

Communication protocol MODBUS RTU used in AD4RS, AD4USB and Drak 4

Comprehensive protocol description

MODBUS RTU

Datasheet

Created: 7.9.2007

Last update: 7.2 2011 12:45

Pages: 16

© 2011 Papouch s.r.o.

Papouch s.r.o.

Address:

Strašnická 3164/1a 102 00 Praha 10 Czech Republic

Telephone:

+420 267 314 267-8

+420 602 379 954

Fax:

+420 267 314 269

Internet:

www.papouch.com

E-mail:

info@papouch.com

CONTENT

DESCRIPTION4	
Basic communication parameters4	
List of Changes5	
AD4RS and AD4USB5	
Drak 45	
MEMORY organization6	
Holding Register6	
Input Register6	
Detailed information on instructions7	
Communication parameters7	
Configuration permission7	
Address of the device7	
Serial line communication speed8	
Packet end distinction8	
Communication protocol9	
Channels10	
Values and current states of individual channels	10
Individual values11	
States of channels11	
Measured value – as an integer11	
Measured value – as a decimal number12	
Measured value – RAW value from ADC12	
Inputs and outputs13	
Reading the states of inputs13	
Reading the states of outputs14	
Output setup15	

DESCRIPTION

This document describes MODBUS RTU communication protocol used in measuring converters AD4RS and AD4USB and in the table measuring device Drak 4. The documentation of the hardware of the converters and the description of their functionality are available on the web site http://www.papouch.com/ (detailed documentation also downloadable in the PDF format).

Basic communication parameters

AD4RS

Communication speed ranging from 1.2 kBd to 115.2 kBd (default: 9,6 kBd)

Number of data bits......8

Parity.....no parity

Number of stop-bits...... 1

AD4USB

Communication speed 115 200 Bd (fixed)

Number of data bits...... 8

Parity.....no parity

Number of stop-bits...... 1

AD4ETH

It is not possible to switch AD4ETH to MODBUS RTU. In the family of MODBUS protocols, AD4ETH is able to use MODBUS TCP.

Drak 4

Communication speed ranging from 1.2 kBd to 115.2 kBd (default: 9.6 kBd)

Number of data bits......8

Parity.....no parity

Number of stop-bits......1

Starting address......0x31

Strana 4 www.papouch.com

Papouch s.r.o.

LIST OF CHANGES

AD4RS and AD4USB

version 05

Protocol MODBUS RTU added. It is only possible to switch AD4RS or AD4USB to MODBUS RTU protocol using a special instruction described below.

version 04

Changes only in the Spinel protocol.

version 03

Drak3 protocol added. Switching between the protocols is described in a separate document downloadable from the web page of AD4 modules.

Drak 4

version 01

First version.

MEMORY ORGANIZATION

Holding Register

Address	Access	Function	Name	Page
Communication	parameters			
0x0000	read, write	0x03, 0x10	Permission for configuration	7
0x0001	read, write	0x03, 0x10	Address (ID)	7
0x0002	read, write	0x03, 0x10	Communication speed	8
0x0004	read, write	0x03, 0x10	Packet end distinction	8
0x0005	read, write	0x03, 0x10	Communication protocol	9

Input Register

Address	Access	Function	Name	Page	
Values and state	Values and states of individual channels				
0x0000	read	0x03	Channel 1	10	
0x0004	read	0x03	Channel 2	10	
0x0008	read	0x03	Channel 3	10	
0x000C	read	0x03	Channel 4	10	
Values from channels sorted by the significance					
0x001E	read	0x03	Channels states	11	
0x0022	read	0x03	Values as integers	11	
0x0026	read	0x03	Values as float value	12	
0x002E	read	0x03	Net values from the internal converter	12	
Inputs and outputs ¹					
0x0000	read	0x02	Input states reading	13	
0x0000	read	0x01	Output states reading	14	
0x0000	read	0x05, 0x0F	Output setup	15	

Strana **6** www.papouch.com

Registers from this part are only available in the Drak 4 measuring device.

DETAILED INFORMATION ON INSTRUCTIONS

Communication parameters

Configuration permission

This instruction has to precede *any* configuration instruction. It is not allowed to write the Configuration permission for together with other parameters using Multiply write.

Function codes:

0x03 - Read Holding register

0x10 - Write Multiple registers

Memory position and length:

Starting address	2 Bytes	0x0000
Register count	2 Bytes	1

Parameters:

Number of bytes	1 Byte	2
Result	2 Bytes	0x00FF = configuration permission accepted

Address of the device

Address (ID) of the device. Devices connected to one communication interface must hold unique addresses. The address unambiguously identifies the device within the network. The default address is 0x31.

