

 The expert for industrial and automotive communication

Manual

J1939 API for Windows
Software Version 1.1

IXXAT
Headquarter US Sales Office
IXXAT Automation GmbH IXXAT Inc.
Leibnizstr. 15 120 Bedford Center Road
D-88250 Weingarten USA-Bedford, NH 03110

Tel.: +49 (0)7 51 / 5 61 46-0 Phone: +1-603-471-0800
Fax: +49 (0)7 51 / 5 61 46-29 Fax: +1-603-471-0880
Internet: www.ixxat.de Internet: www.ixxat.com
e-Mail: info@ixxat.de e-Mail: sales@ixxat.com

Support
In case of unsolvable problems with this product or other IXXAT products
please contact IXXAT in written form by:

Fax: +49 (0)7 51 / 5 61 46-29
e-Mail: support@ixxat.de

Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic
distribution of this document is only allowed with explicit permission of
IXXAT Automation GmbH. IXXAT Automation GmbH reserves the right to
change technical data without prior announcement. The general business
conditions and the regulations of the license agreement do apply. All
rights are reserved.

Document number: 4.02.0287.20000
Version: 1.2

Contents

Copyright IXXAT Automation GmbH 3 J1939 API Manual, V1.2

1 Introduction ... 5

1.1 Definitions, Acronyms, Abbreviations 5

2 Installation ... 6

2.1 Requirements .. 6

2.2 Setup .. 6

3 Specifications of the J1939 Protocol ... 7

4 Getting Started .. 8

4.1 Loading into an ANSI-C Project ... 8

4.2 Loading into a C++ Project ... 8

4.3 Loading into a Python Script ... 9

5 Message Interpretation ... 10

5.1 Configuration File ... 10

5.2 J1939 Designer .. 10

6 Interface to the Application .. 11

6.1 General Structures ... 11

6.1.1 Message Structure ... 11

6.1.2 Parameter Structure ... 12

6.2 General Functionality ... 12

6.2.1 Initialization of the API .. 12

6.2.2 Registration / Deregistration of PGNs 13

6.2.3 Message Transmission .. 14

6.2.4 Message Reception ... 14

6.2.5 HRESULTs / Error Exceptions ... 15

6.2.6 Error Messages .. 15

7 Demo Applications .. 16

7.1 Application Structure .. 16

7.1.1 Decode ... 16

7.1.2 Demo1 .. 17

7.1.3 Demo2 .. 18

7.2 Running the Application ... 18

7.3 Message Specifications .. 19

7.3.1 PGN 65128 (0xFE68) – Vehicle Fluids – VF 19

7.3.1.1 SPN 1638 – Hydraulic Temperature 19

Contents

Copyright IXXAT Automation GmbH 4 J1939 API Manual, V1.2

7.3.1.2 SPN 1713 – Hydraulic Oil Filter Restriction Switch .. 20

7.3.1.3 SPN 1857 – Winch Oil Pressure Switch 20

7.3.1.4 SPN 2602 – Hydraulic Oil Level 21

7.3.2 PGN 65226 (0xFECA) – Active DTCs – DM01 21

7.3.3 PGN 55040 (0xD700) – Binary Data Transfer – DM16 22

7.3.3.1 SPN 1650 – Length of Raw Binary Data 22

7.3.3.2 SPN 1651 –Raw Binary Data 23

7.3.4 PGN 59904 (0xEA00) – Request – RQST 23

7.3.4.1 SPN 2540 – Parameter Group Number (RQST) 24

7.3.5 PGN 65213 (0xFEBD) – Fan Drive – FD 24

7.3.5.1 SPN 975 – Estimated Percent Fan Speed 25

7.3.5.2 SPN 977 – Fan Drive State 25

7.3.5.3 SPN 1639 – Fan Speed ... 26

7.3.5.4 SPN 4211 – Hydraulic Fan Motor Pressure 26

7.3.5.5 SPN 4212 – Fan Drive Bypass Command Status ... 27

7.3.6 PGN 61467 (0xF01B) – Undefined .. 27

7.3.7 PGN 45312 (0xB100) – MyMessage 28

7.3.7.1 SPN 520192 – MyIntParam 28

7.3.7.2 SPN 520193 – MyFloatParam 29

7.3.7.3 SPN 520194 – MyBitFieldParam 29

7.3.7.4 SPN 520195 – MyBinaryParam 30

7.3.7.5 SPN 520196 – MyStringParam 30

8 Support .. 31

Introduction

Copyright IXXAT Automation GmbH 5 J1939 API Manual, V1.2

1 Introduction
The J1939 API software provides a comfortable programming interface for the
rapid development of J1939 applications on a Windows PC in various lan-
guages (C, C++ and Python). The programming interface is based on the
IXXAT VCI driver and is therefore useable with all IXXAT CAN interfaces. Fur-
thermore it is possible to implement several applications on one CAN control-
ler which can also communicate with each other. This allows the simulation of
complete J1939 networks on one PC and is therefore excellent capable for
testing and commissioning of control units.
The J1939 API provides a full implementation of the SAE J1939 protocol
based on the IXXAT J1939 protocol software. Therefore it supports the
transport protocol for transmission of J1939 messages with up to 1785 data
bytes, network management for address claiming and monitoring of cyclic re-
ceived messages.
The signals of a message (parameter group) are interpreted based on a XML
configuration file, which can be generated by the J1939 Designer. The J1939
Designer, which is also part of the J1939 API delivery, allows the definition of
application-specific messages.
The J1939 API provides DLLs and header files for incorporation into the vari-
ous language environments. The C++ interface presents a simple C++ class.
The C interface presents a collection of functions, including Create() and De-
lete() functions and the instance is maintained using an object handle. By
means of a python interface class a python API is provided.
An important condition for working with the J1939 API is that you are familiar
with the basic concepts of the SAE J1939 protocol. An overview of the most
relevant SAE J1939 specifications is given in chapter 3 ‘Specifications of the
J1939 Protocol’.

