1F88]

� Concise DCF Object [1F22]

� Configure slave Object [1F25]

� Expected configuration date/time:
 Objects [1F26] and [1F27]

� BootTime: Object [1F89]

The boot time can be configured in the sub-state
BOOT_END_MISSING_MAND in order to end or prolong this state.

In the Network Initialization state, read access of the object dictionary of the
CANopen Manager is possible directly via the local SDO access functions and the
object directories of the slave modules via the SDO functions.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

84

Only the states of individual slave modules can be altered by the NMT functions
or the RequestNMT object. The only exceptions are Reset Communication or
Reset Node, which can alter the state of the complete network including the
CANopen Manager itself.

8.1.4 Auto Configuration

In the Auto Configuration state, the CANopen Manager scans the network and
independently creates a network configuration with the information collected.

The individual modules are set to their default configuration and then scanned.

This state is divided into the following sub-states:

Sub-state Description

PREPARE_NET_INIT

(= 0x60)

The CANopen Manager resets the state machine of the auto configuration
mode.

NTW_RESET

(= 0x61)

The network is reset by NMT command Reset Communication (all
nodes).

NTW_WAIT

(= 0x62)

The CANopen Manager waits for a configurable time so that the modules
can execute the Reset Communication command.

It uses this time to reset all structures and object entries that are configured
during Auto Configuration.

After this timeout has expired, the CANopen Manager begins to scan the
network.

This timeout and the SDO timeout should not be selected too short, in order
to prevent a transmit queue overrun when scanning the network.

BOOT_AUTO

(= 0x65)

The CANopen Manager scans the network and creates its own network
configuration.

GETPI_INFO

(= 0x66)

The CANopen Manager expects the allocation of the process images to be
read out now via the function CMM_GetPIdescr().

When this has happened, the display of the network state is updated.

The following describes how individual objects are configured in the CANopen
Manager during the auto configuration mode:

Object entry Description

NMTStartup
[1F80]

The CANopen Manager may not start the modules or itself, so that the
following value is configured in the NMTStartup object:

NMTStartup = 0x1F

Consumer Heartbeat list
[1016]

If a module supports the Heartbeat mechanism, its Producer heartbeat
time is configured with a defined value. The module is entered in the
Consumer heartbeat time of the CANopen Manager.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

85

SlaveAssignment
[1F81]

Every detected module is configured as an optional slave. The boot bit is set:
 Byte 0 of its SlaveAssignment = 0x05

If a module supports the node guarding mechanism, the lifetime factor and
the guard time of its slave assignment are configured.

If a module supports the heartbeat mechanism, the lifetime and guard time
of its slave assignment are initialized with 0.

Identity objects
[1F84]..[1F88]

The CANopen Manager reads the identity objects of a module and enters
them in the relevant object entries of its configuration list.

If a module does not support an optional identity sub-index not, 0 (don’t
care) is entered.

Expected
ConfigurationDate,
Expected
ConfigurationTime
[1F26], [1F27]

These entries are initialized with 0, i.e. the module is reconfigured with each
boot slave process. During auto configuration, only the default configuration
of the module was loaded. This default configuration serves the user as a
basis for his/her project-specific configuration.

Concise DCF
[1F22]

The concise DCF of a module comprises the values for the error control
service (see Consumer heartbeat time or SlaveAssignment.

If the profile type of the module is 401 and it supports the object entry
[6423sub00] (Analog Input Global Interrupt Enable), this is set to TRUE
and this entry is adopted in its concise DCF.

PDOs
[1400]..[1BFF]

The CANopen Manager creates for each RPDO scanned on a remote device a
corresponding TPDO on itself, and for each valid TPDO scanned on the
remote device a corresponding RPDO. The PDO lists of the CANopen
Manager are written consecutively with the valid PDO entries.

A maximum number of 8 RPDOs or 8 TPDOs are scanned per module.

Reading of a PDO table by the CANopen Manager is also aborted if a
definable number of PDOs defined as invalid are detected in a module.

Restrictions:

All object entries of the CANopen Manager that concern the configuration of the
network initialization cannot be reconfigured during the auto configuration
phase:

� NMTStartup Object [1F80]

� SlaveAssignment Object [1F81]

� Consumer Heartbeat list: Object [1016]

� Identity objects: Objects [1F84]..[1F88]

� Concise DCF Object [1F22]

� ConfigureSlave Object [1F25]

� ExpectedConfigurationDate/Time:

Objects [1F26], [1F27]

� BootTime: Object [1F89]
The boot time can also be reconfigured in the sub-state
BOOT_END_MISSING_MAND of the CANopen Manager, in order to end or
prolong this sub-state.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

86

During the auto configuration phase, all object dictionary entries of the individual
modules or of the CANopen Manager can be read via SDO access functions.
However, the object entries configured during auto configuration are only
consistent when the network has been completely scanned.

The states of individual slave modules cannot be altered by NMT functions or by
the RequestNMT object. The only exceptions are Reset Communication or
Reset Node, which can alter the state of the complete network including the
CANopen Manager itself.

The data collected in the auto configuration phase and the
correspondingly modified object entries are not automatically
saved in a non-volatile memory after completion of the auto
configuration process. They are therefore lost the next time the
application program is run or after the function CMM_InitBoard()CMM_InitBoard()CMM_InitBoard()CMM_InitBoard()
has been called.

8.1.5 Network: Scanned

This state is reached after the network is scanned. The boot-up procedure is
completed except for the services Start CANopen Manager and Start Network.

Description of the network state:

Network state Value Description

0x8x The CANopen Manager has scanned the network:

The lower value 4 bits breaks down the general state further.

Bit 0 = 1 The state of the network does not correspond to the configuration.

Sources of errors:

� Optional modules are missing

� Optional modules do not correspond to the configuration:
e.g. identity error

� There are unexpected modules in the network

Bit 1 = 1 The state of the network does not correspond to the configuration.

Sources of errors:

� Mandatory modules are missing

� Mandatory modules do not correspond to the configuration:
e.g.: identity error

Bit 2 = 1 At least one slave module is “operational”

Scanned:

Pre-operational

Bit 3 = 1 The local slave of the CANopen Manager is “operational”

NMT functions or the RequestNMT object, error control events and successful
boot slave processes influence the network state.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

87

The state Network: Scanned comprises the following states of the boot-up
procedure:

Sub-state Description

Start Manager In this state the CANopen Manager checks whether it may start itself or not.

Start Network The CANopen Manager checks whether it may start the network. If so, all
modules that are correctly initialized are started.

The behavior of the CANopen Manager is determined by the bits of the
NMTStartup object.

Condition:

The CANopen Manager and the network may only be started if all mandatory
modules are correctly initialized.

Restrictions:

All object entries of the CANopen Manager which concern the configuration of
the network initialization cannot be configured during the “Network: Scanned”
state:

� NMTStartup Object [1080]

� SlaveAssignment Object [1F81]

� Consumer heartbeat time Object [1016]

� Identity objects Objects [1F84]..[1F88]

� Concise DCF Object [1F22]

� ConfigureSlave Object [1F25]

� ExpectedConfigurationDate/Time:

Objects [1F26], [1F27]

In the Network: Scanned state, read access to the object dictionary of the
CANopen Manager and to the object directories of the slave modules can be
accessed via the SDO access functions.

The CANopen Manager supports all NMT commands in the
Network: Scanned state, i.e. also the commands which concern the
complete network.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

88

8.1.6 Network: Operational

The main state of the CANopen network is Operational. The network was set to
operational by the client application via an NMT function or via the
RequestNMT object.

� The error control service is active

� Detected slave modules are initialized by the boot slave process, in so far as
this is allowed by the configuration of its slave assignment

� Emergency and boot-up messages are received

Both error control events and successful boot slave processes influence the
network state displayed.

Description of the network state:

Network state Value Description

0xAx The network was set to Operational

Bit 0 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Optional modules are missing

� Optional modules do not correspond to the configuration,
e.g. due to identity errors

� There are unexpected modules in the network

Bit 1 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Mandatory modules are missing

� Mandatory modules do not correspond to the configuration,
e.g. due to identity errors

This state occurs when the network was Operational, an error
control event of a mandatory module occurred and the configuration
of the NMTStartup object allows this state.

Bit 2 = 1: At least one slave module is Operational

Operational

Bit 3 = 1: The local slave of the CANopen Manager is Operational

The state of individual modules can be altered by NMT functions
and by the RequestNMT object in the state Network: Operational.
The general main state of the complete network is not altered by
this.
The network can therefore also contain modules whose state is Pre-
operational or Stopped. The diagnostics interface offers a more
detailed state description of the individual modules.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

89

A slave module is set to the state requested by the slave
assignment or the client application (NMT functions) after a
successful boot slave process. The state alteration requested here
has priority over the main state of the network.

This information also applies to the states Network: Stopped and
Network: Pre-Operational.

8.1.7 Network: Stopped

The main state of the network is Stopped. The network management is carried
out with restrictions, i.e. all services of the CANopen Manager which work with
SDO services cannot be carried out (e.g. boot slave process). The Error Control
service is always active. Emergency and boot-up messages are received.

When the boot-up message of a module has been received, this is set to the
Stopped state, in so far as no other state (e.g. Pre-operational) was explicitly
requested.

As long as the state of the CANopen Manager is Network: Stopped, can neither
its object dictionary nor that of the other modules can be accessed.

Description of the network state:

Network state Value Description

0xCx The network was set to Stopped

Bit 0 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Optional modules are missing

� Optional modules do not correspond to the configuration,
e.g. due to identity errors

� There are unexpected modules in the network

Bit 1 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Mandatory modules are missing

� Mandatory modules do not correspond to the configuration,
e.g. due to identity errors

Bit 2 = 1: At least one slave module is Operational

Stopped

Bit 3 = 1: The local slave of the CANopen Manager is Operational

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

90

As long as the CANopen Manager is set to Stopped, no boot slave
processes are carried out. Modules that have registered with their
boot-up message are registered and added to the boot list if their
SlaveAssignment provides for automatic booting.
The CANopen Manager cannot communicate via SDOs in the
Network: Stopped state. Therefore the search for missing modules
is omitted.
If the CANopen Manager was set to another state by a
corresponding NMT command, the search for missing modules is
continued and the modules waiting to be booted are booted. In
this case the boot slave process first sets a module to the Pre-
operational state.

8.1.8 Network: Pre-operational

The main state of the network is Pre-operational. The network management is
active.

Description of the network state:

Network state Value Description

0xEx The network was set to Pre-operational

Bit 0 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Optional modules are missing

� Optional modules do not correspond to the configuration,
e.g. due to identity errors

� There are unexpected modules in the network

Bit 1 = 1: The state of the network does not correspond to the configuration.

Sources of errors:

� Mandatory modules are missing

� Mandatory modules do not correspond to the configuration,
e.g. due to identity errors

Bit 2 = 1: At least one slave module is Operational

Pre-operational

Bit 3 = 1: The local slave of the CANopen Manager is Operational

8.1.9 Slave mode: Pre-operational

In this state the CANopen Manager is configured as a slave. Communication is
possible via all communication objects except PDOs.

The object dictionary of the CANopen Manager can be configured by SSDO via
the CAN bus.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

91

The diagnostics interface indicates the state of the modules that are entered in
the consumer Heartbeat list [1016] of the CANopen Manager and whose
consumer Heartbeat time is not equal to 0.

The local SDO access functions allow write only access to the
entries TaskTime object ([5F80], mean run time of the main task of
the CANopen Manager) and NMTStartupNMTStartupNMTStartupNMTStartup object. The object
dictionary of the CANopen Manager is otherwise read only. In slave
mode the object directories of other modules cannot be accessed.

8.1.10 Slave mode: operational

In this state the CANopen Manager is configured as a slave. Communication is
allowed via all communication objects.

The object dictionary of the CANopen Manager can be configured by SSDO via
the CAN bus.

The diagnostics interface indicates the state of the modules that are entered in
the Consumer heartbeat time object [1016] of the CANopen Manager and
whose consumer heartbeat time is not equal to 0.

The local SDO access functions allow write only access to the
TaskTime object [5F80] and the NMTStartupNMTStartupNMTStartupNMTStartup object. The object
dictionary of the CANopen Manager is otherwise read only.

8.1.11 Slave Mode: Stopped

In this state the CANopen Manager is configured as a slave. The CANopen
Manager cannot communicate with SDOs or with PDOs here. The local SDO
access functions are not available either.

The diagnostics interface indicates the state of the modules that are entered in
the Consumer heartbeat time object [1016] of the CANopen Manager and
whose consumer heartbeat time is not equal to 0.

8.1.12 Fatal Error

The CANopen Manager goes into this state if it has detected such a serious error
that communication with the network was interrupted.

