
Anybus® CompactCom™ 40

SOFTWARE DESIGN GUIDE
HMSI-216–125 3.0 ENGLISH

Important User Information
Liability
Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot as-
sume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights
HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications in
the USA and other countries.

Trademark Acknowledgements
Anybus® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their re-
spective holders.

Copyright © 2016 HMS Industrial Networks AB. All rights reserved.
Anybus® CompactCom™ 40 Software Design Guide

HMSI-216–125 3.0

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Table of Contents Page

1 Preface ... 5
1.1 About this Document ..5
1.2 Related Documents ...5
1.3 Document History ..5
1.4 Conventions ..7
1.5 Document Specific Conventions..7
1.6 Network Trademark Information ..8

2 About the Anybus CompactCom 40... 9
2.1 General Information ...9
2.2 Features ...9

3 Software Introduction .. 10
3.1 Background...10
3.2 The Object Model...12
3.3 Network Data Exchange...15
3.4 Diagnostics ...16
3.5 File System ...17
3.6 Modular Device..19
3.7 SYNC ...19
3.8 Multilingual Support ...25
3.9 Firmware Download ...25

4 Host Communication Layer.. 28
4.1 General Information ...28
4.2 Memory Map ...29
4.3 Communications Registers ...30

5 Parallel Host Communication .. 36
5.1 Flow Control ..36
5.2 Anybus Event Driven Watchdog ..37
5.3 Application Event Driven Watchdog...37

6 SPI Host Communication.. 38
6.1 General Information ...38
6.2 SPI Frame Format ...38
6.3 Message Fragmentation...39
6.4 SPI Error Handling ...40
6.5 Application Event Driven Watchdog...41

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Table of Contents

7 Shift Register Host Communication .. 42
7.1 General Information ...42
7.2 Reset ..42

8 Serial Host Communication (UART)... 43
8.1 General Information ...43

9 The Anybus State Machine... 44
9.1 General Information ...44
9.2 State Dependent Actions ..45

10 Object Messaging ... 46
10.1 General Information ...46
10.2 Message Layout ..47
10.3 Message Segmentation..48
10.4 Data Format ..50
10.5 Command Specification..52

11 Initialization and Startup ... 58
11.1 General Information ...58
11.2 Startup Procedure..58
11.3 Anybus Setup (SETUP State) ...60
11.4 Network Initialization (NW_INIT State)...61

12 Anybus Module Objects .. 62
12.1 General Information ...62
12.2 Object Revisions..62
12.3 Anybus Object (01h) ..62
12.4 Diagnostic Object (02h) ..69
12.5 Network Object (03h) ...74
12.6 Network Configuration Object Name (04h) ...80
12.7 Anybus File System Interface Object (0Ah) ..83
12.8 Functional Safety Module Object (11h) ..98

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Table of Contents

13 Host Application Objects ..101
13.1 General Information ... 101
13.2 Implementation Guidelines ... 101
13.3 Energy Reporting Object (E7h) ... 103
13.4 Functional Safety Object (E8h).. 104
13.5 Application Data Object (FEh)... 106
13.6 Application Object (FFh) ... 114
13.7 Application File System Interface Object (EAh)... 121
13.8 Assembly Mapping Object (EBh)... 123
13.9 Modular Device Object (ECh).. 126
13.10 Sync Object (EEh) ... 128
13.11 Energy Control Object (F0h) ... 130
13.12 Host Application Specific Object (80h) ... 135

A Categorization of Functionality ...137
A.1 Basic... 137
A.2 Extended... 137

B Network Comparison ...138

C Industrial Ethernet Network Comparison ...141

D Object Overview ..144
D.1 Anybus Module Objects.. 144
D.2 Host Application Objects... 144

E Conformance Test Information, Stand-Alone Mode...146
E.1 EtherCAT .. 146
E.2 CC-Link... 147
E.3 Ethernet POWERLINK ... 148