1.1 Definitions, Acronyms, Abbreviations
API Application Programming Interface
BLOB Binary Large Object
CAN Controller Area Network
DLL Dynamic Link Library
DTC Diagnostic Trouble Code
PG Parameter Group
PGN Parameter Group Number
SAE Society of Automotive Engineers
SP Suspect Parameter
SPN Suspect Parameter Number
VCI Virtual CAN Interface
XML Extensible Markup Language

Installation

Copyright IXXAT Automation GmbH 6 J1939 API Manual, V1.2

2 Installation
The J1939 API is delivered as a setup executable, which installs the API librar-
ies, the configuration tool, the demo applications, the online documentation
and if required the optional python support.

2.1 Requirements
The J1939 API is developed for use on a Windows PC. The demo applications
were developed in Microsoft Visual Studio 2008. Therefore at least the Visual
Studio 2008 Express Edition, which can be downloaded free of charge from
the Microsoft website, is required to open the enclosed project files.
Before installing the API, the VCI V3 driver must be installed, which allows to
access the IXXAT CAN interface1

The API provides an optional Python interface, which requires Python 2.5 or
newer. If Python is not installed on the Windows PC, the API will be installed
without Python support.

. To install the CAN interface, please read
the hardware installation manual. For installation of the VCI V3, please consult
the VCI installation manual.

2.2 Setup
To install the API, insert the program CD supplied into the CD drive of your PC
and start the installation program by running the executable setup file. Follow
the instructions of the installation program.

1 To use the API, at least one IXXAT CAN interface (e.g. an USB-to-CAN) is required.

Specifications of the J1939 Protocol

Copyright IXXAT Automation GmbH 7 J1939 API Manual, V1.2

3 Specifications of the J1939 Protocol
The SAE J1939 protocol is described in detail in several specification docu-
ments. The structure of the documents is based to a large extent on the OSI
layer model. A corresponding specification was created for each layer in the
OSI layer model. The diagram below shows the assignment of each
specifiation document to the according layer of the OSI model.

Application

Presentation

Session

Data Link

Network

Transport

Physcal

SAE J1939/71

SAE J1939/21

SAE J1939/31

SAE J1939/21

SAE J1939/11

S
A
E

1

3

1
J

9

9

8
/

DocumentsLayer

1

3

2

4

5

6

7

Fig. 3.1: J1939 protocol in OSI layer model

SAE J1939/11 defines a CAN high-speed bus interface in accordance with
ISO/DIS 11898.
SAE J1939/21 describes the data communication via CAN based on the speci-
fication CAN2.0B. Only the extended format is used with this specification. Be-
sides the segmentation and use of the 29-bit CAN identifier, the specification
essentially describes the fragmented transmission of large data blocks.
SAE J1939/31 describes the functionality of a bridge. This functionality is not
implemented in this protocol software.
SAE J1939/71 describes the actual data of a message. It is also shown that
each J1939 message has a unique reference number (Parameter Group
Number).
SAE J1939/81 describes the functionality of the network management. The
network management can be regarded as an independent unit that includes
functions within all layers – from layer 7 to layer 1. This is why this block is
displayed as an independent functional block.

The above-mentioned specifications, which are not necessary for the use
of this product, can be obtained from the SAE website (www.sae.org).

Getting Started

Copyright IXXAT Automation GmbH 8 J1939 API Manual, V1.2

4 Getting Started
In the following sections, the loading of the API is discussed, organized by the
implementation environment. The technique differs based on the environment.
The source of the initialization arguments used in the examples is discussed in
the next chapter.

4.1 Loading into an ANSI-C Project
The C-wrapper for the J1939 API is delivered as a header file (j1939api_c.h), a
library file (j1939api_c.lib) and a DLL (j1939api_c.dll) and is loaded by includ-
ing the header-file and linking the library. The DLL is automatically linked with
the library file from the system directory.
The API instance is created via the function J1939Api_Create() which, on suc-
cessful initialization of the API, delivers a handle via reference to the instance.
All subsequent functionality of the API require the inclusion of the instance
handle as the first argument of the function. In this way, the object-oriented
functionality of the class is exposed in a non-object-oriented way. The instance
is deleted using the J1939Api_Destroy() command or with the unloading of the
DLL.
The C-wrapper requires the j1939api_types.h header-file for the the definition
of required types, defines, structures and macros and the j1939api_err.h
header-file for return value and error message definitions.
For more information on the use of the J1939 API in C, see chapter 7 ‘Demo
Applications’, or refer directly to the demo project provided with the installation.

4.2 Loading into a C++ Project
Like the C-Wrapper, the C++-wrapper for the J1939 API is delivered as a
header file (j1939api_cpp.h), a library file (j1939api_cpp.lib) and a DLL
(j1939api_cpp.dll) and is loaded by including the header-file and linking the
library. The DLL is automatically linked with the library file from the system di-
rectory.
The API instance is handled as a standard C++ class object. The object is
created using the standard constructor and then initialized via the function Ini-
tialize(). The functions are provided as part of the objects class. The instance
is deleted using the ‘delete’ keyword or by allowing the instance to go out of
scope.
The C++-wrapper requires the j1939api_types.h header-file for the definition of
required types, defines, structures and macros and the j1939api_err.h header-
file for return value and error message definitions.
For more information on the use of the J1939 API in C++, see chapter 7
‘Demo Applications’, or refer directly to the demo project provided with the in-
stallation.