If the CANopen Manager is configured as a master, it sets the network to the
Stopped state.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

92

8.2 Description of the State Transitions

The following table describes the cause of the individual state transitions. A
distinction is made between event-controlled and function-controlled transitions.

Transition Description

(0) � The state transition of the CANopen Manager occurs automatically after Power-On

(1) � Initialization of the CANopen Manager was successful.

� Initialization of the master mode was requested by the application

� The CANopen Manager has registered on the network with its boot-up message.

� The CANopen Manager is Pre-operational

� The CANopen Manager is configured as a master:

� NMTStartup object [1F80]: bit 0 = 1

(2) � Initialization of the CANopen Manager was successful.

� The CANopen Manager has registered on the network with its boot-up message.

� The CANopen Manager is configured as a slave:
NMTStartup object [1F80]: bit 0 = 0

� NMTStartup object [1F80]: bit 2 = 1:

⇒ The CANopen Manager is Pre-operational

� The CANopen Manager is in the state Slave mode: pre-operational

� NMTStartup object [1F80]: bit 2 = 0:

⇒ The CANopen Manager is Operational

� The CANopen Manager is in the state Slave mode: operational

(3) � The value of the NMTStartup object [1F80] was altered by SSDO:

the master functionality was deactivated: bit 0 : 1 → 0

(4) � The value of the NMTStartup object [1F80] was altered by SSDO:

the master functionality was deactivated: bit 0 : 1 → 0

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

93

Overview of the various transition groups:

(5) – (19) The CANopen Manager is configured as a master. It initializes or controls the network in
accordance with CANopen CiA 302.

(20) – (25) The CANopen Manager is configured as a slave.

(26) Initialization of the CANopen Manager was requested:

� by means of CMM_InitFirmware() by the client application

� by means of NMT command by the network master if the CANopen Manager is
configured as a slave

� by a RequestNMT command if the CANopen Manager is configured as a master

� by an error control event of a mandatory module:
the configuration of the NMTStartup object requested a reset of the complete
network including the CANopen Manager.

The CANopen Manager had already begun with the initialization of the network

(27) At least one fatal error was detected by the CANopen Manager:

(28) Initialization of the CANopen Manager was requested by the application after the
CANopen Manager had signaled the occurrence of a fatal error.

The CANopen Manager is configured as a master and manages the network in accordance with CiA 302
(transition groups (5) – (19))

(5) � The application requests initialization of the network in accordance with CiA 302

� The boot time is started

(6) � The application requests initialization of the network in auto configuration mode

(7) � Scanning of the network is completed.

� The CANopen Manager has scanned and initialized the network.

� The CANopen Manager itself is not yet started.

� All mandatory modules are initialized or the boot time has expired

(8) � Scanning of the network is completed.

� The CANopen Manager has scanned and initialized the network.

� The CANopen Manager is already started by an RequestNMT command or by the
client application via NMT function.

� All mandatory modules are initialized .

(9) � Scanning of the network in auto configuration mode is completed.

� The CANopen Manager has scanned the complete network scanned and created a
configuration for itself

� The application knows the allocation of the process image

(10) The CANopen Manager is Operational, as

� the application set the CANopen Manager to Operational by command

� the configuration of the NMTStartup object allowed the CANopen Manager to
start itself at the end of network initialization

� the CANopen Manager was set to Operational via RequestNMT

Condition: all mandatory modules must be correctly initialized

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

94

With the transitions 11/12/13, the boot-up procedure of the network initialization is completed.

(11) The network including the CANopen Manager was set to Operational because

� the client application set the network to Operational via NMT function

� the configuration of the NMTStartup object allowed the CANopen Manager to
start the network after it was Operational itself

� the network was set to Operational via RequestNMT

Condition: all mandatory modules must be correctly initialized

(12) The network including the CANopen Manager was set to Stopped because

� the client application set the network to Stopped via NMT function

� the network was set to Stopped via RequestNMT

(13) The network including the CANopen Manager was set to Pre-operational because

� the client application set the network to Pre-operational via NMT function

� the network was set to Pre-operational via RequestNMT

The transitions (14) – (19) refer to state transitions of the complete network including the CANopen
Manager.

(14) The network including the CANopen Manager was set to Operational because

� the client application set the network to Operational via NMT function

� the network was set to Operational via RequestNMT

Condition: all mandatory modules must be correctly initialized

(15) The network including the CANopen Manager was set to Stopped because

� the client application set the network to Stopped via NMT function

� the network was set to Stopped via RequestNMT

� an error control event of a mandatory module occurred and the configuration of the
NMTStartup object stipulates this reaction

(16) The network including the CANopen Manager was set to Pre-operational because

� the application set the network to Pre-operational via command

� the network was set to Pre-operational via RequestNMT

(17) The network including the CANopen Manager was set to Operational because

� the client application set the network to Operational via NMT function

� the network was set to Operational via RequestNMT

Condition: all mandatory modules must be correctly initialized

(18) The network including the CANopen Manager was set to Pre-operational because

� the client application set the network to Pre-operational via NMT function

� the network was set to Pre-operational via RequestNMT

(19) The network including the CANopen Manager was set to Stopped because

� the client application set the network to Stopped via NMT function

� the network was set to Stopped via RequestNMT

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

States of the CANopen Manager

95

The transitions (20) – (25) refer exclusively to the Slave Mode

(20) � The CANopen Manager was set by NMT command to Pre-operational

(21) � The CANopen Manager was set by NMT command to Operational

(22) � The CANopen Manager was set by NMT command to Operational

(23) � The CANopen Manager was set by NMT command to Stopped

(24) � The CANopen Manager was set by NMT command to Pre-operational

(25) � The CANopen Manager was set by NMT command to Stopped

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API – Functionality Summary

96

9 CANopen Manager API –
Functionality Summary

The functionality and the performance of the CANopen Manager API is largely
dependent on the CANopen Manager firmware, and thus on the available
memory and the micro controller on the CAN board.

The functional characteristics of the CANopen Manager firmware running on a
iPC-I XC16 PCI (order no. 1.01.0047) CAN board are listed below:

Description Value Unit

PI Input Buffer 2048 Byte

PI Output Buffer 2048 Byte

Maximum number of RPDOs 254

Maximum number of TPDOs 254

Concise DCF memory 2048 Byte

Maximum number of dynamically created object
dictionary entries

100

Maximum size of a dynamically created object
dictionary entry

8 Byte

Maximum reset time of a slave connected to the
CANopen Manager

3 sec

Auto configuration mode:
Maximum number of TPDOs and RPDOs read out
per slave

8 each

Auto Configuration mode:
Life time factor until detection of a failed slave

4

NMT: Timeout after command Reset
Communication (with boot-up procedure)

2000 ms

Scan mechanism: Cycle time, how often a
missing slave is searched for by SDO

1000 ms

SYNC producer: Minimum SYNC cycle time 25 ms

Length of the error list (object [1003]) 2 Entries

Size of the emergency queues in the CANopen
Manager for each individual slave (object [5F18])

10 Entries

TPDO: maximum number of TPDOs in which the
same object can be mapped

2

Maximum number of objects that can be
mapped in a PDO

8

Number of server SDOs 1

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API – Functionality Summary

97

Description Value Unit

Number of client SDOs 3

CSDO timeout during network initialization 30 ms

CSDO timeout after network initialization 100 ms

CSDO timeout with command SAVE 15000 ms

CSDO timeout with command LOAD 3000 ms

The following table summarizes the functionality supported by the CANopen
Manager:

Description Supported

Non-expedited SDO transfer yes

SDO block transfer no

Manager is CANopen heartbeat producer yes

Manager can be monitored via node guarding no

Support of synchronous PDOs yes

Manager is SYNC producer yes

Manager can transmit emergency objects yes

Multiplexed PDOs no

Support of PDO inhibit time yes

Support of PDO dummy mapping yes

Dynamic PDO mapping yes

Support of event-timed PDOs yes

Support of SDO manager functionality no

Support of Store/Restore to store values in a non-
volatile memory (Flash or EEPROM)

no

Support of Store/Restore to store values in a
volatile memory (RAM)

yes

Support of Layer Setting Service (LSS) no

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API DLL

98

10 CANopen Manager API DLL

The CANopen Manager API provides functions for controlling the CANopen
Manager and exchanging data between PC-application and CANopen Manager
and the CANopen network.

The CANopen Manager API DLL loads the firmware into the memory of the
board, creates the communication structures to the firmware and provides the
interface to the PC-application.

The CANopen Manager firmware is configured and parameterized in dialog form
via the command interface and the CSDO interface.

As soon as the CANopen Manager is configured, the CANopen network can be
booted with a function call. The configuration and start-up of the CANopen slave
and error monitoring of the slaves are then carried out independently by the
firmware without further intervention by the client application.

In addition, the object directories of external CANopen slaves can be accessed via
the SDO functions.

The client application is provided with the status information of the CANopen
Manager and of the external CANopen slaves via the diagnostics buffer.

The process data are accessed via the PI buffer. Process data received by the
CANopen network via RPDO are supplied to the API-DLL via the PI input. Via the
output process image data are transmitted from the API-DLL to the CANopen
Manager via the PI output and then sent to the CANopen network by TPDO.

10.1 Function Categories

The functions of the CANopen Manager API are pure C __stdcall functions and
can be divided into the following categories.

• Basic functions

• General functions

• Functions for network management

• Object dictionary and SDO-related functions

• Process image-related functions

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API DLL

99

10.1.1 Basic functions

These functions are used for initialization and parameterization of the API, for
selection of the CAN board and for communication with the firmware on the
CAN board. The functions are described in detail in section 11.1.

• Selection of the CAN board
- CMM_InitBoard

- CMM_ReleaseBoard

- CMM_GetBoardInfo

• Initialization and parameterization of the API
- CMM_InitFirmware

- CMM_DefineCallbacks

- CMM_ResetDLL

- CMM_SetCommTimeout

- CMM_SetInspecInterval

- CMM_DefineMsgProcImg

- CMM_DefineMsgMaster

- CMM_DefineMsgSlaves

- CMM_DefineMsgEvent

- CMM_DefineMsgEmergency

10.1.2 General functions

The general functions provide state information on the state of the CANopen
Manager and of the external CANopen slaves. The functions are described in
detail in section 11.2.

• Status information
- CMM_GetMasterStat

- CMM_GetSlavesStat

• Other
- CMM_GetEvent

- CMM_GetEmergencyObj

- CMM_SendEmergencyObj

- CMM_HandShake

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API DLL

100

10.1.3 Functions for network management

These are functions for controlling the CANopen Manager and the external
CANopen slaves. The functions are described in detail in section 11.2.6.

• Boot-up functions
- CMM_StartBootupProc

- CMM_StartAutoConfig

• General network management functions
- CMM_StartNode

- CMM_StopNode

- CMM_EnterPreOp

- CMM_ResetComm

- CMM_ResetNode

10.1.4 Object dictionary and SDO-related functions

These functions allow to dynamically generate object dictionary entries and for
data exchange by means of SDO. A detailed description can be found in
section 11.4.

• Generation of an object dictionary entry
- CMM_CreateODentry

• SDO access functions
- CMM_ReadSDO

- CMM_WriteSDO

- CMM_ReadLocSDO

- CMM_WriteLocSDO

• Import Consice DCF
- CMM_ImportCDC

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

CANopen Manager API DLL

101

10.1.5 Process image-related functions

These functions enable access to the process image. A discussion of the process
image functions is available in section 11.5.

• Access to the process image
- CMM_FormPILUT

- CMM_GetPIdescr

- CMM_GetPI

- CMM_GetPIentry

- CMM_GetPIIvalue

- CMM_PutPIO

- CMM_PutPIOentry

- CMM_PutPIOvalue

- CMM_GetPIIRPDOno

- CMM_TriggerPIOoffset

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

102

11 Individual Functions of the API-DLL

This section contains the complete function reference of the CANopen Manager
API. The function prototypes are found in the header file XatCMM.h.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

103

11.1 Basic Functions

11.1.1 CMM_InitBoard

Description: With CMM_InitBoard() an IXXAT CAN board is assigned for
use by the CANopen Manager API. For this the CAN board is
reset, the CANopen Manager firmware is loaded onto the
board and started, the communication queues and buffers are
set up and the threads of the CANopen Manager API DLL are
created.
If the function has executed successfully, a board handle is
returned, which unmistakably identifies the board. This board
handle is the first parameter transmitted with every function of
the CANopen Manager API.
This function must always be called exactly once by the client
program for each board to be used.