F Runtime Remapping of Process Data..149
F.1 SPI Mode .. 149
F.2 Parallel Mode, 8/26 Bits, Event Driven ... 151
F.3 Backwards Compatible Modes.. 152
F.4 Example: Remap_ADI_Write_Area ... 156

G CRC Calculation (16–bit) ...157
G.1 General... 157
G.2 Example.. 157
G.3 Code Example ... 158

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Table of Contents

H CRC Calculation (32–bit) ...160
H.1 Example.. 160
H.2 Code Example ... 160

I Timing & Performance ...161
I.1 General Information ... 161
I.2 Internal Timing... 161

Preface 5 (164)

1 Preface
1.1 About this Document

This document is intended to provide a good understanding of the Anybus CompactCom plat-
form. It does not cover any of the network specific features offered by the Anybus CompactCom
40 products; this information is available in the appropriate Network Guide.

The reader of this document is expected to be familiar with high level software design and in-
dustrial network communication systems in general. For additional information, documentation,
support etc., please visit the support website at www.anybus.com/support.

1.2 Related Documents
Related documents
Document Author
Anybus CompactCom 40 Hardware Design Guide HMS
Anybus CompactCom B40–1 Design Guide HMS
Anybus CompactCom Host Application Implementation Guide HMS
Anybus CompactCom Network Guides (separate document for each sup-
ported fieldbus or network system)

HMS

1.3 Document History
Summary of changes in this version
Change Where (section no.)
Safety Objects added 12.8

13.4
Extended and Advanced categories joined
(Extended).

A

Several corrections to Modular Device Object 13.9

Updated possible length of last segment. (Message
segmentationa)

10.3

Added instance attribute #10, Element name, to Ap-
plication Data Object
Updated description of Application Data Object

13.5

Added exception co des 0Bh and 0Ch to Anybus
Object
Updated attributes #16 and #21.
Updated section Virtual Attributes.

12.3

Added recommendation for implementing Get_In-
dexed_Attribute and Set_Indexed_Attribute in Appli-
cation Data Object.

13.5

Added Anybus IP to module capability register 4.3

Updated Anybus File System Interface Object 12.7

Added sentence on conformance test to information
on virtual attributes

12.3
7

Added appendix on mandatory settings of virtual at-
tributs for conformance testing

E

Updated comparison tables with CC-Link IE Field B, C
Updated object overviews D

Corrected LED color in Instance attribute #12 12.3
Added section on modular device 3.6
Updated Application File System Interface Object 13.7

Added information to description of Get_Attribute
command

10.5.4

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

http://www.anybus.com/support

Preface 6 (164)

Revision list
Version Date Author Description
0.50 2013-07-02 KaD New document
0.60 2013-12-20 KaD, KeL General update
1.00 2014-03-28 KaD Major update
1.10 2014-05-26 KaD Major update
1.20 2014-08-15 KeL, KaD Major update
1.21 2014-08-26 KaD Major update
1.20 2014-11-10 KeL Major update
1.31 2015-02-06 KaD Minor update
2.00 2015-09-24 KeL Major update
3.0 2016–08–31 Kel Moved from FM to DOX

Major update

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Preface 7 (164)

1.4 Conventions
Unordered (bulleted) lists are used for:

• Itemized information

• Instructions that can be carried out in any order

Ordered (numbered or alphabetized) lists are used for instructions that must be carried out in
sequence:

1. First do this,

2. Then open this dialog, and

a. set this option...

b. ...and then this one.

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Conventions, p. 7

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or
damage to the equipment, or to avoid a network security risk.

Caution
This instruction must be followed to avoid a risk of personal injury.

WARNING
This instruction must be followed to avoid a risk of death or serious injury.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• Intel byte order is assumed unless otherwise stated.

• Object Instance equals Instance #0.

• Object Attributes resides in the Object Instance.