Getting Started

Copyright IXXAT Automation GmbH 9 J1939 API Manual, V1.2

4.3 Loading into a Python Script
For development using the python wrapper of the API, a Python installation of
version 2.5 or newer is required. The wrapper is delivered as a python inter-
face class (J1939api.py), a wrapper class (J1939_wrap.py) and a library
(_J1939_wrap.pyd). The wrapper can be loaded by importing the file j1939.py
which is installed with the API. To load the wrapper class, import the module
‘ixxat.j1939api.J1939api’ and create and initialize the object using the J1939()
constructor.
For more information on the use of the J1939 API in Python, see chapter 7
‘Demo Applications’, or refer directly to the demo project provided with the in-
stallation.

Message Interpretation

Copyright IXXAT Automation GmbH 10 J1939 API Manual, V1.2

5 Message Interpretation
The J1939 API provides message data on the parameter level. Therefore the
suspect parameters of a parameter group (J1939 message) are interpreted via
a XML configuration file, which can be generated by the J1939 Designer.

5.1 Configuration File
The configuration file contains standard and proprietary parameter group defi-
nitions in XML format. Every paramater group consists of one or more suspect
parameters and is identified by the PGN. The definition of a parameter group
contains, besides the suspected parameters, the data length of the parameter
group in bytes, which can be variable (e.g. if ASCII parameters are included).
The suspect parameters, which are identified by the SPN, are also defined in
the configuration file. The definition of a suspect parameter includes the re-
quired information for parameter interpretation, like parameter type (integer,
float, ASCII, binary, bit field, BLOB), unit, resolution and offset.

5.2 J1939 Designer
The J1939 Designer is a powerful tool for generating XML configuration files
for the J1939 Windows API and the J1939 canAnalyser Module, as well as
source code for the J1939 Micro and Standard Protocol Software. The delivery
of the J1939 API includes the J1939 Designer for Windows API (full version of
Editor and API Code Generator together with demo versions of the J1939 Mi-
cro and Standard Stack Generators are included). The Editor of the J1939 De-
signer allows the definition of proprietary messages in an easy and comforta-
ble way. By pressing the ‘Generate’ button, the API Code Generator will be
started and a XML configuration file with the defined proprietary messages will
be generated. In case that the J1939 Micro or Standard Protocol Software is
used, the defined proprietary messages can also be included in the corre-
sponding application. See the J1939 Designer Manual for further information.

Interface to the Application

Copyright IXXAT Automation GmbH 11 J1939 API Manual, V1.2

6 Interface to the Application
The interfaces to the application for the various programming language envi-
ronments do not differ with respect to provided functionality, instead in the call-
ing style, instance maintenance and parameter structure. To this point, a gen-
eral description of the functionality of the J1939 API is made in this chapter,
and can be applied to all supported programming language interfaces.

For a specific interface description of each programming language, please
refer to the corresponding online documentation, which is located under
the ‘doc’ directory. The online documentation can also be accessed via the
‘Start’ menu, under ‘IXXAT->J1939->API->Doc’. Because the online doc-
umentation contains HTML-Frames and JavaScript for navigation, JavaS-
cript has to be enabled in your browser, to ensure that the online documen-
tation is displayed properly.

6.1 General Structures
The message and parameter structures, which are used to send and receive
J1939 messages, take in a central part in the J1939 API. Therefore their pa-
rameters are described in detail in the following.

6.1.1 Message Structure
The entry Pgn contains the 17-bit parameter group number (16-bit PGN plus
page bit) of the message. This functions as both an identifier for the message
in the J1939 network and instructs the API how to encode or decode the mes-
sage.
The entry Priority contains the 3-bit priority value of the message. This entry is
only relevant for message transmission and not passed by the stack with re-
ception messages.
The entry RemoteDevice contains the 8-bit device address associated with the
message. For received messages, this is the originating device (source). For
messages to be transmitted, this is the target device (destination). The ad-
dress for the device controlled by the API is set during initialization as the first
parameter of the initialization function (device address).
The entry MsgType contains message type information, currently consisting of
the reception message type and a message flag, which signals if the message
was sent global or specific. The reception message types ‘DATA’ (mapped da-
ta message), ‘RAW’ (raw data message), ‘REQ’ (request message) and ‘ERR’
(error message) are supported.
The entry ParamCount defines the number of suspect parameters in the pa-
rameter group. If the number of parameters passed to the send function does
not equal that expected by the XML configuration file, an encoding error is re-
turned. For raw messages, this entry is instead a byte-length indicator. For re-
quest messages, this is always 0. For error messages, this is always 2.

Interface to the Application

Copyright IXXAT Automation GmbH 12 J1939 API Manual, V1.2

The entry Parameters contains the suspect parameter values as an array of
32-bit unsigned integers. For raw data messages, the individual bytes can be
retrieved using specific macros (see chapter 7 ‘Demo Applications’). When
supported messages are exchanged, ASCII strings can be passed via a 32-bit
pointer to a single-byte width character array or string. For request messages,
the parameters are unused. For error messages, the element with index 0 con-
tains the 16-bit error value from the J1939 API software and the element with
index 1, the 32-bit additional value info.