Prototype: tCMM_ERROR CMM_InitBoard(tCMM_HANDLE* phBoardhdl,tCMM_ERROR CMM_InitBoard(tCMM_HANDLE* phBoardhdl,tCMM_ERROR CMM_InitBoard(tCMM_HANDLE* phBoardhdl,tCMM_ERROR CMM_InitBoard(tCMM_HANDLE* phBoardhdl,
 GUIGUIGUIGUID* D* D* D* pBoardtype, pBoardtype, pBoardtype, pBoardtype,
 GUIGUIGUIGUID* D* D* D* p p p pBoardIDBoardIDBoardIDBoardID););););

Parameters:

Parameter Dir. Explanation

phBoardhdl (out) Identifies the board with all following function
calls.

pBoardtype (in/out) Type of the CAN board.

The following values are valid for the CAN
board selection (file vciguid.h):
GUID_IPCIXC16PCI_DEVICE
GUID_IPCIXC16PCIE_DEVICE

There are two special values:

CMM_DEFAULTBOARD means that the so-
called standard CAN board defined in the
IXXAT VCI2 Control Panel Applet (and
marked blue there) is to be used. With VCI3,
simply the only one installed CAN board will
be used. This is the typical application with
exactly one CAN board in the computer.

CMM_BOARDDIALOG means that a board
selectiondialog is to be displayed, from
which the user can then select the CAN
board to be used himself/herself.

Value is always returned with
CMM_DEFAULTBOARD and
CMM_BOARDDIALOG and can be stored for
example in the INI-file of the client application.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

104

pBoardID (in/out) Unique identifier of a CAN board.

Is used together with pBoardtype in order to
unmistakably identify a board locally. If only
one board of the corresponding type is present,
the value CMM_1stBOARD is to be given.

More than one installed CAN board of the same
type can be detected and differentiated by the
client application giving consecutive
pBoardID values in each case for the same
pBoardtype (beginning with 0). In this way
the n-th board of this type is taken. For this
purpose, there are appropriate tokens
CMM_1stBOARD, CMM_2ndBOARD,
CMM_3rdBOARD etc already #defined in the
main header XatCMM.h.

Value is always returned and can be stored for
example in the INI-file of the client application.

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_BOARD_ALREADY_USED Board is allocated

CMMERR_ALL_BOARDS_USED No free board available

CMMERR_CANNOT_SEARCH_BOARD IXXAT hardware selection dialog was
ended with abort

CMMERR_BOARD_NOT_FOUND Board with specified board type
(pBoardtype) and key (pRegkey) not
found

CMMERR_BOARD_NOT_SUPP Specified board type not compatible
with CANopen Manager

CMMERR_WRONG_FW Incorrect firmware version or
communication with firmware failed

CMMERR_USED_FROM_OTHER_PROCESS Board is being used by another CAN
application

CMMERR_PC_MC_COMM_ERR Communication between PC and
CAN board failed

CMMERR_BOARD_DLD_ERR Error during firmware download

CMMERR_NO_SUCH_CANLINE CAN line is not supported

CMMERR_CANLINE_USED CAN line is already being used

CMMERR_VCI_INST_ERR IXXAT VCI driver missing

CMMERR_BOARD_ERR Unknown board type or board type
cannot be localized

CMMERR_CCI_INST_ERR Internal CCI instance error

CMMERR_SDO_INST_ERR Internal SDO manager installation
error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

105

11.1.2 CMM_ReleaseBoard

Description: With CMM_ReleaseBoard() an IXXAT CAN board allocated by
the CANopen Manager API is released and reset.
This function must always be called by the client program
exactly once for each board used.

Prototype: tCMM_ERROR CMM_ReleaseBoard(tCMM_HANDLE hBoard);tCMM_ERROR CMM_ReleaseBoard(tCMM_HANDLE hBoard);tCMM_ERROR CMM_ReleaseBoard(tCMM_HANDLE hBoard);tCMM_ERROR CMM_ReleaseBoard(tCMM_HANDLE hBoard);

Parameter:

Parameter Dir. Explanation

Hboard (in) Handle of the CAN board

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

106

11.1.3 CMM_GetBoardInfo

Description: With CMM_GetBoardInfo() information on the hardware
properties of the CAN board used and the version numbers of
the software components are requested.

Prototype: tCMM_ERROR CMM_GetBoardInfo(tCMM_ERROR CMM_GetBoardInfo(tCMM_ERROR CMM_GetBoardInfo(tCMM_ERROR CMM_GetBoardInfo(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 tCMM_BOARDINFO* pBoardInfo); tCMM_BOARDINFO* pBoardInfo); tCMM_BOARDINFO* pBoardInfo); tCMM_BOARDINFO* pBoardInfo);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

pBoardInfo (in/out) Pointer to information structure

tCMM_BOARDINFO Alignment: 1 byte

Structural element Type Meaning

HWversion WORD Version number of the CAN board

e.g. 0x0101-> V 1.01

FWversion WORD Version number of the CANopen Manager
firmware

e.g. 0x0132-> V 1.32

SWversion WORD Version number of the CANopen Manager
API

e.g. 0x0400-> V 4.00

SWbuild WORD CANopen Manager API build version

BoardSeg DWORD I/O address of the board used

BoardIRQ WORD Interrupt request line IRQ used by the
board

BoardCANs WORD Number of supported CAN lines of the
board

BoardSerialNo[16] char[] Serial number of the CAN board as string

BoardType[40] char[] Description of the board type as string

FWtarget eCMM_FW
TARGET

VCI2 resp VCI3 firmware is running from
RAM or FLASH.

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout of the command interface

CMMERR_INVALID_PARAM Invalid function parameter

CMMERR_NO_OBJECTS No objects in queue

CMMERR_CCI_INST_ERR CCI installation error (internal)

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

107

11.1.4 CMM_InitFirmware

Description: With CMM_InitFirmware() the CANopen Manager firmware
is initialized. All data structures are reset and the CAN
controller is initialized. This is the “initialization” state of the
CANopen Manager.

Prototype: tCMM_ERROR CMM_InitFirmware(tCMM_ERROR CMM_InitFirmware(tCMM_ERROR CMM_InitFirmware(tCMM_ERROR CMM_InitFirmware(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 BYTE BYTE BYTE BYTE InitMode, InitMode, InitMode, InitMode,
 BYTE BYTE BYTE BYTE Baudrate, Baudrate, Baudrate, Baudrate,
 BYTE BYTE BYTE BYTE NodeNo, NodeNo, NodeNo, NodeNo,
 WORD WORD WORD WORD HsInterval, HsInterval, HsInterval, HsInterval,
 WORD WORD WORD WORD HsReaction); HsReaction); HsReaction); HsReaction);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

InitMode (in) COP_k_RESETNODE: Reset of the
 CANopen Manager

COP_k_RESETCOM: Reset only the
 communication
 parameters of the
 CANopen Manager

The function must be called with the first call
with the value COP_k_RESETNODE!

Baudrate (in) Bit rate of the CAN. The following values are
permitted:

CMM_BAUDRATE_10 10 kBit/s

CMM_BAUDRATE_20 20 kBit/s

CMM_BAUDRATE_50 50 kBit/s

CMM_BAUDRATE_100 100 kBit/s

CMM_BAUDRATE_125 125 kBit/s

CMM_BAUDRATE_250 250 kBit/s

CMM_BAUDRATE_500 500 kBit/s

CMM_BAUDRATE_1000 1000 kBit/s

NodeNo (in) Node-ID of the CANopen Manager

HsInterval (in) Maximum Handshake interval in milliseconds,
set to 0 if no handshake shall be used, this
value + 100 [ms] must be smaller than the
communication timeout value set with
CMM_SetCommTimeout()

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

108

HsReactions (in) Reactions of the CANopen Manager firmware
when handshake timeout timer elapses

Use any of the following NMT related flags
(possible only in Master mode):
CMM_HS_MASTER_NMT_PREOP_ALL:
 send NMT message Enter Pre-
 operationall nodes
CMM_HS_MASTER_NMT_STOP_ALL:
 send NMT message Stop all nodes
CMM_HS_MASTER_NMT_RESETCOMM_ALL:
 send NMT message Reset Communi
 cation all nodes
CMM_HS_MASTER_NMT_RESETNODE_ALL:
 send NMT message Reset Node all
 nodes

The following reactions can be freely combined
via disjunction:
CMM_HS_SEND_EMCY:
 send an Emergency message
CMM_HS_SLAVE_STOP_SENDING_HBT:
 stops sending of own Heartbeat
 (possible only in Slave mode)

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout of the command interface

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_INVALID_PARAM Invalid function parameter

CMMERR_FW_INIT_FAILED Failure during initialization of Manager
firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

109

11.1.5 CMM_DefineCallbacks

Description: With CMM_DefineCallbacks() the CANopen Manager API is
informed of functions from the client application of type
tCMM_CALLBACK CANopen Manager API which are then called
when a specific event occurs.

The prototype of the callback functions is found in
section 11.1.6, tCMM_CALLBACK. A zero pointer is allowed as
a function parameter in order to mark unused callback
functions.

Prototype: tCMM_ERROR CMM_DefineCallbacks(tCMM_ERROR CMM_DefineCallbacks(tCMM_ERROR CMM_DefineCallbacks(tCMM_ERROR CMM_DefineCallbacks(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 tCMM_CALLBACK fpProcImg, tCMM_CALLBACK fpProcImg, tCMM_CALLBACK fpProcImg, tCMM_CALLBACK fpProcImg,
 tCMM_CALLBACK tCMM_CALLBACK tCMM_CALLBACK tCMM_CALLBACK fpMaster,fpMaster,fpMaster,fpMaster,
 tCMM_CALLBACK fpSlaves, tCMM_CALLBACK fpSlaves, tCMM_CALLBACK fpSlaves, tCMM_CALLBACK fpSlaves,
 tCMM_CALLBACK fpNotification, tCMM_CALLBACK fpNotification, tCMM_CALLBACK fpNotification, tCMM_CALLBACK fpNotification,
 tCMM_CALLBACK fpEmergency); tCMM_CALLBACK fpEmergency); tCMM_CALLBACK fpEmergency); tCMM_CALLBACK fpEmergency);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

fpProcImg (in) This function is called when an alteration in the
PI input has occurred.

fpMaster (in) This function is called when an alteration in the
master status has occurred. See also the
description of CMM_GetMasterStat

fpSlaves (in) This function is called when an alteration in the
state of a slave has occurred. See also the
description of CMM_GetSlavesStat

fpNotification (in) This function is called when an exception has
occurred. See also the description of
CMM_GetEvent

fpEmergency (in) This function is called when an Emergency
message was received. See also the description
of CMM_GetEmergencyObj

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_BADCALLBACK_PTR A callback pointer is invalid

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

110

11.1.6 tCMM_CALLBACK

Description: tCMM_CALLBACK is a function prototype for functions within
the client application that are registered with the CANopen
Manager API with CMM_DefineCallbacks() and are called
to signal events.

Prototype: typedef void (CALLBACK* tCMM_CALLBACK)(typedef void (CALLBACK* tCMM_CALLBACK)(typedef void (CALLBACK* tCMM_CALLBACK)(typedef void (CALLBACK* tCMM_CALLBACK)(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 DWORD dwSource, DWORD dwSource, DWORD dwSource, DWORD dwSource,
 DWORD dwRes); DWORD dwRes); DWORD dwRes); DWORD dwRes);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

dwSource (in) Identifier of the source of the event

dwRes (in) Reserved parameter

Return values:
none

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

111

11.1.7 CMM_ResetDLL

Description: With CMM_ResetDLL() the CANopen Manager DLL is
reinitialized, in order to be able to re-register the board in an
interpreter debugger such as Visual Basic in the event of a
program abort (without release of the board).

All registered CAN boards are deregistered. This
function should only be used during program
development.

Prototype: void CMM_ResetDLL();void CMM_ResetDLL();void CMM_ResetDLL();void CMM_ResetDLL();

Parameters:
none

Return values:
none

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

112

11.1.8 CMM_SetCommTimeout

Description: With CMM_SetCommTimeOut() the timeout is defined, which
determines how long acknowledgement of the CANopen
Manager firmware is awaited.
With almost every function of the CANopen Manager API a job
structure is compiled within the DLL for the master firmware,
transmitted to it, and processing or acknowledgement on the
part of the master firmware is awaited. If the pre-set timeout is
exceeded, the individual function returns with the return value
CMMERR_COMMTIMEOUT. The default value for the timeout is
5 seconds.

Prototype: tCMM_ERROR CMM_tCMM_ERROR CMM_tCMM_ERROR CMM_tCMM_ERROR CMM_SetCommTimeout(SetCommTimeout(SetCommTimeout(SetCommTimeout(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 WORD wTimeout); WORD wTimeout); WORD wTimeout); WORD wTimeout);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

wTimeout (in) New value for the timeout in milliseconds. The
Value range is
55 <= w_timeout <= 65535.
Smaller values are rounded up internally.
Note. If an handshake intervale is set (see
CMM_InitFirmware()) then the new value
must be greater than the handshake interval +
100 [ms].