• The terms “Anybus implementation” and “Anybus version” generally refers to the imple-
mentation in the Anybus module, i.e. network type and internal firmware revision.

• Unless something is clearly stated to be optional, it shall be considered mandatory.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

http://www.hms-networks.com

Preface 8 (164)

• When writing, fields declared as “reserved” shall be set to zero.

• When reading, fields bits declared as “reserved” shall be ignored.

• Fields which are declared as “reserved” must not be used for undocumented purposes.

• A byte always consists of 8 bits.

• A word always consists of 16 bits.

1.6 Network Trademark Information
• EtherNet/IP is a trademark of ODVA, Inc.

• DeviceNet is a trademark of ODVA, Inc.

• EtherCAT® is a registered trademark and
patented technology, licensed by Beckhoff Automation GmbH, Germany.

All other trademarks are the property of their respective holders.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

About the Anybus CompactCom 40 9 (164)

2 About the Anybus CompactCom 40
2.1 General Information

The Anybus CompactCom 40 network communication module is a powerful communication sol-
ution for demanding industrial applications. It is ideal for high performance, synchronized appli-
cations such as servo drive systems. Typical applications are PLCs, HMIs, robotics, AC/DC and
servo drives.

The Anybus CompactCom software interface is designed to be network protocol independent,
allowing the host application to support all major networking systems using the same software
driver, without loss of functionality.

To provide flexibility and room for expansion, an object oriented addressing scheme is used be-
tween the host application and the Anybus module. This allows for a very high level of integra-
tion, since the host communication protocol enables the Anybus module to retrieve information
directly from the host application using explicit object requests rather than memory mapped
data.

The Anybus CompactCom 40 series is backward compatible with the Anybus
CompactCom 30 series though the 40 series has significantly better performance
and include more functionality than the 30 series. The 40 series is backward
compatible with the 30 series in the sense that an application developed for the 30
series should be possible to use with the 40 series products, even though minor
application code changes may be necessary.

The 40 series products can thus not replace 30 series products as is.

2.2 Features
• Hardware support for triple buffered process data

• Black channel interface, offering a transparent channel for safety communication

• Host interface is network protocol independent

• Multilingual support

High level of integrationynchronization support

• 8-bit and 16-bit parallel modes

• SPI mode

Stand-alone shift register mode

• Serial interface mode (UART)

• Optional support for advanced network specific features

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 10 (164)

3 Software Introduction
3.1 Background

The primary function of an industrial network interface is to exchange information with other de-
vices on the network. Traditionally, this has mostly been a matter of exchanging cyclic I/O and
making it available to the host device via two memory buffers.

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Ne
tw

or
k

Fig. 1

As demand for higher level network functionality increases, the typical role of a network inter-
face has evolved towards including acyclical data management, alarm handling, diagnostics etc.

Generally, the way this is implemented differs fundamentally between different networking sys-
tems. This means that supporting and actually taking advantage of this new functionality is be-
coming increasingly complex, if not impossible, without implementing dedicated software
support for each network.

By utilizing modern object oriented technology, the Anybus CompactCom provides a simple
and effective way of supporting most networking systems, as well as taking advantage of ad-
vanced network functionality, without having to write separate software drivers for each network.
Acyclic requests are translated in a uniform manner, and dedicated objects provide diagnostic
and alarm handling according to each network standard.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 11 (164)

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Diagnostic Handling

Cyclic Data

Cyclic Data

Alarm

Diagnostics

Ne
tw

or
k

Acyclic Request

Acyclic Response

Acyclic Handling

Fig. 2

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 12 (164)

3.2 The Object Model
3.2.1 Basics

To provide a flexible and logical addressing scheme for both the host application and the Any-
bus module, the software interface is structured in an object structured manner. While this ap-
proach may appear confusing at first, it is nothing more than a way of categorizing and
addressing information.