6.1.2 Parameter Structure
The entry Name contains the parameter name, as specified by the J1939
standard and represented by an ASCII string.
The entry Resolution contains the multiplier for converting between the real
parameter value and the 32-bit unsigned integer passed via the message
structure. This value is represented by a double type, but can represent an in-
teger, double or no-value (ASCII) depending on the parameter type.
The entry Offset contains the offset for converting between the real parameter
value and the 32-bit unsigned integer passed via the message structure. This
value is represented by a double type, but can represent an integer, double or
no-value (ASCII) depending on the parameter type.
The entry ValueMin contains the minimum allowable value for the real parame-
ter value. This value is represented by a double type, but can represent an in-
teger, double or no-value (ASCII) depending on the parameter type.
The entry ValueMax contains the maximum allowable value for the real pa-
rameter value. This value is represented by a double type, but can represent
an integer, double or no-value (ASCII) depending on the parameter type.
The entry Type contains the parameter type, which specifies what types of
values are contained in the preceding double type variables as well as how the
parameter should be converted. The parameter types are adopted from the
SAE J1939 specification and could be one of the following types: integer, float,
ASCII, bit-field or binary (see also the example in chapter 7 ‘Demo Applica-
tions’).
The entry Unit contains the unit text, represented by an ASCII string.

6.2 General Functionality
To give a common overview of the functionality of the J1939 API, some gen-
eral comments about initialization, message registration, message transmis-
sion, message reception and error handling are made in this chapter.

6.2.1 Initialization of the API
The initialization of the J1939 API always requires the following parameters:
an 8-bit device address, a device name structure, the VCI V3 board index, the
CAN line and the XML configuration file.

Interface to the Application

Copyright IXXAT Automation GmbH 13 J1939 API Manual, V1.2

The device address is specified in the J1939 specification and is used for
J1939 device identification. It will be included with all transmitted messages in
the source address field.
The device name is also specified in the J1939 specification and is used for
address claiming. It is included as the data field of the J1939 NAME message,
which is sent upon initialization of the device with the J1939 network (see the
J1939/81 specification for more information about the device name).
The board index specifies which CAN interface board to use. The VCI V3
maintains a current list of installed devices. The list can be retrieved using the
function ‘GetBoardList()’. The index corresponds to the index in the list re-
turned by the function.
The can line specifies which CAN line to use on a particular CAN interface
board. Boards can support a varying number of CAN lines.
The configuration file contains a list of supported PGs and SPs in XML format
for usage with the J1939 API and information regarding the mapping and de-
mapping of parameters to J1939 supported CAN messages. The XML file can
be configured to include user proprietary messages using the provided config-
uration tool. An example configuration file is provided with the installation. The
PGs not included in this file can still be transmitted and received, but must be
transmitted and received as raw, or unmapped, messages. In this case, the
32-bit parameter array is handled rather as byte array memory, access to
which can be handled using the provided macros or using direct memory copy-
ing or writing functions (see also the example in chapter 7 ‘Demo Applica-
tions’).
The initialization must be performed for all instances of the API. The VCI V3 is
developed so as to allow multiple instances and applications simultaneous ac-
cess to the same hardware.

6.2.2 Registration / Deregistration of PGNs
Before J1939 messages can be received, they must be registered with the
stack. This is done via the various registration functions. The PGN is message
specific and defines the structure and contents of the data portion of the mes-
sage.
Successful registration of a PGN will return a non-negative value. ‘OK’ is re-
turned when the PGN is found within the loaded configuration file and indi-
cates the registration of a mapped PGN. ‘RAW’ indicates a PGN was not
found in the configuration file and will in all situations encode and decode
messages in raw format.
PGNs cannot be cleared individually. The clearing of the entire list of regis-
tered PGNs is performed using the clear PGN function.
Information regarding supported PGNs and SPNs can be retrieved using the
functions ‘ReadSpnList()’ and ‘ReadSpnAttr()’.

Interface to the Application

Copyright IXXAT Automation GmbH 14 J1939 API Manual, V1.2

6.2.3 Message Transmission
Messages are transmitted using the ‘Send()’ function. The message to be
transmitted is passed as a message structure (see chapter 6.1.1 ‘Message
Structure’) parameter along with a timeout value in milliseconds (-1 is infinite).
The result of a timeout of the ‘Send()’ function is signalled via the return value.
For messages with supported PGNs, the suspect parameters are mapped ac-
cording to the configuration file. Otherwise, the data field is filled byte-for-byte
with the contents of the parameter array (see Chapter 7 ‘Demo Applications’).
Setting the raw message type in the message type byte forces raw encoding
of the message, even for supported messages.
The rest of the message type field is ignored, because the ‘Send()’ function
only supports data messages and globally transmitted messages are specified
by the destination address. Error messages are generated by the stack and
therefore not transmitted over CAN and request messages originating at the
API can be transmitted using the J1939 request message (PGN: 0xEA00, Da-
ta: <17-bit requested PGN>).
It is necessary for the successful encoding of mapped messages that the cor-
rect number of suspect parameters for the corresponding PG are passed to
the function.

6.2.4 Message Reception
Messages are received using the ‘Receive()’ function. Because the messages
are received asynchronously, the API stores them in a message reception
queue. This means that it is necessary for the user application to regularly
empty the reception queue. If this is not done queue overruns can quickly oc-
cur.
The receive function is passed a timeout value in milliseconds (-1 is infinite)
and returns a message structure (see chapter 6.1.1 ‘Message Structure’), ei-
ther as a return parameter or via a passed structure pointer. The receive func-
tion waits on the reception queue for the duration of the timeout. The result of
a timeout of the receive function is signalled via the return value.
For data messages with supported PGNs, the parameters are mapped accord-
ing to the configuration file. Otherwise, the data field is mapped directly to the
32-bit parameter array and accessed either via the provided macros or using
direct memory copy or read functions (see example in chapter 7 ‘Demo Appli-
cations’.
Because the messages are received from the CAN network, there is no possi-
bility for forcing raw encoding, and it is assumed that messages received over
the network have the correct J1939 structure for their PGNs. A raw decoded
message indicates this with the raw message type in the message type byte.
The reception of a request message is indicated with the request message
type in the message type byte. In this case the message structure does not
contain the PGN of the request message, which is always 0xEA00, but the re-

Interface to the Application

Copyright IXXAT Automation GmbH 15 J1939 API Manual, V1.2

quested PGN. As response the data of the requested PGN has to be sent to
the device which requested it.
The message type byte also contains a global message flag, which is set to
indicate the reception of a global message.