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Timeout value is out of range

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

113

11.1.9 CMM_SetInspecInterval

Description: CMM_SetInspecInterval() sets the interval with which the
internal status poll threads work.
For each callback function a thread runs internally, which
checks cyclically for alterations in the relevant DPRAM buffers.
The cycle interval can be selected from 1msec, where the pre-
set value is 6ms.
If the poll thread now detects a difference between its last
stored value and the current contents of the DPRAM buffer, it
first calls the callback function, then it transmits the stored
message to the window, after that it transmits the stored
message to the application thread and finally saves the read
value.
The cycle time applies equally to all poll threads.

Prototype: tCMM_ERROR CMM_SetInspecInterval(tCMM_ERROR CMM_SetInspecInterval(tCMM_ERROR CMM_SetInspecInterval(tCMM_ERROR CMM_SetInspecInterval(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 DWORD dwInterval); DWORD dwInterval); DWORD dwInterval); DWORD dwInterval);

Parameters:

Parameter Dir. Explanation

Hboard (in) Handle of the CAN board

DwInterval (in) New value for the thread cycle time in
milliseconds. The smallest permitted value is 1
ms.

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_MEM_ALLOC_ERR Restart of at least one thread timer failed

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

114

11.1.10 CMM_DefineMsgProcImg

Description: This function is used to link user-defined messages with the
event that PI input has changed.

It is possible for the client application to receive a Windows
message, a thread message or both when a change has been
detected. The API-DLL will then call the WINAPI functions
PostMessage() or PostThreadMessage(). The messages
transmit the CAN board handle as wParam and the identifier of
the source of the event as lParam.

If one of the two messages is not required,
INVALID_HANDLE_VALUE is to be specified as the
corresponding argument.

 To read data from the PI input the functions CMM_GetPI() or
alternatively CMM_GetPIentry() are available.

Prototype: tCMM_ERROR CMM_DefineMsgProcImg(tCMM_ERROR CMM_DefineMsgProcImg(tCMM_ERROR CMM_DefineMsgProcImg(tCMM_ERROR CMM_DefineMsgProcImg(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 HWND hWnd, HWND hWnd, HWND hWnd, HWND hWnd,
 DWORD idThread, DWORD idThread, DWORD idThread, DWORD idThread,
 UINT Msg); UINT Msg); UINT Msg); UINT Msg);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

HWnd (in) Handle of the window to which the Windows
messages defined here are to be transmitted

IdThread (in) Thread identifier of the target thread

Msg (in) Message identifier of the message

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

115

11.1.11 CMM_DefineMsgMaster

Description: This function is used to link user-defined messages with the
event that a change in the master state has taken place. The
master state is described in section 7.1

It is possible for the client application to receive a Windows
message, a thread message or both when a change has been
detected. The API-DLL will then call the WINAPI functions
PostMessage() or PostThreadMessage(). The messages
transmit the CAN board handle as wParam and the identifier of
the source of the event as lParam.

If one of the two messages is not required,
INVALID_HANDLE_VALUE is to be specified as the
corresponding argument.

To retrieve the state of the CANopen Manager use the API
function CMM_GetMasterStat().

Prototype: tCMM_ERROR CMM_DefineMsgMaster(tCMM_ERROR CMM_DefineMsgMaster(tCMM_ERROR CMM_DefineMsgMaster(tCMM_ERROR CMM_DefineMsgMaster(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 HWND hWnd, HWND hWnd, HWND hWnd, HWND hWnd,
 DWORD idThread, DWORD idThread, DWORD idThread, DWORD idThread,
 UINT Msg); UINT Msg); UINT Msg); UINT Msg);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

hWnd (in) Handle of the window to which the Windows
messages defined here are to be transmitted

idThread (in) Thread identifier of the target thread

Msg (in) Message identifier of the message

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

116

11.1.12 CMM_DefineMsgSlaves

Description: This function is used to link user-defined Windows messages
with the event that a change in the state of a slave has
occurred. The slave state is described in section 7.2

 It is possible for the client application to receive a Windows
message, a thread message or both when a change has been
detected. The API-DLL will then call the WINAPI functions
PostMessage() or PostThreadMessage(). The messages
transmit the CAN board handle as wParam and the identifier of
the source of the event as lParam.

If one of the two messages is not required,
INVALID_HANDLE_VALUE is to be specified as the
corresponding argument.

To retrieve the state of a slave device, use the API function
CMM_GetSlavesStat().

Prototype: tCMM_ERtCMM_ERtCMM_ERtCMM_ERROR CMM_DefineMsgSlaves(ROR CMM_DefineMsgSlaves(ROR CMM_DefineMsgSlaves(ROR CMM_DefineMsgSlaves(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 HWND hWnd, HWND hWnd, HWND hWnd, HWND hWnd,
 DWORD idThread, DWORD idThread, DWORD idThread, DWORD idThread,
 UINT Msg); UINT Msg); UINT Msg); UINT Msg);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

hWnd (in) Handle of the window to which the Windows
messages defined here are to be transmitted

idThread (in) Thread identifier of the target thread

Msg (in) Message identifier of the message

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

117

11.1.13 CMM_DefineMsgEvent

Description: This function is used to correlate user defined Windows
messages with an exception. Exception are events like critical
state changes of the CANopen Manager. The definitions of the
corresponding constants begin with CMM_NOTI_KIND_ and can
be found in the file XatMMdefs.h.

 It is possible for the client application to receive a Windows
message, a thread message or both when a change has been
detected. The API-DLL will then call the WINAPI functions
PostMessage() or PostThreadMessage(). The messages
transmit the CAN board handle as wParam and the identifier of
the source of the event as lParam.

If one of the two messages is not required,
INVALID_HANDLE_VALUE is to be specified as the
corresponding argument.

An exception may be retrieved with the function
CMM_GetEvent().

Prototype: tCMM_ERROR CMM_DefineMsgEvent(tCMM_ERROR CMM_DefineMsgEvent(tCMM_ERROR CMM_DefineMsgEvent(tCMM_ERROR CMM_DefineMsgEvent(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 HW HW HW HWND hWnd,ND hWnd,ND hWnd,ND hWnd,
 DWORD idThread, DWORD idThread, DWORD idThread, DWORD idThread,
 UINT Msg); UINT Msg); UINT Msg); UINT Msg);

Parameter:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

hWnd (in) Handle of the application window to which the
Windows messages defined here will be send

idThread (in) Thread ID of the target thread

Msg (in) Message ID

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

118

11.1.14 CMM_DefineMsgEmergency

Description: This function is used to correlate user defined Windows
messages with the reception of an Emergency message.

 It is possible for the client application to receive a Windows
message, a thread message or both when a change has been
detected. The API-DLL will then call the WINAPI functions
PostMessage() or PostThreadMessage(). The messages
transmit the CAN board handle as wParam and the identifier of
the source of the event as lParam.

If one of the two messages is not required,
INVALID_HANDLE_VALUE is to be given as the corresponding
parameter.

To retrieve the Emergency message from the queue use the
function CMM_GetEmergencyObj().

Prototype: tCMM_ERROR CMM_DefineMsgEmergencyt(tCMM_ERROR CMM_DefineMsgEmergencyt(tCMM_ERROR CMM_DefineMsgEmergencyt(tCMM_ERROR CMM_DefineMsgEmergencyt(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 HWND hWnd,HWND hWnd,HWND hWnd,HWND hWnd,
 DWORD idThread, DWORD idThread, DWORD idThread, DWORD idThread,
 UINT Msg); UINT Msg); UINT Msg); UINT Msg);

Parameter:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

hWnd (in) Handle of the application window to which the
Windows messages defined here will be send

idThread (in) Thread ID of the target thread

Msg (in) Message ID

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

119

11.2 General Functions

11.2.1 CMM_GetMasterStat

Description: This function supplies the status information of the CANopen
Manager. Section 7.1 describes the contents of the function
parameters at bit level.

Prototype: tCMM_ERROR CMM_GetMasterStat(tCMM_ERROR CMM_GetMasterStat(tCMM_ERROR CMM_GetMasterStat(tCMM_ERROR CMM_GetMasterStat(
 tCMM_HANDLE tCMM_HANDLE tCMM_HANDLE tCMM_HANDLE hBoard, hBoard, hBoard, hBoard,
 WORD* pMasterManagerState, WORD* pMasterManagerState, WORD* pMasterManagerState, WORD* pMasterManagerState,
 WORD* fGlobalEvents, WORD* fGlobalEvents, WORD* fGlobalEvents, WORD* fGlobalEvents,
 WORD* fConfigBits); WORD* fConfigBits); WORD* fConfigBits); WORD* fConfigBits);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

pMasterManagerState (out) Status of the CANopen Manager

fGlobalEvents (out) Global events bit field

fConfigBits (out) Configuration bits

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_CCI_INST_ERR CCI installation error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

120

11.2.2 CMM_GetSlavesStat

Description: This function supplies bit fields which show the state of all
slaves. Section 7.2 describes the structure of the bit fields and
the individual function parameters in detail.

Prototype: tCMM_ERROR CMM_GetSlavesStat(tCMM_ERROR CMM_GetSlavesStat(tCMM_ERROR CMM_GetSlavesStat(tCMM_ERROR CMM_GetSlavesStat(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 tCMM_SLAVEFLAGS* fAssigned, tCMM_SLAVEFLAGS* fAssigned, tCMM_SLAVEFLAGS* fAssigned, tCMM_SLAVEFLAGS* fAssigned,
 tCMM_SLAVEFLAGS* fConfigured, tCMM_SLAVEFLAGS* fConfigured, tCMM_SLAVEFLAGS* fConfigured, tCMM_SLAVEFLAGS* fConfigured,
 tCMM_SLAVEFLAGS* fMismatch, tCMM_SLAVEFLAGS* fMismatch, tCMM_SLAVEFLAGS* fMismatch, tCMM_SLAVEFLAGS* fMismatch,
 tCMM_SLAVEFLAGS tCMM_SLAVEFLAGS tCMM_SLAVEFLAGS tCMM_SLAVEFLAGS* fEmergency,* fEmergency,* fEmergency,* fEmergency,
 tCMM_SLAVEFLAGS* fOperational, tCMM_SLAVEFLAGS* fOperational, tCMM_SLAVEFLAGS* fOperational, tCMM_SLAVEFLAGS* fOperational,
 tCMM_SLAVEFLAGS* fStopped, tCMM_SLAVEFLAGS* fStopped, tCMM_SLAVEFLAGS* fStopped, tCMM_SLAVEFLAGS* fStopped,
 tCMM_SLAVEFLAGS* fPreOperational); tCMM_SLAVEFLAGS* fPreOperational); tCMM_SLAVEFLAGS* fPreOperational); tCMM_SLAVEFLAGS* fPreOperational);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

fAssigned (out) Flags of the slaves assigned to the CANopen
Manager

fConfigured (out) Flags of the fully configured slaves

fMismatch (out) Flags of the slaves with incorrect configuration
(for example a slave present in the network that
was not expected by the CANopen Manager)

fEmergency (out) Flags of the slaves from which an emergency
message was received

fOperational (out) Flags of the slaves in OPERATIONAL state

fStopped (out) Flags of the slaves in STOPPED state

fPreOperational (out) Flags of the slaves in PRE-OPERATIONAL state

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_CCI_INST_ERR CCI installation error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

121

11.2.3 CMM_GetEvent

Description: This retrieves one exception event from the event queue. The
event may originate from different reasons: A critical error in
the state of the CANopen Manager software, which may be
triggered by a CAN communication error, or a network event,
like the failure of a mandatory slave node.