Related information and services are grouped into entities called ‘Objects’. Each object can hold
subentities called ‘Instances’, which in turn may contain a number of fields called ‘Attributes’. At-
tributes typically represents information or settings associated with the Object. Depending on
the object in question, Instances may either be static or created dynamically during runtime.

#1
Attributes:

#2
#3
#4
#5

Instance #1

Instance #2

Instance #3

#1
Attributes:

#2
#3
#4
#5

Object #1
(Instance #0)

Fig. 3

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 13 (164)

3.2.2 Addressing Scheme
Objects, and their contents, are accessed using Object Messaging. Each object message is
tagged with an object number, instance, and attribute, specifying the location of the data or set-
ting associated with the message.

This addressing scheme applies to both directions; i.e. just like the Anybus
module, the host application must be capable of interpreting incoming object
requests and route them to the appropriate software routines.

Example:
The module features an object called the “Anybus Object”, which groups common settings relat-
ing the Anybus module itself.

In this object, instance #1 contains an attribute called ‘“Firmware version”’ (attribute #2). To re-
trieve the firmware revision of the module, the host simply issues a Get Attribute request to ob-
ject #1 (Anybus Object), Instance #1, Attribute #2 (Firmware version).

3.2.3 Object Categories
Based on their physical location, objects are grouped into two distinct categories:

Anybus Module
Objects

These objects are part of the Anybus firmware, and typically controls the behavior
of the module and its actions on the network.

Host Application
Objects

These objects are located in the host application firmware, and may be accessed
by the Anybus module. This means that the host application must implement
proper handling of incoming object requests.

3.2.4 Standard Object Implementation
The standard object implementation has been designed to cover the needs of all major network-
ing systems, which means that it is generally enough to implement support for these objects in
order to get sufficient functionality regardless of network type.

Optionally, support for network specific objects can be implemented to gain access to advanced
network specific functionality. Such objects are described separately in each network guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 14 (164)

Anybus Module Objects
The following objects are implemented in the standard Anybus CompactCom 40 firmware:

• Anybus Object

• Diagnostic Object

• Network Object

• Network Configuration Object

• File System Interface Object

• Functional Safety Object

• Network Specific Objects

Exactly how much support that needs to be implemented for these objects depends on the re-
quirements of the host application.

See also...

Anybus Module Objects, p. 62

Host Application Objects
The following objects can be implemented in the host application.

• Application Data Object (Mandatory)

• Application Object (Mandatory)

• Sync Object (Optional)

• Modular Device Object (Optional)

• Assembly Mapping Object (Optional)

• File System Interface Object (Optional)

• Energy Control Object (Optional)

• Functional Safety Object (Optional)

• Network Specific Objects (Optional)

It is mandatory to implement the Application Data Object and the Application Object. The exact
implementation however depends heavily on the requirements of the host application.

See also...

Host Application Objects, p. 101

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 15 (164)

3.3 Network Data Exchange
Data that is to be exchanged on the network is grouped in the Application Data Object. This ob-
ject shall be implemented in the host application firmware, and each instance within it (from
now on referred to as “ADI”, i.e. Application Data Instance) represents a block of network data.

ADIs are normally associated with acyclic parameters on the network side. For example, on De-
viceNet and EtherNet/IP, ADIs are represented through a dedicated vendor specific CIP object,
while on PROFIBUS, ADIs are accessed through acyclic DP-V1 read/write services. On Ether-
CATand other protocols that are based on the CANopen Object Dictionary, ADIs are mapped to
PDOs, defined in the object dictionary.

ADIs can also be mapped as Process Data, either by the host application or from the network
(where applicable). Process Data is exchanged through a dedicated data channel in the Anybus
CompactCom host protocol, and is normally associated with fast cyclical network I/O. The exact
representation of Process Data is highly network specific; for example on PROFIBUS, Process
Data correlates to IO data.

Translation

Application Parameter

Application Parameter

Process Data Handling

Translation

Host Application0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Read)

Object Response

*) These buffers holds data from ADI's that are mapped to Process Data.