6.2.5 HRESULTs / Error Exceptions
Every function of the API returns a value with the results of the function call. In
most cases, this value should be 0 (OK). When cast as signed 32-bit integers,
all error results are negative. The result values are represented in C/C++ code
as HRESULTs (long integer) and in Python they are delivered as the value of
a thrown exception. The result values can help the programmer evaluate the
success of a function call and diagnose the cause of an error. With help of the
‘GetHRESULTString()’ or ‘GetExceptionString()’ function, the description to a
HRESULT or an exception code can be determined.

6.2.6 Error Messages
Because the J1939 API maintains its own task, errors can occur unbound to a
specific function call instance. Those errors are entered as messages into the
message queue, with the msgtype set to ‘ERR’ and the error code entered into
the first element of the message parameters array. An additional error infor-
mation is entered into the second element. With help of the ‘GetErrorString()’
function, the error description to an error code can be determined.

Demo Applications

Copyright IXXAT Automation GmbH 16 J1939 API Manual, V1.2

7 Demo Applications
Demonstration applications are delivered with the API for all supported devel-
opment languages. The demos themselves are essentially translations into the
various languages of one program, which is described in this chapter.
The first sub-chapter describes the structure and the coding of the demonstra-
tion application, which can aid the user in writing their own code.
The second sub-chapter describes the steps necessary, and the expected re-
sults of running the demonstration application.

7.1 Application Structure
The demo application is split into three specific units: The decode unit is a li-
brary for the conversion and display of received messages to and in user for-
mat. The executable demo1 maintains a reception polling loop that displays
received messages and responds to request messages. The executable
demo2 maintains a loop for transmitting messages cyclically and displaying
request response messages.
For all applications, in the case of errors in calling an API function, the
GetHRESULTString() or GetExceptionString() function is used with the re-
turned result code to retrieve a string description of the error.
The three units are discussed in more details in the following sub-chapters.

7.1.1 Decode
The decode library contains one function: MsgDecoder(). The function is
passed access to the API instance on which the message was received, as
well as the received message.
Initially the function determines the type of messages received. Request mes-
sages are not handled, since they must be responded to immediately by the
demo1 exectuable, and therefore are sorted out at that stage. Raw messages
are displayed as a list of bytes from the parameter list. Error messages are
retrieved using the first parameter list entry and the GetErrorString() function
and displayed along with their additional information parameter.
Data messages must be further interpreted. This is accomplished using the
ReadSpnList() and ReadSpnAttr() functions. Initially, the list of SPNs are re-
trieved from the API instance. For each SPN in the SPN list, the individual at-
tributes are retrieved from the API instance, which then can be used for the
conversion of the parameter value. For applicable parameter types, the con-
version formula is:

user / display value = parameter value * resolution + offset

Since the parameters can represent a variaty of SPN types, the resolution and
offset are maintained as double types in the parameter attribute structure. De-

Demo Applications

Copyright IXXAT Automation GmbH 17 J1939 API Manual, V1.2

pending on the language, casting is important for the correct calculation of us-
er values.

 integer types are calculated by casting the resolution and offset to inte-

gers and performing the conversion. They are displayed along with their
unit string.

 float types are calculated by casting the parameter value as a double
and performing the conversion. They are displayed along with their unit
string.

 ASCII types are returned as a pointer to a string which is located in the
return parameter array. These should be cast as a string and displayed.
Because they are stored in the parameter array, these strings must not
be freed.

 binary types represent unitless values. They are converted like the inte-
ger types using unsigned integer castings, and are displayed in
hexidecimal format without a unit string.

 BitField types represent data that is specified in the J1939 specification
or by the user directly. There is, therefore, no conversion for these val-
ues and they are displayed in decimal format without a unit string. Full
support for the retrieval of specified BitField values is not included in this
version of the API.

 BLOBs are used for the transmission of binary data with variable length.

7.1.2 Demo1
The first demo executable performs the following functions.
Initially, the application retrieves and displays a list of available boards from
the VCI (via the board list retrieval function). Following the successful retrieval
of the board list, an instance of the API is created and initialized, using board
index 0 and CAN line 0 (first CAN on first board), along with an arbitrary device
NAME and an appropriate XML configuration file (one that at-least supports
the PGNs used in this demonstration). The XML configuration file is located in
the directory of the demonstration application.
Following successful initialization of the API, including waiting for stack activa-
tion by monitoring the stack status, the necessary PGNs for the demonstration
are registered with the API (one standard supported PGN, one raw cyclical
PGN at 1.1 second cycles, one request PGN and one user-defined PGN con-
taining all supported parameter types) and a message is specified for trans-
mission in response to request messages.
The message reception is then repeatedly polled until a message is received
(timeouts are ignored). Request messages are responded to directly. All other
messages are forwarded to the decode unit for display.

Demo Applications

Copyright IXXAT Automation GmbH 18 J1939 API Manual, V1.2

For more information on the specific messages transmitted and received in the
demonstration application, see Chapter 7.3 ‘Message Specifications’.