Prototype: tCMM_ERROR CMM_GetEvent(tCMM_ERROR CMM_GetEvent(tCMM_ERROR CMM_GetEvent(tCMM_ERROR CMM_GetEvent(tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 BYTE* EvtType, BYTE* EvtType, BYTE* EvtType, BYTE* EvtType,
 BYTE* EvtData1, BYTE* EvtData1, BYTE* EvtData1, BYTE* EvtData1,
 BYTE* EvtData2, BYTE* EvtData2, BYTE* EvtData2, BYTE* EvtData2,
 BYTE* EvtData3, BYTE* EvtData3, BYTE* EvtData3, BYTE* EvtData3,
 BYTE* EvtDa BYTE* EvtDa BYTE* EvtDa BYTE* EvtData4);ta4);ta4);ta4);

Parameter:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

EvtType (out) Kind of event. The following values are possible:
CMM_NOTI_KIND_FATALERROR
 Critical error in the CAN communication
 of the CANopen Manager
CMM_NOTI_KIND_GLOBALEVENT
 Network event
CMM_NOTI_KIND_UNEXPECTEDNODESTATE
 unexpected node state detected
CMM_NOTI_KIND_GUARDERROR
 guard- or heartbeaterror, no
 response from slave
CMM_NOTI_KIND_BOOTUP
 (unexpected) bootup message received
CMM_NOTI_KIND_HANDSHAKETIMEOUT
 maximum firmware <-> application
 handshake response time exceeded
 by application
CMM_NOTI_KIND_TRIGGERTPDOQUEUE
 PI offset given in a call to function
 CMM_TriggerPIOoffset() is invalid
CMM_NOTI_KIND_SCANNODEDETECTED
 Scanning has detected new node
CMM_NOTI_KIND_NODECONFIGURED
 Node is configured

EvtData1 (out) Additional information of the event

EvtData2 (out) Additional information of the event

EvtData3 (out) Reserved

EvtData4 (out) Reserved

 Depending on the contents of the parameter EvtType
additional information is coded in the four parameters
EvtDataX. A description of possible parameter values is given
in the following tables.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

122

*EvtType == CMM_NOTI_KIND_FATALERROR
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Communication state (coded bit wise), corresponds to
HIGHBYTE(wMasterManagerState) of the
CANopen Manager State (see also section 7.1.2)

NMS_k_EV_LPRXOVR
Overrun of the low-priority receive queue

NMS_k_EV_CANOVR
CAN controller overrun

NMS_k_EV_BUSOFF
CAN controller im BusOff Zustand

NMS_k_EV_ESTATSET
Error state bit of the CAN controller is set

NMS_k_EV_ESTATRESET
Error state bit of the CAN controller is reset

NMS_k_EV_LPTXOVR
Overrun of the low-priority transmit queue

NMS_k_EV_HPRXOVR
Overrun of the high-priority receive queue

NMS_k_EV_HPTXOVR
Overrun of the high-priority transmit queue

Not used

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

123

*EvtType == CMM_NOTI_KIND_GLOBALEVENT
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Network event (bit coded), corresponds to
LOWBYTE(wGlobalEvents) of the
CANopen Manager state (see also 7.1.3)

FATE
Error in the communication with the
network

NIDE
A module uses the node-ID of the
CANopen Manager

MSE
Error control event of a mandatory slave

MNCE
Identity error respectively incorrect concise
DCF for a mandatory slave

OIE
Identity error of an optional slave

PIE
Generation of configuration, process
image, and PDOs did not success in auto
configuration mode

ACE
While scanning the network in auto
configuration mode an error event of a
allready scanned module has been
detected, or the boot-up message of a
module got detected after the scan of this
module

NMTE
Is set as soon as any of the bits in the slave
state bitlists has changed

Network event (bit coded),
corresponds to
HIGHBYTE(wGlobalEvents) of
the CANopen Manager state (see
also section 7.1.3)

ASE
Is set, if the SlaveAssignment-
objekt [1F81] for a module
contains features not supported by
the CANopen Manager

PDOLEN_ERR
The CANopen Manager has
received an RPDO with to few data
bytes

CONFIG_ERR
A concise DCF is internally incorrect
or does not correspond to the
object dictionary of the slave device

API_ROVR
Indication of a queue overrun of
the CSDO interface

RSCN
The NMT state of the entire
network has been modified via the
RequestNMT objekt

RSCM
The NMT state of an individual
module was changed via the
RequestNMT object

*EvtType == CMM_NOTI_KIND_UNEXPECTEDNODESTATE
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Node ID of the slave the unexpected state delivered from
the slave

*EvtType == CMM_NOTI_KIND_GUARDERROR
EEEEvtData1vtData1vtData1vtData1 EvtData2EvtData2EvtData2EvtData2

Node ID of the slave Not used

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

124

*EvtType == CMM_NOTI_KIND_BOOTUP
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Node ID of the slave Not used

*EvtType == CMM_NOTI_KIND_HANDSHAKETIMEOUT
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

executed reaction to application handshake
timeout:
CMM_HS_SEND_EMCY
Emergency message was sent
CMM_HS_MASTER_NMT_PREOP_ALL
NMT PRE-OPERATIONAL all was sent
CMM_HS_MASTER_NMT_STOP_ALL
NMT Stop all was sent
CMM_HS_MASTER_NMT_RESETCOMM_ALL
NMT Reset Communication was sent
CMM_HS_MASTER_NMT_RESETNODE_ALL
NMT Reset Node all was sent
CMM_HS_SLAVE_STOP_SENDING_HBT
sending of the own CANopen Heartbeat is
stopped

Not used

*EvtType == CMM_NOTI_KIND_TRIGGERTPDOQUEUE
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

COP_k_ERR
object not found
COM_k_NOT_CONFIGURED
object found but not mapped

Not used

*EvtType == CMM_NOTI_KIND_SCANNODEDETECTED
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Node ID of the slave Not used

*EvtType == CMM_NOTI_KIND_NODECONFIGURED
EvtData1EvtData1EvtData1EvtData1 EvtData2EvtData2EvtData2EvtData2

Node ID of the slave Not used

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_NO_OBJECTS No data in the event queue

CMMERR_CCI_INST_ERR CCI installation error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

125

11.2.4 CMM_GetEmergencyObj

Description: This reads out one entry from the receive emergency queue.
The CANopen Manager firmware puts all received Emergency
objects into this queue. With this function those entries will be
read out.

Prototype: tCMM_ERROR CMM_GetEmergencyObj(tCMM_ERROR CMM_GetEmergencyObj(tCMM_ERROR CMM_GetEmergencyObj(tCMM_ERROR CMM_GetEmergencyObj(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 BYTE* BYTE* BYTE* BYTE* NodeNo, NodeNo, NodeNo, NodeNo,
 WORD* ErrCode, WORD* ErrCode, WORD* ErrCode, WORD* ErrCode,
 BYTE* ErrRegister, BYTE* ErrRegister, BYTE* ErrRegister, BYTE* ErrRegister,
 BYTE* ErrField); BYTE* ErrField); BYTE* ErrField); BYTE* ErrField);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (out) Number of the node that sent the emergency
object

ErrCode (out) Error code of emergency object

ErrRegister (out) Error register value of emergency object

ErrFiled (out) Manufacturer specific error field of emergency
object (5 bytes)

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Invalid function parameter

CMMERR_NO_OBJECTS No objects in queues

CMMERR_CCI_INST_ERR CCI installation error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

126

11.2.5 CMM_SendEmergencyObj

Description: This function sends an alarm message of the CANopen
Manager. The data field of the corresponding CAN message
can be specified with the function parameters, the COB-ID is
stipulated by the node number of the CANopen Manager
according to predefined connection set or by the contents
of the object [1014].

Prototype: tCMM_ERROR CMM_SendEmergencyObj(tCMM_ERROR CMM_SendEmergencyObj(tCMM_ERROR CMM_SendEmergencyObj(tCMM_ERROR CMM_SendEmergencyObj(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 WORD ErrCode, WORD ErrCode, WORD ErrCode, WORD ErrCode,
 BYTE ErrRegister, BYTE ErrRegister, BYTE ErrRegister, BYTE ErrRegister,
 BYTE* ErrData); BYTE* ErrData); BYTE* ErrData); BYTE* ErrData);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

ErrCode (in) Error code of the alarm message (first and
second data byte). Contains a pre-defined error
code in accordance with CiA 301 " Emergency
Error Codes"

ErrRegister (in) Third byte of the alarm message: contents of
the object [1001]

ErrData (in) Byte array of length 5. (fourth to eighth byte of
the alarm message).
The contents are not stipulated. For this reason,
vendor-specific error detection can be
incorporated.

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout of command interface

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

CMMERR_EMCY_INHIBITED Emergency object not sent because emergency
inhibit time still active

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

127

11.2.6 CMM_HandShake

Description: CMM_HandShake() executes one handshake with the
CANopen Manager firmware.

 To enable the handshake timeout timer of the CANopen
Manager firmware the handshake interval must be set to an
value unequal 0 before using CMM_InitFirmware(). With
the 1st call of CMM_HandShake() the enabled handshake
timeout timer starts.

 After the handshake timeout timer was started the application
must call CMM_HandShake() within the handshake interval. If
the handshake timeout timer elapses the configured reactions
will be executed (see CMM_InitFirmware() argument
HsReaction).

Prototype: tCMM_ERROR CMM_HandShake(tCMM_HANDLE hBoard);tCMM_ERROR CMM_HandShake(tCMM_HANDLE hBoard);tCMM_ERROR CMM_HandShake(tCMM_HANDLE hBoard);tCMM_ERROR CMM_HandShake(tCMM_HANDLE hBoard);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout of the command interface

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_WRONG_FW Invalid firmware handshake response

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

128

11.3 Functions for Network Management

11.3.1 CMM_StartBootupProc

Description: This function starts the boot-up procedure of the CANopen
Manager. All slaves are configured using their default SSDO.
Before the function is called, the CANopen Manager must be
configured via the local SDO access functions, for example the
process data must be mapped in PDOs and the local object
dictionary entries created.
In the event of a faulty SDO write access to a slave node, the
complete boot-up procedure is aborted.
The network is set to the PRE-Operational state.

Prototype: tCMM_ERROR CMM_StartBootupProc(tCMM_ERROR CMM_StartBootupProc(tCMM_ERROR CMM_StartBootupProc(tCMM_ERROR CMM_StartBootupProc(
 tCMM_HANDLE hBoard); tCMM_HANDLE hBoard); tCMM_HANDLE hBoard); tCMM_HANDLE hBoard);

Parameter:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout of the command interface

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_NOT_AUTHORIZED CANopen Manager not local master

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

CMMERR_SDO_INUSE An SDO transfer was not completed yet. The
function must be called again.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

129

11.3.2 CMM_StartAutoConfig

Description: The function CMM_StartAutoConfig() starts the auto
configuration process of the CANopen Manager. During the
boot-up, the slaves detected in the CANopen network are
configured with their default SSDO. They are reset to their
default settings and the NMT monitoring is started. The
CANopen Manager automatically maps the data from the
PDOs of the slaves in network variables and sores these in the
PI input or PI output. The network is set to the Operational
state and the data exchange begins.
Please ensure that you consult section 5.3 concerning the
working method, the conditions and the restrictions of the
auto configuration process.

Prototype: tCMM_ERROR CMM_StartAutoConfig(tCMM_ERROR CMM_StartAutoConfig(tCMM_ERROR CMM_StartAutoConfig(tCMM_ERROR CMM_StartAutoConfig(
 tCMM_HA tCMM_HA tCMM_HA tCMM_HANDLE hBoard,NDLE hBoard,NDLE hBoard,NDLE hBoard,
 WORD HeartbeatTime); WORD HeartbeatTime); WORD HeartbeatTime); WORD HeartbeatTime);

Parameter:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

HeartbeatTime (in) producer heartbeat time to set for all CANopen
slaves in the network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout of the command interface

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

CMMERR_SDO_INUSE An SDO transfer was not completed yet. The
function must be called again.

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

130

11.3.3 CMM_StartNode

Description: NMT function. This function is used to set a CANopen node
(also of the CANopen Manager itself, in so far as its node
number is given) or of the complete CANopen network to the
Operational state using the NMT command Start Remote
Node.

Prototype: tCMM_ERROR CMM_StartNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StartNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StartNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StartNode(tCMM_HANDLE hBoard,
 BYTE NodeNo); BYTE NodeNo); BYTE NodeNo); BYTE NodeNo);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of a network node, 0 for the
complete network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

131

11.3.4 CMM_StopNode

Description: NMT function. This function is used to set a CANopen node
(also of the CANopen Manager itself, in so far as its node
number is given) or of the complete CANopen network in the
Stopped state using the NMT command Stop Remote
Node.

Prototype: tCMM_ERROR CMM_StopNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StopNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StopNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_StopNode(tCMM_HANDLE hBoard,
 BYTE NodeNo); BYTE NodeNo); BYTE NodeNo); BYTE NodeNo);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of a network node, 0 for the
complete network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

132

11.3.5 CMM_EnterPreOp

Description: NMT function. This function is used to set a CANopen node
(also of the CANopen Manager itself, in so far as its node
number is given) or of the complete CANopen network to the
Pre-operational state using the NMT command Enter Pre-
Operational.

Prototype: tCMM_ERROR CMM_EnterPreOp(tCMM_HANDLE hBoard,tCMM_ERROR CMM_EnterPreOp(tCMM_HANDLE hBoard,tCMM_ERROR CMM_EnterPreOp(tCMM_HANDLE hBoard,tCMM_ERROR CMM_EnterPreOp(tCMM_HANDLE hBoard,
 BYTE NodeNo); BYTE NodeNo); BYTE NodeNo); BYTE NodeNo);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of a network node, 0 for the
complete network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

133

11.3.6 CMM_ResetComm

Description: NMT function. This function is used to reset the
communication of a CANopen node (also of the CANopen
Manager itself, in so far as its node number is given) or of the
complete CANopen network using the NMT command Reset
Communication.
For the CANopen Manager as the target node this command
corresponds to the function call CMM_InitFirmware() with
InitMode == COP_k_RESETCOM.