Ne
tw

or
k

Acyclic Request

Cyclic Data

Acyclic Response

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Write)Cyclic Data

(Dedicated Channel)

Application Data
Object

ADI 1

ADI 2

ADI 3
Application Parameter

Object Request

Fig. 4

Each ADI may be tagged with a name, data type, range and default value, all of which may be
accessed from the network (if supported by the network in question). This allows higher level
network devices (e.g. network masters, configuration tools etc.) to recognize acyclic parameters
by their actual name and type (when applicable), simplifying the network configuration process.

Some networking systems allows both cyclic and acyclic access to the same parameter. In the
case of the Anybus CompactCom 40, this means that an ADI may be accessed via explicit ob-
ject requests and Process Data simultaneously. The Anybus module makes no attempt to syn-
chronize this data in any way; if necessary, the host application must implement the necessary
mechanisms to handle this scenario.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 16 (164)

The Anybus interface uses little endian memory addressing. This means that the byte order is
from the least significant byte (LSB) to the most significant byte (MSB). The Anybus will how-
ever handle ADI values transparently according to the actual network representation (indicated
to the application during initialization). The application driver is responsible for byte swap if re-
quired. Use of this approach is decided because of the following reasons:

• The Anybus can not hold information about the data type of all ADIs due to memory lim-
itations and start-up time demands.

• The alternative to read the data type prior to every parameter write or read request
would be too time consuming.

See also...

The Anybus State Machine, p. 44

Network Object (03h), p. 74

Functional Safety Object (E8h), p. 104

3.4 Diagnostics
The Anybus CompactCom 40 features a dedicated object for host related diagnostics. To report
a diagnostic event, the host application shall create an instance within this object. When the
event has been resolved, the host simply removes the diagnostic instance again.

Each event is tagged with an Event Code, which specifies the nature of the event, and a Se-
verity Code, which specifies the severity of the event. The actual representation of this informa-
tion is highly network specific.

Host Application

Ne
tw

or
k

Diagnostics Application Diagnostic & Status Handling

Diagnostic
Object

Event

Event

Event

Fig. 5

See also...

Diagnostic Object (02h), p. 69

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 17 (164)

3.5 File System
The modules in the Anybus CompactCom 40 series have a built-in file system.

For modules not supporting FTP, this makes it possible to store firmware files in the firmware di-
rectory using the File System Interface Object (0Ah). No other access to or use of the file sys-
tem is possible for these modules.

For modules supporting FTP, the in-built file system can be accessed from the application and
from the network. Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module.

Application This directory provides access to the application file system through the
Application File System Interface Object (EAh) (optional). The directory can not
be accessed from the application, only from the network.

Firmware Firmware updates are stored in this directory.

In the firmware folder, it is not possible to use append mode when writing a file. Be
sure to use write mode only.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 18 (164)

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware*

* The firmware folder is available to the application
 for firmware download in all modules.

Fig. 6

See also...

Anybus File System Interface Object (0Ah), p. 83

Application File System Interface Object (EAh), p. 121

Firmware Download, p. 25

Anybus CompactCom 40 Network Guides, available at www.anybus.com

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 19 (164)

3.6 Modular Device
The modular device functionality makes it possible to model a structure of the process data on
to a number of modules of different types within an application, e.g. for handling digital input or
output, analog input or output, or drives. The ADIs are distributed among the modules and the
number of ADIs per module is configurable. The modules are physically connected to a back-
plane, with a number of slots. The first slot is occupied by the “coupler”, which contains the Any-
bus CompactCom module. All other slots may be empty or occupied by modules. When
mapping ADIs to process data, the application shall map the process data of each module in
slot order.

See also:

• Modular Device Object (ECh), p. 126

• Anybus CompactCom 40 Network Guides

3.7 SYNC
3.7.1 General Information

Automation systems involving many devices often require a way to synchronize events. To
achieve this, the devices in the system can share a common timing signal. The Anybus Com-
pactCom 40 supports a SYNC mechanism via the SYNC object, that is optional to implement in
the application.