7.1.3 Demo2
The second demo executable performs the following functions.
Like the first, the second initially retrieves and displays the list of available
boards and initializes an API instance using board index 0 and CAN line 1 (se-
cond CAN on first board). After the stack state goes active, the application ini-
tializes the set of messages to send to the first demo application (one standard
supported PGN, one raw cyclical PGN, one request PGN and one user de-
fined PGN).
The application cycles every 100 ms and within each cycle transmits one of
each of these messages and checks the reception queue for a request re-
sponse.
For more information on the specific messages transmitted and received in the
demonstration application, see Chapter 7.3 ‘Message Specifications’.

7.2 Running the Application
Before starting the demos, the selected board index and CAN lines can be
adapted. It’s also possible to run both demos on the same CAN line of the
same board. But in this case some sort of remote CAN device is required for
successful administration of the demo applications. This can be performed by
starting an instance of the IXXAT canAnalyser or MiniMon or any other J1939
device on the same network as the demonstration application.
The functionality of the API also requires a valid XML configuration file. In the
event that the initialization fails, the first recourse to ensure that the correct
path is specified to find the XML file delivered with the demo applications. The
C and C++ demo applications should automatically copy the delivered
J1939api.xml to the target directory, where they can be accessed by directly
clicking on the generated executables.

Demo Applications

Copyright IXXAT Automation GmbH 19 J1939 API Manual, V1.2

7.3 Message Specifications
To demonstration the functionality of the API over J1939, various message
types are transmitted via the demo applications. The following messages are
utilized in the demonstration process:

7.3.1 PGN 65128 (0xFE68) – Vehicle Fluids – VF
The Vehicle Fluids PGN is a straightforward J1939 message and is used to
demonstrate the transmission and reception of a standard, supported, mapped
message. Because of the PGN of the message, it must always be transmitted
globally. In the demo, the priority is set to six and the message type to ‘DATA’.
The following is the specification of the PGN according to the XML configura-
tion file:

PGN 65128
Name Vehicle Fluids
Acronym VF
Length 8 bytes
SPN List SPN Start-bit

1638 1
1713 9
1857 11
2602 17

7.3.1.1 SPN 1638 – Hydraulic Temperature
The SPN is specified by the XML configuration file as follows:

SPN 1638
Name Hydraulic Temperature
Resolution 1.0
Data-Max -
Bit-Length 8
Type Float
J1939 Standard true
Unit “C”
Offset -40.0
Data-Min -

Demo Applications

Copyright IXXAT Automation GmbH 20 J1939 API Manual, V1.2

In the demo, the value of this SPN is set and transmitted as 240, which repre-
sents the value 200 degrees C.

7.3.1.2 SPN 1713 – Hydraulic Oil Filter Restriction Switch
The SPN is specified by the XML configuration file as follows:

SPN 1713
Name Hydraulic Oil Filter Restriction

Switch
Resolution -
Data-Max 3
Bit-Length 2
Type BitField
J1939 Standard true
Unit “bit”
Offset -
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 2, which, as a
BitField type, will not be converted, rather displayed as a unitless value. Ac-
cording to the J1939 specification, the value 2 indicates an error with the read-
ing.

7.3.1.3 SPN 1857 – Winch Oil Pressure Switch
The SPN is specified by the XML configuration file as follows:

SPN 1857
Name Winch Oil Pressure Switch
Resolution -
Data-Max 3
Bit-Length 2
Type BitField
J1939 Standard true
Unit “bit”
Offset -
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 1, which, as a
BitField type, will not be converted, rather displayed as a unitless value. Ac-

Demo Applications

Copyright IXXAT Automation GmbH 21 J1939 API Manual, V1.2

cording to the J1939 specification, the value 1 indicates an acceptable oil
pressure.

7.3.1.4 SPN 2602 – Hydraulic Oil Level
The SPN is specified by the XML configuration file as follows:

SPN 2602
Name Hydraulic Oil Level
Resolution 0.4
Data-Max -
Bit-Length 8
Type Float
J1939 Standard true
Unit “%”
Offset 0.0
Data-Min -

In the demo, the value of this SPN is initially set and transmitted as 0, but is
incremented every cycle, which is represented upon message decoding as the
series beginning with 0% and increasing by 0.4% each transmission.

7.3.2 PGN 65226 (0xFECA) – Active DTCs – DM01
The DM01 is a diagnostic message and is used to demonstrate the transmis-
sion and reception of a PGN with variable data length. The length of the data
field depends on the number of DTCs included in the message. In the demo,
the priority is set to six and the message type to ‘DATA’.

PGN 65226
Name Active DTCs
Acronym DM01
Length Variable
SPN List See SAE J1939/73 Standard

The DM01 consists of the lamp status (a) and a variable number of DTCs.
Every DTC includes the SPN (b), FMI (c) and CM together with OC (d). The
message forms looks as follows: a, b, c, d, b, c, d, b, c, d, … etc. In the demo
application the number of DTCs varies between 0 and 3.

Demo Applications

Copyright IXXAT Automation GmbH 22 J1939 API Manual, V1.2

7.3.3 PGN 55040 (0xD700) – Binary Data Transfer – DM16
The DM16 is a diagnostic message and is used to demonstrates the data type
BLOB. BLOBs are used for the transmission of binary data with variable
length. The DM16 is part of the Memory Access Protocol (DM14 to DM18), but
in the demo the other memory access messages are not considered, because
they are not relevant to demonstrate binary large objects.

PGN 55040
Name Binary Data Transfer
Acronym DM16
Length Variable
SPN List SPN Start-bit

1650 1
1651 9

7.3.3.1 SPN 1650 – Length of Raw Binary Data
The SPN is specified by the XML configuration file as follows:

SPN 1650
Name Number of Occurrences of Raw

Binary Data
Resolution 1
Data-Max 255 (0xFF)
Bit-Length 8
Type Integer
J1939 Standard TRUE
Unit Count
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 5, which is num-
ber of occurrences of raw data (bytes 2-6).