Function codes:

0x03 – Read Holding register

0x10 – Write Multiple registers

Memory position and length:

Starting address	2 Bytes	0x0001
Register count	2 Bytes	1

Parameters:

Number of bytes	1 Byte	2
Address	2 Bytes	Device address within the range 1 to 247

Serial line communication speed

To configure the speed of the communication line.

Function codes:

0x03 – Read Holding register

0x10 – Write Multiple registers

Memory position and length:

Starting address	2 Bytes	0x0002
Register count	2 Bytes	1

Parameters:

Number of bytes	1 Byte	2
		Speed code:
		1200 - 0003H
		2400 - 0004H
		4800 - 0005H
Speed code	2 Bytes	9600 - 0006H (default setting)
·	,	19200 - 0007H
		38400 - 0008H
		57600 - 0009H
		115200 - 000AH

Packet end distinction

To configure the delay between the bytes that will be understood as the end of the packet. The delay is entered as a number of bytes. It is possible to enter a value ranging from 4 to 100. The default value is 10.

Function codes:

0x03 – Read Holding register

0x10 – Write Multiple registers

Memory position and length:

Starting address	2 Bytes	0x0004
Register count	2 Bytes	1

Parameters:

Number of bytes	1 Byte	2
Delay	2 Bytes	The delay as a number of bytes. It is possible to enter a value ranging from 4 to 100.

Strana 8 www.papouch.com

Papouch s.r.o.

MODBUS RTU

Communication protocol

This function enables the device to be switched to a different protocol. There is a choice of several protocols depending on the device type. After sending the response, the device switches to the selected protocol and communicates through it from this point on. (Every protocol contains an instruction for switching between protocols.)

Function codes:

0x03 – Read Holding register

0x10 – Write Multiple registers

Memory position and length:

Starting address	2 Bytes	0x0005
Register count	2 Bytes	1

Parameters:

Number of bytes	1 Byte	2
Protocol code	2 Bytes	Protocol code: Spinel - 0001H MODBUS RTU - 0002H Drak3 - 0003H (AD4RS and AD4USB only) Drak4 - 0004H (Drak 4 only)

Channels

Values and current states of individual channels

This defines how to read the last measured value from all or from some of the converter's channels. It returns values as integers and also converted to decimal numbers (32 bit float according to IEEE 754).

The values are sent in two formats simultaneously. The first one is the 16bit value within the range from 0 to 10 000 (integer in the sequence of MSB:LSB). The second one is a value converted for the current range according to the current setup² as a decimal number in the 32 bit float format according to IEEE 754³.

Function codes:

0x04 - Read Input register

Memory position and length:

<i>7</i> 1	5	
Starting address	2 Bytes	Channel 1: 0x0000 Channel 2: 0x0004 Channel 3: 0x0008 Channel 4: 0x000C
Register count	2 Bytes	4

Parameters:

Number of bytes	1 Byte	8	
State	2 Bytes	Ox0000 – value is valid and within the range Ox0001 – value is not available yet Ox0002 – upper limit exceeded Ox0003 – lower limit exceeded (only for the current range of 4 to 20 mA) other values – other error	
INT value	2 Bytes	Measured value. Integer within the interval 0 to 10 000	
Float value 4 Bytes		Measured value. 32 bit float according to IEEE 754	

Strana 10 www.papouch.com

Setup of conversions is only possible with the Spinel protocol.

Description of the IEEE 754 standard is available for example on: http://en.wikipedia.org/wiki/IEEE_754

Individual values

States of channels

This is the way to read the states of all the channels at once.

Function codes:

0x04 - Read Input register

Memory position and length:

Starting address	2 Bytes	Channel 1: 0x001E Channel 2: 0x001F Channel 3: 0x0020 Channel 4: 0x0021
Register count	2 Bytes	4

Parameters:

Number of bytes	1 Byte	2
State	2 Bytes	Ox0000 – value is valid and within the range Ox0001 – value is not available yet Ox0002 – upper limit exceeded Ox0003 – lower limit exceeded (only for the current range of 4 to 20 mA) other values – other error

Measured value - as an integer

This is the way to read the states of all the channels at once. They are available here as signed integers, i.e. the measured value multiplied by ten (e.g. the value 25.6 is sent as 256).

Function codes:

0x04 - Read Input register

Memory position and length:

Starting address	2 Bytes	Channel 1: 0x0022 Channel 2: 0x0023 Channel 3: 0x0024
		Channel 4: 0x0025
Register count	2 Bytes	4

Parameters:

Number of bytes	1 Byte	2
Value INT	2 Byte	Measured value as a signed integer.

Measured value - as a decimal number

This is the way to read the states of all the channels at once. They are available here as 32 bit float numbers according to IEEE 754.