Prototype: tCMM_ERROR CMM_ResetComm(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetComm(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetComm(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetComm(tCMM_HANDLE hBoard,
 BYTE N BYTE N BYTE N BYTE NodeNo);odeNo);odeNo);odeNo);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of a network node, 0 for the
complete network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

134

11.3.7 CMM_ResetNode

Description: NMT function. This function is used to reset a CANopen node
(also of the CANopen Manager itself, in so far as its node
number is given) or of the complete CANopen network using
the NMT command Reset Node.
For the CANopen Manager as the target node, this command
corresponds to the function call CMM_InitFirmware() with
InitMode == COP_k_RESETNODE.

Prototype: tCMM_ERROR CMM_ResetNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetNode(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ResetNode(tCMM_HANDLE hBoard,
 BYTE NodeNo BYTE NodeNo BYTE NodeNo BYTE NodeNo););););

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of a network node, 0 for the
complete network

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager is not local CANopen
master

CMMERR_INVALID_PARAM Invalid parameter

CMMERR_STATE_ERR Command not allowed in current state of the
CANopen Manager

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

135

11.4 Object Dictionary and SDO related Functions

11.4.1 CMM_CreateODentry

Description: The function CMM_CreateODentry() generates an object
dictionary entry in the local object dictionary of the CANopen
Manager.
This function is only available in the Reset state of the
CANopen Manager. If the object dictionary entries thus
generated are to be retained even after a reset of the CANopen
Manager, the Store Parameters command is to be carried
out by means of SDO write access to the local object dictionary
entry [1010].

Prototype: tCMM_ERROR CMM_CreateODentry(tCMM_ERROR CMM_CreateODentry(tCMM_ERROR CMM_CreateODentry(tCMM_ERROR CMM_CreateODentry(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 eCMM_DATATYPE Datatype, eCMM_DATATYPE Datatype, eCMM_DATATYPE Datatype, eCMM_DATATYPE Datatype,
 eCMM_ACCE eCMM_ACCE eCMM_ACCE eCMM_ACCESSTYPE Accesstype,SSTYPE Accesstype,SSTYPE Accesstype,SSTYPE Accesstype,
 eCMM_PDOMAPPING Mappable, eCMM_PDOMAPPING Mappable, eCMM_PDOMAPPING Mappable, eCMM_PDOMAPPING Mappable,
 BYTE InitialValue[8], BYTE InitialValue[8], BYTE InitialValue[8], BYTE InitialValue[8],
 WORD PIOffset); WORD PIOffset); WORD PIOffset); WORD PIOffset);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

Idx (in) Object dictionary index of the new entry.

Values are possible in the range [2000]..[9FFF],
except the range reserved for the CANopen
Manager [5F00]..[5FFF]

Subidx (in) Sub index of the new object dictionary entry

Datatype (in) CANopen data type, simultaneously defines the
number of bytes the value allocates in the PI:

DATATYPE_INTEGER8
DATATYPE_INTEGER16
DATATYPE_INTEGER32
DATATYPE_UNSIGNED8
DATATYPE_UNSIGNED16
DATATYPE_UNSIGNED32
DATATYPE_UNSIGNED64
DATATYPE_INTEGER64

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

136

Accesstype (in) Access type, defines the data direction and the
PI:

ACCESSTYPE_RWW:
 Value is stored in the PI input and
 can be mapped in RPDOs, it can be
 read and written via SDO
ACCESSTYPE_RO
 Value is stored in the PI output and
 can be mapped in TPDOs, it can
 only be read via SDO

Mappable (in) Defines whether the object should be
mappable in a PDO or not:

PDOMAPPING_UNSUPPORTED:
 Value cannot be mapped

PDOMAPPING_SUPPORTED:
 Value can be mapped in a PDO

InitialValue[8] (in) Default value of the new object dictionary entry

PIOffset (in) Byte offset in PI input or PI output

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Command interface busy, command not
transmitted, another attempt necessary

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_NO_OBJECTS No data in communication queues

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_CCI_INST_ERR CCI installation error

CMMERR_GENERAL_ERR Object dictionary entry already created

CMMERR_MAX_ENTRIES_REAC
HED

Maximum number of dynamically created
object dictionary entries exceeded

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_STATE_ERR CANopen Manager in incorrect state

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

137

11.4.2 CMM_ReadSDO

Description: CMM_ReadSDO() carries out an SDO upload from a network
node. If the stated size of the data buffer is smaller than the
number of data bytes of the object read out, the data buffer is
filled up to its size and the actual size of the read object
returned in rxlen. rxlen will always be overwritten inside the
function.

Prototype: tCMM_ERROR CMM_ReadSDO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ReadSDO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ReadSDO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ReadSDO(tCMM_HANDLE hBoard,
 BYTE NodeNo, BYTE NodeNo, BYTE NodeNo, BYTE NodeNo,
 BYTE SdoNo, BYTE SdoNo, BYTE SdoNo, BYTE SdoNo,
 eCMM_SDOMODE Mode, eCMM_SDOMODE Mode, eCMM_SDOMODE Mode, eCMM_SDOMODE Mode,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 DWORD* rxlen, DWORD* rxlen, DWORD* rxlen, DWORD* rxlen,
 BYTE* rxdata, BYTE* rxdata, BYTE* rxdata, BYTE* rxdata,
 DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of the addressed slave

SdoNo (in) CMM_DEFAULT_SDO

Mode (in) Defines the SDO transmission type:

SDOMODE_SEGMENTED:
 Expedited or segmented SDO transfer

Idx (in) Object dictionary index of the value to be read

Subidx (in) Sub index of the value to be read

Rxlen (in/out) in: size of the data buffer for the
 read data in bytes

out: number of data bytes read

Rxdata (out) Return of received data

pAbortcode (out) Return of the SDO abort code

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager not local Master

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_STATE_ERR command not allowed in current state

CMMERR_MEM_ALLOC_ERR An operating system object that is required for
the SDO access was not provided

CMMERR_NOT_SENT Command interface busy, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout during communication with firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

138

CMMERR_SDO_INUSE SDO transfer in progress, further SDO transfer
not possible

CMMERR_SDO_TIMEOUT Timeout in SDO communication

CMMERR_SDO_STOPPED CANopen Manager is in Stopped state

CMMERR_SDO_ABORT_CLIENT SDO transfer aborted by Client

CMMERR_SDO_ABORT_SERVER SDO transfer aborted by Server

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

139

11.4.3 CMM_WriteSDO

Description: CMM_WriteSDO() carries out an SDO download to a network
node.

Prototype: tCMM_ERROR CMM_WritetCMM_ERROR CMM_WritetCMM_ERROR CMM_WritetCMM_ERROR CMM_WriteSDO(tCMM_HANDLE hBoard,SDO(tCMM_HANDLE hBoard,SDO(tCMM_HANDLE hBoard,SDO(tCMM_HANDLE hBoard,
 BYTE NodeNo, BYTE NodeNo, BYTE NodeNo, BYTE NodeNo,
 BYTE SdoNo, BYTE SdoNo, BYTE SdoNo, BYTE SdoNo,
 eCMM_SDOMODE Mode, eCMM_SDOMODE Mode, eCMM_SDOMODE Mode, eCMM_SDOMODE Mode,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 DWORD txlen, DWORD txlen, DWORD txlen, DWORD txlen,
 BYTE* txdata, BYTE* txdata, BYTE* txdata, BYTE* txdata,
 DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

NodeNo (in) CANopen node-ID of the addressed slave

SdoNo (in) CMM_DEFAULT_SDO

Mode (in) Defines SDO transmission type:

SDOMODE_SEGMENTED:
 Expedited or segmented SDO transfer

Idx (in) Object dictionary index of the value to be read

Subidx (in) Sub index of the value to be written

Txlen (in) Number of data bytes to be transmitted

Txdata (in) Data to be transmitted

pAbortcode (out) Return of the SDO abort code

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_GENERAL_ERR General error

CMMERR_NOT_AUTHORIZED CANopen Manager not local Master

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_STATE_ERR command not allowed in current state

CMMERR_MEM_ALLOC_ERR An operating system object that is required for
the SDO access was not provided

CMMERR_NOT_SENT Command interface busy, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_SDO_INUSE SDO transfer in progress, further SDO transfer
not possible

CMMERR_SDO_TIMEOUT Timeout in SDO communication

CMMERR_SDO_STOPPED CANopen Manager is in Stopped state

CMMERR_SDO_ABORT_CLIENT SDO transfer aborted by Client

CMMERR_SDO_ABORT_SERVER SDO transfer aborted by Server

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

140

11.4.4 CMM_ReadLocSDO

Description: CMM_ReadLocSDO() carries out an SDO upload from the local
object dictionary of the CANopen Manager.
If the stated size of the data buffer is smaller than the number
of data bytes of the object read out, the data buffer is filled up
to its size and the actual size of the read object returned in
rxlen.

Prototype: tCMM_ERROR CMM_ReadLocSDO(tCMM_ERROR CMM_ReadLocSDO(tCMM_ERROR CMM_ReadLocSDO(tCMM_ERROR CMM_ReadLocSDO(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 DWORD* rxlen, DWORD* rxlen, DWORD* rxlen, DWORD* rxlen,
 BYTE* rxdata, BYTE* rxdata, BYTE* rxdata, BYTE* rxdata,
 DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode);

Parameters:

Parameter Dir. Explanation

HBoard (in) Handle of the CAN board

Idx (in) Object dictionary index of the value to be read

Subidx (in) Sub index of the value to be read

Rxlen (in/out) in: size of the data buffer for the
 read data in bytes

out:: number of data bytes read

Rxdata (out) Return of the received data

PAbortcode (out) Return of the SDO abort code

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_GENERAL_ERR General error

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_STATE_ERR Command not allowed in current state

CMMERR_MEM_ALLOC_ERR An operating system object that is required for
the SDO access was not provided

CMMERR_NOT_SENT Command interface allocated, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_SDO_INUSE SDO transfer in progress, further SDO transfer
not possible

CMMERR_SDO_TIMEOUT Timeout in SDO communication

CMMERR_SDO_STOPPED CANopen Manager is in Stopped state

CMMERR_SDO_ABORT_SERVER Read access to object dictionary of Manager
has resulted in an abort

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

141

11.4.5 CMM_WriteLocSDO

Description: CMM_WriteLocSDO() carries out an SDO download to the
local object dictionary of the CANopen Manager.

Prototype: tCMM_ERROR CMM_WriteLocSDO(tCMM_ERROR CMM_WriteLocSDO(tCMM_ERROR CMM_WriteLocSDO(tCMM_ERROR CMM_WriteLocSDO(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 DWORD txlen, DWORD txlen, DWORD txlen, DWORD txlen,
 BYTE* txdata, BYTE* txdata, BYTE* txdata, BYTE* txdata,
 DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode); DWORD* pAbortcode);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

Idx (in) Object dictionary index of the value to be read

Subidx (in) Sub index of the value to be written

txlen (in) Number of data bytes to be transmitted

txdata (in) Data to be transmitted

pAbortcode (out) Return of the SDO abort code

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_GENERAL_ERR General error

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_STATE_ERR Command not allowed in current state

CMMERR_MEM_ALLOC_ERR An operating system object that is required for
the SDO access was not provided

CMMERR_NOT_SENT Command interface busy, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_SDO_INUSE SDO transfer in progress, further SDO transfer
not possible

CMMERR_SDO_TIMEOUT Timeout in SDO communication

CMMERR_SDO_STOPPED CANopen Manager is in Stopped state

CMMERR_SDO_ABORT_SERVER Write access to object dictionary of Manager
has resulted in an abort

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

142

11.4.6 CMM_ImportCDC

Description: Use this function to import a Concise DCF to Manager. The
Concise DCF values will be written to the Manager's local
Object Dictionary.