Demo Applications

Copyright IXXAT Automation GmbH 23 J1939 API Manual, V1.2

7.3.3.2 SPN 1651 –Raw Binary Data
The SPN is specified by the XML configuration file as follows:

SPN 1651
Name Raw Binary Data
Resolution 1
Data-Max -
Bit-Length 8
Type BLOB
J1939 Standard TRUE
Unit -
Offset 0
Data-Min -

In the demo, all five bytes of the binary large object are set to 0xFF. The
decoder does not display the binary data of the BLOB data type. It just signals
that binary data has been received successfully.

7.3.4 PGN 59904 (0xEA00) – Request – RQST
The Request PGN simply contains the PGN of the desired response message
and is used by the demo to demonstrate the reqeust process. The message is
not transmitted globally. In the demo, the priority is set to six and the message
type to ‘DATA’, however, due to the special nature of this message,it is
received by the demo1 application as a request message type. The following
is the specification of the PGN according to the XML configuration file:

PGN 59904
Name Request
Acronym RQST
Length 3 bytes
SPN List SPN Start-bit

2540 1

Demo Applications

Copyright IXXAT Automation GmbH 24 J1939 API Manual, V1.2

7.3.4.1 SPN 2540 – Parameter Group Number (RQST)
The SPN is specified by the XML configuration file as follows:

SPN 2540
Name Parameter Group Number

(RQST)
Resolution 1
Data-Max 16777215 (0xFFFFFF)
Bit-Length 24
Type Binary
J1939 Standard true
Unit “binary”
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 65213, which is
the value of the desired response message, described in the next sub-chapter.

7.3.5 PGN 65213 (0xFEBD) – Fan Drive – FD
The Fan Drive PGN is a supported, mapped message which demonstrates the
request capabilities and therefore transmitted from the demo1 application. This
message is not transmitted globally, rather to the specific address received as
the source of the request message. In the demo, the priority is set to six and
the message type to ‘DATA’. The following is the specification of the PGN ac-
cording to the XML configuration file:

PGN 65213
Name Fan Drive
Acronym FD
Length 8 bytes
SPN List SPN Start-bit

975 1
977 9
1639 17
4211 33
4212 49

Demo Applications

Copyright IXXAT Automation GmbH 25 J1939 API Manual, V1.2

7.3.5.1 SPN 975 – Estimated Percent Fan Speed
The SPN is specified by the XML configuration file as follows:

SPN 975
Name Estimated Percent Fan Speed
Resolution 0.4
Data-Max -
Bit-Length 8
Type Float
J1939 Standard true
Unit “%”
Offset 0.0
Data-Min -

In the demo, the value of this SPN is set and transmitted as 120, which repre-
sents the value 48%.

7.3.5.2 SPN 977 – Fan Drive State
The SPN is specified by the XML configuration file as follows:

SPN 977
Name Fan Drive State
Resolution -
Data-Max 15
Bit-Length 4
Type BitField
J1939 Standard true
Unit “bit”
Offset -
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 2, which, as a
BitField type, will not be converted, rather displayed as a unitless value. Ac-
cording to the J1939 specification, the value 2 indicates excessive engine air
temperature.

Demo Applications

Copyright IXXAT Automation GmbH 26 J1939 API Manual, V1.2

7.3.5.3 SPN 1639 – Fan Speed
The SPN is specified by the XML configuration file as follows:

SPN 1639
Name Fan Speed
Resolution 0.125
Data-Max -
Bit-Length 16
Type Float
J1939 Standard true
Unit “rpm”
Offset 0.0
Data-Min -

In the demo, the value of this SPN is initially set and transmitted as 2, but is
increased by 100 every request reception, which is represented upon mes-
sage decoding as the series beginning with 0.250 rpm and increasing by
12.500 rpm each transmission.

7.3.5.4 SPN 4211 – Hydraulic Fan Motor Pressure
The SPN is specified by the XML configuration file as follows:

SPN 4211
Name Hydraulic Fan Motor Pressure
Resolution 0.5
Data-Max -
Bit-Length 16
Type Float
J1939 Standard true
Unit “kPa”
Offset 0.0
Data-Min -

In the demo, the value of this SPN is set and transmitted as 32000, which
represents the value 16,000 kPa.

Demo Applications

Copyright IXXAT Automation GmbH 27 J1939 API Manual, V1.2

7.3.5.5 SPN 4212 – Fan Drive Bypass Command Status
The SPN is specified by the XML configuration file as follows:

SPN 4212
Name Fan Drive Bypass Command Status
Resolution 0.4
Data-Max -
Bit-Length 8
Type Float
J1939 Standard true
Unit “%”
Offset 0.0
Data-Min -

In the demo, the value of this SPN is set and transmitted as 1000, which rep-
resents the value 400%.

7.3.6 PGN 61467 (0xF01B) – Undefined
The undefined PGN, 61467, is used to demonstrate the transmission and re-
ception of an unsupported, raw message. Because of the PGN of the mes-
sage, it must always be transmitted globally. In the demo, the priority is set to
six and the message type to raw. The data of the message is set as an 8-byte
array of the series 1..8.

Demo Applications

Copyright IXXAT Automation GmbH 28 J1939 API Manual, V1.2

7.3.7 PGN 45312 (0xB100) – MyMessage
The MyMessage PGN is a user defined message specifically defined for the
demo application and containing one of every parameter type. Because of its
length, it is transmitted as a segmented message. This message is not trans-
mitted globally. In the demo, the priority is set to six and the message type to
‘DATA’. The following is the specification of the PGN according to the XML
configuration file:

PGN 45312
Name MyMessage
Acronym
Length 16 bytes
SPN List SPN Start-bit

520192 1
520193 9
520194 17
520195 19
520196 25

7.3.7.1 SPN 520192 – MyIntParam
The SPN is specified by the XML configuration file as follows:

SPN 520192
Name MyIntParam
Resolution 1
Data-Max 255
Bit-Length 8
Type Integer
J1939 Standard false
Unit “Volt”
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 1, which repre-
sents the value 1 Volt.