Function codes:

0x04 - Read Input register

Memory position and length:

<i>,</i> ,	•	
Starting address	2 Bytes	Channel 1: 0x0026 Channel 2: 0x0028 Channel 3: 0x002A Channel 4: 0x002C
Register count	2 Bytes	8

Parameters:

Number of bytes	1 Byte	4
Value float	4 Bytes	Measured value. 32 bit float according to IEEE 754.

Measured value - RAW value from ADC

This is the way to get values directly from the internal A/D converter without any conversion. Values are 16 bit numbers directly from the converter.

Function codes:

0x04 – Read Input register

Memory position and length:

<u> </u>		
Starting address	2 Bytes	Channel 1: 0x002E Channel 2: 0x002F Channel 3: 0x0030 Channel 4: 0x0031
Register count	2 Bytes	2

Parameters:

Number of bytes	1 Byte	2
Value float	2 Bytes	Measured 16 bit value from the converter.

Strana 12 www.papouch.com

Inputs and outputs

Reading the states of inputs

(This functionality is available only in the Drak 4 meter.)

This function code is dedicated for reading digital inputs for contact. It reads one or both inputs. The number of the first read input and the number of inputs to be read are specified here. The input addresses start from zero. The addresses of inputs 1 and 2 are 0 and 1.

In the response, inputs states are represented by individual bits. Value 1 means an active input (voltage is connected or contact is on), value 0 stands means an inactive input. The lowest bit in the first byte of the response represents the state of the first input that was addressed in the request.

Function codes:

0x02 - Read Discrete

Memory position and length:

Starting address	2 Bytes	0x0000 to 0xFFFF
Number of inputs	2 Bytes	1 or 2

Parameters:

Number of values	1 Byte	1
State	1 Byte	State of inputs

Example:

Example of the input reading.

Request:		
Function code	0x02	
MSB address	0x00	
LSB address	0x00	
Number of MSB inputs	0x00	
Number of LSB inputs	0x02	

Response:	
Function code	0x02
Number of bytes	0x01
State of inputs	0x01

The result of the request is the byte 0x01, which is 0000 0001 in the binary code. Individual bits correspond to the states of the inputs. The lowest bit represents the input number 1.

Reading the states of outputs

(This functionality is only available in the Drak 4 meter.)

This function code is dedicated for reading output states. The address of the output is 0.

In the response, output states are represented by individual bits. The value 1 means a connected output, the value 0 stands for a disconnected output. Output states are represented by the lowest bit in the first byte of the response.

Function codes:

0x01 - Read Coils

Memory position and length:

Starting address	2 Bytes	0x0000 to 0xFFFF
Number of outputs	2 Bytes	1

Response:

Number of values	1 Byte	1
State	1 Byte	Input state

Example:

Example of reading outputs 1 and 2.

Request:	
Function code	0x01
MSB address	0x00
LSB address	0x00
Number of MSB outputs	0x00
Number of LSB outputs	0x01

Response:		
Function code	0x01	
Number of bytes	0x01	
State of outputs	0x01	

The result of the request is the byte 0x01, which is 0000 0001 in the binary code. The second lowest bit is set. The output 1 is on. (The remaining bits are filled with zeros.)

Strana 14 www.papouch.com

Output setup

(This functionality is only available in the Drak 4 meter.)

This function code controls the output. The address of the output is 0.

The requested output states are specified in the variable *State of outputs*. The logical value 1 means the output is connected, the logical 0 means the output is disconnected.

Function codes:

0x05 - Write Single Coils

0x0F - Write Multiple Coils

Memory position and length:

Starting address	2 Bytes	0x0000 to 0xFFFF
Number of outputs	2 Bytes	1

Parameters:

Number of bytes	1 Byte	1
Values	1 Byte	State of the output

Example:

Example of output state writing:

Request:	
Function code	0x0F
MSB address	0x00
LSB address	0x00
Number of MSB outputs	0x00
Number of LSB outputs	0x01
Number of bytes	0x01
MSB values	0x00
LSB values	0x01

Response:	
Function code	0x0F
MSB address	0x00
LSB address	0x00
Number of MSB outputs	0x00
Number of LSB outputs	0x01

The result of the request is the byte 0x01, which is $0000\ 0001$ in the binary code. The output is connected. (The remaining bits are filled with zeros.)

Papouch s.r.o.

Data transmission in industry, line and protocol conversions, RS232/485/422/USB/Ethernet/GPRS/WiFi, measurement modules, intelligent temperature sensors, I/O modules, and custommade electronic applications.

Strašnická 3164/1a 102 00 Praha 10 Czech Republic

Telephone:

+420 267 314 267-8 +420 602 379 954

Fax:

+420 267 314 269

Internet:

www.papouch.com

E-mail:

info@papouch.com