Prototype: tCMM_ERROR CMM_ImportCDC(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ImportCDC(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ImportCDC(tCMM_HANDLE hBoard,tCMM_ERROR CMM_ImportCDC(tCMM_HANDLE hBoard,
 wchar_t* CDCFile, wchar_t* CDCFile, wchar_t* CDCFile, wchar_t* CDCFile,
 WORD* pIdx, WORD* pIdx, WORD* pIdx, WORD* pIdx,
 BYTE* pSubidx, BYTE* pSubidx, BYTE* pSubidx, BYTE* pSubidx,
 DWORD* DWORD* DWORD* DWORD* pAbortcode); pAbortcode); pAbortcode); pAbortcode);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

CDCFile (in) full absolute filename and path to a Concise
DCF

pIdx (out) In case of CMMERR_SDO_ABORT_SERVER, the
index of the aborted SDO transfer will be
delivered in this optional argument

pSidx (out) In case of CMMERR_SDO_ABORT_SERVER, the
sub-index of the aborted SDO transfer will be
delivered in this optional argument

pAbortcode (out) Return of the SDO abort code, in case of
CMMERR_SDO_ABORT_SERVER, the abort code
of the aborted SDO transfer will be delivered in
this optional argument

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_CDC_CORRUPT Concise DCF import failed. File may be corrupt

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_STATE_ERR Command not allowed in current state

CMMERR_MEM_ALLOC_ERR An operating system object that is required for
the SDO access was not provided

CMMERR_NOT_SENT Command interface busy, command not
transmitted, another attempt necessary

CMMERR_COMMTIMEOUT Timeout during communication with firmware

CMMERR_SDO_INUSE SDO transfer in progress, further SDO transfer
not possible

CMMERR_SDO_TIMEOUT Timeout in SDO communication

CMMERR_SDO_STOPPED CANopen Manager is in Stopped state

CMMERR_SDO_ABORT_SERVER Write access to object dictionary of Manager
has resulted in an abort

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

143

11.5 Process image-related functions

11.5.1 CMM_FormPILUT

Description: Generate the internal lookup table for all the Process Image
entries. This is possible in AutoConfiguration Mode only.

 Attention: You must call this function right after the boot-up in
AutoConfiguration Mode has finished successfully, i.e.
LOWBYTE(wMasterManagerState) == GETPI_INFO.

 The individual process image entry then can be read out using
the function CMM_GetPIdescr().

Prototype: tCMM_ERROR CMM_FormPILUT(tCMM_HANDLE hBoard);tCMM_ERROR CMM_FormPILUT(tCMM_HANDLE hBoard);tCMM_ERROR CMM_FormPILUT(tCMM_HANDLE hBoard);tCMM_ERROR CMM_FormPILUT(tCMM_HANDLE hBoard);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Message not sent, try again

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_COMMTIMEOUT Timeout in communication PC to µC

CMMERR_CCI_INST_ERR CCI installation error (internal)

CMMERR_NO_OBJECTS No more entries

CMMERR_NOT_AUTHORIZED CANopen Manager not local master

CMMERR_STATE_ERR Command not allowed in current state

CMMERR_PI_ERR Process Image inconsistencies

CMMERR_INVALID_CMD Command code is not supported

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

144

11.5.2 CMM_GetPIdescr

Description: This function supplies the properties of an individual process
image entry. This function can only be called in
AutoConfiguration Mode.

 First the function CMM_StartAutoConfig() must be called
and the boot-up process must be terminated. Second the
function CMM_FormPILUT() must be called once. Then the
function CMM_GetPIdescr() can be called for each process
image entry.

 The calls must first be carried out for PI input and then for PI
output until the function returns MMERR_NO_OBJECTS as an
indication of the end.

Prototype: tCMM_ERROR CMM_GetPIdescr(tCMM_ERROR CMM_GetPIdescr(tCMM_ERROR CMM_GetPIdescr(tCMM_ERROR CMM_GetPIdescr(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 eCMM_PITYPE PItype, eCMM_PITYPE PItype, eCMM_PITYPE PItype, eCMM_PITYPE PItype,
 WORD* pPIoffset, WORD* pPIoffset, WORD* pPIoffset, WORD* pPIoffset,
 BYTE* pLength, BYTE* pLength, BYTE* pLength, BYTE* pLength,
 BYTE* pPdoNo, BYTE* pPdoNo, BYTE* pPdoNo, BYTE* pPdoNo,
 BYTE* pNodeNo, BYTE* pNodeNo, BYTE* pNodeNo, BYTE* pNodeNo,
 WORD* pRemoteIdx, WORD* pRemoteIdx, WORD* pRemoteIdx, WORD* pRemoteIdx,
 BYTE* pRemoteSubidx, BYTE* pRemoteSubidx, BYTE* pRemoteSubidx, BYTE* pRemoteSubidx,
 BYTE* pRemo BYTE* pRemo BYTE* pRemo BYTE* pRemotePdoNo,tePdoNo,tePdoNo,tePdoNo,
 WORD* pProfile, WORD* pProfile, WORD* pProfile, WORD* pProfile,
 BYTE* pProductCode); BYTE* pProductCode); BYTE* pProductCode); BYTE* pProductCode);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

PItype (in) Selection PI input or PI output:

 PITYPE_INPUTS: PI input

 PITYPE_OUTPUTS: PI output

pPIoffset (out) Start address of the entry in the PI (byte offset)

pLength (out) Length of the entry in bytes (max. 8 bytes)

pPdoNo (out) PDO number of the corresponding RPDO/TPDO,
zero based

pNodeNo (out) CANopen node-ID of the network node to
which the entry is mapped

pRemoteIdx (out) Object dictionary index of remote object to
which the entry is mapped

pRemoteSubidx (out) Object dictionary sub-index of remote object to
which the entry is mapped

pRemotePdoNo (out) PDO number of the corresponding remote
RPDO/TPDO, zero based

pProfile (out) Profile of the CANopen node to which the entry
is mapped

pProductCode (out) Product code of the CANopen node to which
the entry is mapped

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

145

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NO_OBJECTS No object in the queue

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

146

11.5.3 CMM_GetPI

Description: The function CMM_GetPI() supplies an image of the current
PI input or PI output. The process image is copied into the
stipulated buffer pPI.

Prototype: tCMM_ERROR CMM_GetPI(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPI(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPI(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPI(tCMM_HANDLE hBoard,
 eCMM_PITYPE Pitype, eCMM_PITYPE Pitype, eCMM_PITYPE Pitype, eCMM_PITYPE Pitype,
 DWORD* pLength, DWORD* pLength, DWORD* pLength, DWORD* pLength,
 BYTE* pPI, BYTE* pPI, BYTE* pPI, BYTE* pPI,
 DWORD* pTimestamp); DWORD* pTimestamp); DWORD* pTimestamp); DWORD* pTimestamp);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

PItype (in) Selection PI input or PI output:

 PITYPE_INPUTS: PI input

 PITYPE_OUTPUTS: PI output

pLength (in/out) in: size of the buffer for the data to be
read

out: number of bytes currently used

pPI (out) Return of the PI data

pTimestamp (out) timestamp value of PII Indicates the specific
moment when the PII had been updated. Use
this optional value to find the belonging entries
in the PII-RPDO queue (see also function
CMM_GetPIIRPDOno())

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware,
try again

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

147

11.5.4 CMM_GetPIentry

Description: CMM_GetPIentry() supplies an excerpt from the PI input or
PI output. The contents of the selected excerpt are copied into
the stipulated buffer pPIentry.

Prototype: tCMM_ERROR CMM_GetPIentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIentry(tCMM_HANDLE hBoard,
 eCMM_PITYPE Pitype, eCMM_PITYPE Pitype, eCMM_PITYPE Pitype, eCMM_PITYPE Pitype,
 DWORD dwPIoffset, DWORD dwPIoffset, DWORD dwPIoffset, DWORD dwPIoffset,
 DWORD* pLength, DWORD* pLength, DWORD* pLength, DWORD* pLength,
 BYTE* pPIentry, BYTE* pPIentry, BYTE* pPIentry, BYTE* pPIentry,
 DWORD* pTimestamp); DWORD* pTimestamp); DWORD* pTimestamp); DWORD* pTimestamp);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

PItype (in) Selection PI input or PI output:

 PITYPE_INPUTS: PI input

 PITYPE_OUTPUTS: PI output

dwPIoffset (in) Byte offset of the entry to be read

pLength (in/out) in: size of the buffer for the data to be
read

out: number of bytes currently used

pPIentry (out) Return of the PI subset

pTimestamp (out) timestamp value of PII Indicates the specific
moment when the PII had been updated. Use
this optional value to find the belonging entries
in the PII-RPDO queue (see also function
CMM_GetPIIRPDOno())

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

148

11.5.5 CMM_GetPIIvalue

Description: CMM_GetPIIvalue() returns the value of the given remote
object from the binary Process Image Inputs of CANopen
Manager.

 This functions is available only in AutoConfiguration Mode. It
utilizes the internal Process Image Look-Up Table (PILUT) to
locate the remote object in the Process Image Inputs. Thus it is
indispensable to call CMM_FormPILUT() once after
AutoConfiguration Mode finished successfully.

 Note: Since the lookup will be performed every time this
function is called, it is only suitable for slow request intervals
resp. few requests per interval. For higher performance, call
CMM_GetPIentry(). If maximum performance is required, call
CMM_GetPI() and resolve the PI contents in the client
application.

Prototype: tCMM_ERROR CMM_GetPIIvalue(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIIvalue(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIIvalue(tCMM_HANDLE hBoard,tCMM_ERROR CMM_GetPIIvalue(tCMM_HANDLE hBoard,
 BYTE NodeNo, BYTE NodeNo, BYTE NodeNo, BYTE NodeNo,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 DWORD* pLength, DWORD* pLength, DWORD* pLength, DWORD* pLength,
 BYTE* pPIvalue); BYTE* pPIvalue); BYTE* pPIvalue); BYTE* pPIvalue);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (in) Node number of the remote node

Idx (in) Index of remote object

Subidx (in) Sub index of remote object

pLength (in/out) Size of Process Image value buffer / actually
used bytes

pPIvalue (out) Buffer for Process Image value

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NO_SUCH_OBJECT Given object not found in PILUT

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

149

11.5.6 CMM_PutPIO

Description: CMM_PutPIO() writes the complete PI output with new data.

Prototype: tCMM_ERROR CMM_PutPIO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIO(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIO(tCMM_HANDLE hBoard,
 DWORD dwLength, DWORD dwLength, DWORD dwLength, DWORD dwLength,
 BYTE* pPI); BYTE* pPI); BYTE* pPI); BYTE* pPI);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

dwLength (in) Number of bytes to be written

pPI (in) PI output data

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

150

11.5.7 CMM_PutPIOentry

Description: CMM_PutPIOentry() writes an excerpt of the PI output with
new data.

Prototype: tCMM_ERROR CMM_PutPIOentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIOentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIOentry(tCMM_HANDLE hBoard,tCMM_ERROR CMM_PutPIOentry(tCMM_HANDLE hBoard,
 DWORD dwPIoffset, DWORD dwPIoffset, DWORD dwPIoffset, DWORD dwPIoffset,
 DWORD dwLength, DWORD dwLength, DWORD dwLength, DWORD dwLength,
 BYTE* pPIentry); BYTE* pPIentry); BYTE* pPIentry); BYTE* pPIentry);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

dwPIoffset (in) Offset of the PI output entry in bytes

dwLength (in) Number of bytes to be written

pPI (in) PI output data

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

151

11.5.8 CMM_PutPIOvalue

Description: CMM_PutPIOvalue() writes a value for the specified remote
object to the binary Process Image Outputs of the CANopen
Manager.

 This functions is available only in AutoConfiguration Mode. It
utilises the internal Process Image Look-Up Table (PILUT) to
locate the remote object in the Process Image Outputs. Thus it
is indispensable to call CMM_FormPILUT() once after
AutoConfiguration Mode finished successfully.

 Note: Since the lookup will be performed every time this
function is called, it is only suitable for slow request intervals
respectively few requests per interval. For higher performance,
call CMM_PutPIOentry(). If maximum performance is
required, place the value in an image of the PI contents in the
client application and call CMM_PutPIO().

Prototype: tCMM_ERROR CMM_PutPtCMM_ERROR CMM_PutPtCMM_ERROR CMM_PutPtCMM_ERROR CMM_PutPIOvalue(tCMM_HANDLE hBoard,IOvalue(tCMM_HANDLE hBoard,IOvalue(tCMM_HANDLE hBoard,IOvalue(tCMM_HANDLE hBoard,
 BYTE NodeNo, BYTE NodeNo, BYTE NodeNo, BYTE NodeNo,
 WORD Idx, WORD Idx, WORD Idx, WORD Idx,
 BYTE Subidx, BYTE Subidx, BYTE Subidx, BYTE Subidx,
 BYTE* pPIvalue); BYTE* pPIvalue); BYTE* pPIvalue); BYTE* pPIvalue);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

NodeNo (in) Node number of the remote node

Idx (in) Index of remote object

Subidx (in) Sub index of remote object

pPIvalue (in) Process Image value

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NO_SUCH_OBJECT Given object not found in PILUT

CMMERR_NOT_CONFIGURED CANopen Manager was not configured

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_PI_LOCKED Process Image currently accessed by firmware

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

152

11.5.9 CMM_GetPIIRPDOno

Description: Fetch an entry from the Process Image Input Receive PDO
queue.