Demo Applications

Copyright IXXAT Automation GmbH 29 J1939 API Manual, V1.2

7.3.7.2 SPN 520193 – MyFloatParam
The SPN is specified by the XML configuration file as follows:

SPN 520193
Name MyFloatParam
Resolution 0.1
Data-Max 25
Bit-Length 8
Type Float
J1939 Standard false
Unit “°C“
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 2, which repre-
sents the value 0.2 degrees C.

7.3.7.3 SPN 520194 – MyBitFieldParam
The SPN is specified by the XML configuration file as follows:

SPN 520194
Name MyBitFieldParam
Resolution 1
Data-Max 3
Bit-Length 2
Type BitField
J1939 Standard false
Unit
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 3, which, as a
BitField type, will not be converted, rather displayed as a unitless value. Be-
cause this parameter is only defined for this demo application, the value 3 has
no defined meaning.

Demo Applications

Copyright IXXAT Automation GmbH 30 J1939 API Manual, V1.2

7.3.7.4 SPN 520195 – MyBinaryParam
The SPN is specified by the XML configuration file as follows:

SPN 520195
Name MyBinaryParam
Resolution 1
Data-Max 15
Bit-Length 4
Type Binary
J1939 Standard false
Unit
Offset 0
Data-Min 0

In the demo, the value of this SPN is set and transmitted as 4, which, as a bi-
nary type, will not be converted, rather displayed as a unitless value. Because
this parameter is only defined for this demo application, the value 4 has no de-
fined meaning.

7.3.7.5 SPN 520196 – MyStringParam
The SPN is specified by the XML configuration file as follows:

SPN 520196
Name MyStringParam
Resolution
Data-Max
Bit-Length 104
Type ASCII
J1939 Standard false
Unit
Offset
Data-Min

In the demo, the value of this SPN is set to the UINT32 casted address of the
constant string, “HelloWorld!”.

Support

Copyright IXXAT Automation GmbH 31 J1939 API Manual, V1.2

8 Support
For more information on our products, FAQ lists and installation tips, please
refer to the support area on our homepage (http://www.ixxat.de). There you
will also find information on current product versions and available updates.
If you have any further questions after studying the information on our homep-
age and the manuals, please contact our support department. In the support
area on our homepage you will find the relevant forms for your support re-
quest. In order to facilitate our support work and enable a fast response,
please provide precise information on the individual points and describe your
question or problem in detail.
If you would prefer to contact our support department by phone, please also
send a support request via our homepage first, so that our support department
has the relevant information available.

http://www.ixxat.de/�

	1 Introduction
	1.1 Definitions, Acronyms, Abbreviations

	2 Installation
	2.1 Requirements
	2.2 Setup

	3 Specifications of the J1939 Protocol
	4 Getting Started
	4.1 Loading into an ANSI-C Project
	4.2 Loading into a C++ Project
	4.3 Loading into a Python Script

	5 Message Interpretation
	5.1 Configuration File
	5.2 J1939 Designer

	6 Interface to the Application
	6.1 General Structures
	Message Structure
	Parameter Structure

	6.2 General Functionality
	6.2.1 Initialization of the API
	6.2.2 Registration / Deregistration of PGNs
	6.2.3 Message Transmission
	6.2.4 Message Reception
	6.2.5 HRESULTs / Error Exceptions
	6.2.6 Error Messages

	7 Demo Applications
	7.1 Application Structure
	7.1.1 Decode
	7.1.2 Demo1
	7.1.3 Demo2

	7.2 Running the Application
	7.3 Message Specifications
	7.3.1 PGN 65128 (0xFE68) – Vehicle Fluids – VF
	7.3.1.1 SPN 1638 – Hydraulic Temperature
	7.3.1.2 SPN 1713 – Hydraulic Oil Filter Restriction Switch
	7.3.1.3 SPN 1857 – Winch Oil Pressure Switch
	7.3.1.4 SPN 2602 – Hydraulic Oil Level

	7.3.2 PGN 65226 (0xFECA) – Active DTCs – DM01
	7.3.3 PGN 55040 (0xD700) – Binary Data Transfer – DM16
	7.3.3.1 SPN 1650 – Length of Raw Binary Data
	7.3.3.2 SPN 1651 –Raw Binary Data

	7.3.4 PGN 59904 (0xEA00) – Request – RQST
	7.3.4.1 SPN 2540 – Parameter Group Number (RQST)

	7.3.5 PGN 65213 (0xFEBD) – Fan Drive – FD
	7.3.5.1 SPN 975 – Estimated Percent Fan Speed
	7.3.5.2 SPN 977 – Fan Drive State
	7.3.5.3 SPN 1639 – Fan Speed
	7.3.5.4 SPN 4211 – Hydraulic Fan Motor Pressure
	7.3.5.5 SPN 4212 – Fan Drive Bypass Command Status

	7.3.6 PGN 61467 (0xF01B) – Undefined
	7.3.7 PGN 45312 (0xB100) – MyMessage
	7.3.7.1 SPN 520192 – MyIntParam
	7.3.7.2 SPN 520193 – MyFloatParam
	7.3.7.3 SPN 520194 – MyBitFieldParam
	7.3.7.4 SPN 520195 – MyBinaryParam
	7.3.7.5 SPN 520196 – MyStringParam

	8 Support