Prototype: tCMM_ERROR CMM_GetPIIRPDOno(tCMM_ERROR CMM_GetPIIRPDOno(tCMM_ERROR CMM_GetPIIRPDOno(tCMM_ERROR CMM_GetPIIRPDOno(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 DWORD* pTimestamp, DWORD* pTimestamp, DWORD* pTimestamp, DWORD* pTimestamp,
 BYTE* RPDOno); BYTE* RPDOno); BYTE* RPDOno); BYTE* RPDOno);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

pTimestamp (out) timestamp value of RPDO
Indicates the specific moment when the RPDO
data had been entered in the PII. Use this value
to find out which RPDO belongs to your
Process Image snapshot (see also function
CMM_GetPI)s

RPDOno (out) zero based number of a CANopen Manager's
RPDO, the separator code 0xFF indicates a
moment at which the Process Image had been
updated

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_INVALID_PARAM Invalid parameter value

CMMERR_NO_OBJECTS No objects in queue

CMMERR_CCI_INST_ERR CCI installation error

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Individual Functions of the API-DLL

153

11.5.10 CMM_TriggerPIOoffset

Description: Trigger the TPDO(s) that contain given output Process Image
offset. Offset given must be the start address of a mapped
object.

 This function shall be used when PDOs shall be transmitted
again although the content of the mapped data has not
changed.

 Note: When new (changed) data are written into the Process
Image Output the assigned TPDOs will be transmitted
automatically without calling this function.

 If the CANopen Manager firmware detects an error on
execution the command an event
CMM_NOTI_KIND_TRIGGERTPDOQUEUE will be posted into the
event queue.

Prototype: tCMM_ERROR CMM_TriggerPIOoffset(tCMM_ERROR CMM_TriggerPIOoffset(tCMM_ERROR CMM_TriggerPIOoffset(tCMM_ERROR CMM_TriggerPIOoffset(
 tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard, tCMM_HANDLE hBoard,
 DWORD dwPIOoffset); DWORD dwPIOoffset); DWORD dwPIOoffset); DWORD dwPIOoffset);

Parameters:

Parameter Dir. Explanation

hBoard (in) Handle of the CAN board

dwPIOoffset (in) Start address of a mapped object relative to
beginning of output Process Image

Return values:

Return value Description

CMMERR_OK Success

CMMERR_INVALID_HANDLE Invalid board handle

CMMERR_NOT_SENT Message not sent, try again

CMMERR_INVALID_PARAM Invalid parameter value

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Appendix – Scope of Delivery

154

Appendix – Scope of Delivery

The CANopen Manager API is supplied with the following components:

Folder File name Meaning
\ Documentation
 LiesMich.txt Important last-minute product information (German)

 ReadMe.txt Important last-minute product information (English)
 files.txt List of all installed files

 4.02.0135.10000.pdf Electronic user’s manual and documentation
(German)

 4.02.0135.20000.pdf Electronic user’s manual and documentation (English)

Folder File name Meaning
bin\ Binary files for 32bit Windows (IA32)
 XatCMM20.dll CANopen Manager API

Folder File name Meaning
bin\debuglog\ Binary files with debug-output for 32bit Windows

(IA32)
 XatCMM20.dll CANopen Manager API

Folder File name Meaning
bin\x64\ Binary files with debug-output for 64bit Windows

(AMD64)
 XatCMM20.dll CANopen Manager API

Folder File name Meaning
bin\x64\debuglog\ Binary files with debug-output for 64bit Windows

(AMD64)

 XatCMM20.dll CANopen Manager API

Folder File name Meaning
EDS\ Electronic Data Sheet

 XatCMM.eds Electronic Data Sheet of CANopen Manager

Folder File name Meaning
lib\BCB\ Library file for Borland C++ Builder
 XatCMM20.lib Lib-file of the CANopen Manager API for C++ Builder

(OMF Format). Generated using the command line
tool implib.exe

 README.TXT Instructions how to generate the BCB lib file in OMF
format

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Appendix – Scope of Delivery

155

Folder File name Meaning
lib\MSVC\ Library file for Microsoft Visual C++

 XatCMM20.lib Lib-file of the CANopen Manager API

Folder File name Meaning
lib\x64\ 64bit library file for Microsoft Visual C++
 XatCMM20.lib Lib-file of the CANopen Manager API

Folder File name Meaning
<windows> Windows system folder

 XatCMM20.dll CANopen Manager API (Release-Version)

Folder File name Meaning
Samples\ Sample projects and common Header files

 XatCMM.h C main header of the CANopen Manager API
 XatCMMdef.h Definitions of the data types

 XatBrds.h Definitions of all IXXAT Hardware interface boards
(CAN boards VCI 2)

 vciguid.h Definitions of all IXXAT Hardware interface boards
(CAN boards VCI3)

Folder File name Meaning
Samples\Tutorial\ Tutorial application as described in chapter 4 for

Microsoft Visual Studio
 Tutorial.cpp Source file of sample tutorial application
 Tutorial.exe 32bit executable tutorial application, release build

 XatCMMutil.cpp Common utility functions for conversion
 XatCMMutil.h Header of Common utility functions for conversion

 Tutorial.dsp Visual Studio 6 project file
 Tutorial.sln Visual Studio 2005 Solution

 Tutorial.vcproj Visual C++ 8.0 project file

Folder File name Meaning
Samples\Tutorial\x64\Release\ Tutorial application as described in chapter 4 for

Microsoft Visual Studio
 Tutorial.exe 64bit executable tutorial application, release build

Copyright IXXAT Automation GmbH CANopen Manager API for Windows
Manual - Version 2.0

Appendix – Scope of Delivery

156

Folder File name Meaning
Samples\XatCMMdiag\ Example application for use with Microsoft Visual

C++

 XATCMMdiag.cpp Source file of sample program for usage of API
 XATCMMdiag.h Header of sample program for usage of API
 XATCMMdiag.exe 32bit executable example application, release build

 XATCMMdiag.dsp Visual Studio 6 project file
 XATCMMdiag.sln Visual Studio 2005 Solution

 XATCMMdiag.vcproj Visual C++ 8.0 project file
 XatCMMPDOpoll.cpp Poll thread for cyclic process image readout

 XatCMMPDOpoll.h Header of Poll thread for cyclic process image readout
 XatCMMutil.cpp Common utility functions for conversion

 XatCMMutil.h Header of Common utility functions for conversion
 MegaNode@10.cdc Example concise DCF

Folder File name Meaning
Samples\XatCMMdiag\x64\Release\ Example application for use with Microsoft Visual

C++
 XATCMMdiag.exe 64bit executable example application, release build

Folder File name Meaning
Tools\ Utility programs

 XCflash.exe VCI2 Flash programmer for iPC-I XC16/PCI CAN
interface boards

 ucii161f.H86 VCI2 UCI/VCI flash firmware for iPC-I XC16/PCI CAN
interface board

 XATCMMFL.H86 VCI2 CANopen Manager flash firmware for
iPC-I XC16/PCI CAN interface board

 XatCMMFL3.H86 VCI3 CANopen Manager flash firmware for
iPC-I XC16/PCI CAN interface board

	4.02.0135.20000.pdf
	1 Introduction
	1.1 Where to find What
	1.2 Basic Specifications
	1.3 Definitions, Acronyms, Abbreviations
	1.4 Typographical Conventions
	1.5 Support
	1.6 Return of defect Hardware

	2 Getting Started
	2.1 System Requirements
	2.2 Supported CAN Boards
	2.3 VCI
	2.4 Installation
	2.5 Flash Firmware
	2.5.1 VCI2
	2.5.2 VCI3

	2.6 Becoming acquainted with the CANopen Manager

	3 Overview
	4 Tutorial
	4.1 Setup of the Example Network
	4.2 Initialization of the CANopen Manager
	4.3 Configuration of the CANopen Manager via its local Object Dictionary
	4.4 Generation of Process Images
	4.5 CANopen Network Boot-up
	4.6 Data Exchange via the Process Image
	4.7 Auto Configuration Mode
	4.8 Dynamic Generation of Object Dictionary Entries

	5 CANopen Manager Firmware
	5.1 Overview
	5.2 Services of the CANopen Manager
	5.3 Boot-up Procedure
	5.4 Network Management
	5.5 RequestNMT Object
	5.6 Configuration Manager
	5.7 Reset Configuration
	5.8 Verify Configuration
	5.9 Auto Configuration Mode
	5.10 Initialization of the CANopen Manager
	5.11 Object Dictionary default Values
	5.12 Special Manufacturer-specific Object Dictionary Entries of the CANopen Manager
	5.13 Configuration of the Run Time Behavior
	5.14 Access to the local Object Dictionary
	5.14.1 CiA 301 specific object entries
	5.14.2 CiA 302 specific object entries

	5.15 Dynamically created Object Dictionary Entries
	5.16 Store/Restore
	5.17 Handshaking

	6 Structure of the Process Data Interface
	6.1 Process Data Interface
	6.1.1 Encoding rules
	6.1.2 Data exchange between CMM-DLL and firmware
	6.1.3 Overlaid Network Variables
	6.1.4 Default values
	6.1.5 RPDO no queue
	6.1.6 TriggerTPDO queue

	7 Diagnostics Data
	7.1 Status Information of the CANopen Manager
	7.1.1 State of the CANopen Manager
	7.1.2 Communication state of the CANopen Manager
	7.1.3 Event Indication
	7.1.4 Configuration of the CANopen Manager

	7.2 Slave Diagnostics
	7.2.1 Overview
	7.2.2 Structure of the bit lists
	7.2.3 Bit list assigned slaves
	7.2.4 Bit list configured slaves
	7.2.5 Bit list configuration error
	7.2.6 Bit list operational slaves
	7.2.7 Bit list stopped slaves
	7.2.8 Bit list preoperational slaves
	7.2.9 Bit list module internal errors

	7.3 Emergency Statistic and History
	7.3.1 Node Error Count
	7.3.2 Error code-specific error counter
	7.3.3 Emergency history

	7.4 Default Values

	8 States of the CANopen Manager
	
	8.1.1 Initialization
	8.1.2 Master Mode: Reset
	8.1.3 Network Initialization
	8.1.4 Auto Configuration
	8.1.5 Network: Scanned
	8.1.6 Network: Operational
	8.1.7 Network: Stopped
	8.1.8 Network: Pre-operational
	8.1.9 Slave mode: Pre-operational
	8.1.10 Slave mode: operational
	8.1.11 Slave Mode: Stopped
	8.1.12 Fatal Error

	8.2 Description of the State Transitions

	9 CANopen Manager API – Functionality Summary
	10 CANopen Manager API DLL
	10.1 Function Categories
	10.1.1 Basic functions
	10.1.2 General functions
	10.1.3 Functions for network management
	10.1.4 Object dictionary and SDO-related functions
	10.1.5 Process image-related functions

	11 Individual Functions of the API-DLL
	11.1 Basic Functions
	11.1.1 CMM_InitBoard
	11.1.2 CMM_ReleaseBoard
	11.1.3 CMM_GetBoardInfo
	11.1.4 CMM_InitFirmware
	11.1.5 CMM_DefineCallbacks
	11.1.6 tCMM_CALLBACK
	11.1.7 CMM_ResetDLL
	11.1.8 CMM_SetCommTimeout
	11.1.9 CMM_SetInspecInterval
	11.1.10 CMM_DefineMsgProcImg
	11.1.11 CMM_DefineMsgMaster
	11.1.12 CMM_DefineMsgSlaves
	11.1.13 CMM_DefineMsgEvent
	11.1.14 CMM_DefineMsgEmergency

	11.2 General Functions
	11.2.1 CMM_GetMasterStat
	11.2.2 CMM_GetSlavesStat
	11.2.3 CMM_GetEvent
	11.2.4 CMM_GetEmergencyObj
	11.2.5 CMM_SendEmergencyObj
	11.2.6 CMM_HandShake

	11.3 Functions for Network Management
	11.3.1 CMM_StartBootupProc
	11.3.2 CMM_StartAutoConfig
	11.3.3 CMM_StartNode
	11.3.4 CMM_StopNode
	11.3.5 CMM_EnterPreOp
	11.3.6 CMM_ResetComm
	11.3.7 CMM_ResetNode

	11.4 Object Dictionary and SDO related Functions
	11.4.1 CMM_CreateODentry
	11.4.2 CMM_ReadSDO
	11.4.3 CMM_WriteSDO
	11.4.4 CMM_ReadLocSDO
	11.4.5 CMM_WriteLocSDO
	11.4.6 CMM_ImportCDC

	11.5 Process image-related functions
	11.5.1 CMM_FormPILUT
	11.5.2 CMM_GetPIdescr
	11.5.3 CMM_GetPI
	11.5.4 CMM_GetPIentry
	11.5.5 CMM_GetPIIvalue
	11.5.6 CMM_PutPIO
	11.5.7 CMM_PutPIOentry
	11.5.8 CMM_PutPIOvalue
	11.5.9 CMM_GetPIIRPDOno
	11.5.10 CMM_TriggerPIOoffset

	Appendix – Scope of Delivery