The following Anybus CompactCom 40 modules support the SYNC functionality:

• Ethernet POWERLINK

• PROFINET-IRT

• EtherCAT

See also:

• Sync Object (EEh), p. 128.

• Application Status Register, p. 31

• The Anybus State Machine, p. 44 for information of the different states of the Anybus
CompactCom module.

3.7.2 Functionality
For a successful SYNC implementation, there are a number of things to implement and
consider.

The network master will configure attributes #1-3 and #7 of the SYNC object through the Any-
bus CompactCom module before entering state IDLE or PROCESS_ACTIVE. If the module at-
tempts to set attributes #1-3 in state IDLE or PROCESS_ACTIVE, the application must respond
with error code 0Dh (Invalid state). For unsupported values for the attributes, the application
must respond with a suitable error code (11h (Value too high), 12h (Value too low) or 0Ch (Value
out of range)).

If there is a problem with the configuration as a whole, the application must indicate this in the
application status register. See Application Status Register, p. 31.

The application must indicate its minimum supported cycle time and the required input/output
processing times in attributes #4-6 of the SYNC object at all times. The value of these attributes
can be constant or vary, reflecting the timing required for the current process data mapping.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 20 (164)

3.7.3 Synchronization Lock
If the application needs time to lock on the SYNC signal, it must write 0001h (“Application not
yet synchronized”) to the application status register. When synchronization lock has been
achieved, and there are no configuration errors, the application must write 0000h to the applica-
tion status register and then accept a transition to PROCESS_ACTIVE.

Whenever the application is not locked on the SYNC signal, and attribute #7 “Sync mode”in the
SYNC object is set to “1”, the application must write the most accurate nonzero status code to
the application status register.

See also

Application Status Register, p. 31

3.7.4 SYNC Pulse
The SYNC signal, available from the module’s application connector, indicates the synchroniza-
tion event to the application by a positive pulse once every cycle. The positive edge of the
SYNC pulse indicates the synchronization event.

The width of the SYNC pulse is at least 5 µs, with a maximum width of 50% of the cycle time.

The SYNC event is also available to the application as a maskable interrupt. See Interrupt Sta-
tus Register, p. 33.

3.7.5 Network Translation
Ethernet POWERLINK does not in itself support synchronization functionality. The SYNC signal
from the module is sent once for each cycle, and can as such be used by the application.

In Anybus CompactCom 40 EtherCAT, parameters and settings are stored in CoE objects
1C32h and 1C33h.

The Anybus CompactCom 40 PROFINET IRTsupports both isochronous and non-isochronous
modes.

For more information, please consult the respective network guides.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 21 (164)

3.7.6 Anybus CompactCom 40 SYNC Implementation
The Goal of SYNC

• To set output data to different devices simultaneously. In other words, the PLC will tell
all devices in the network “here is the next set of output data. Set it at your application
when the SYNC signal is sent”.

The time when the output data is set at the application is called the Output Valid Point.

• To capture input data from different devices, simultaneously.

This time is called the Input Capture Point.

Cycle time

MI0/SYNC Signal

Input Valid

Output Valid

Min: “Output
Processing”

Max: “Input
Processing”

WRPD (Write Process Data)
Written to Anybus

Input Capture
Point

Output Valid
Point

RDPDI
(Read Process
Data Interrupt
From Anybus)

Fig. 7

Handling of Output Data
Each device needs time to handle the new output data before it can be set in the application.
This time is not constant, but jitters.

The following steps have to be performed by the device:

1. Wait for indication of new output data (indicated by the Anybus CompactCom 40
through the RDPDI (Read Process Data Interrupt).

2. When receiving the RDPDI, read the output data from the Anybus CompactCom 40.

3. Handle the new output data (prepare it so it can be used by the host application (copy
the data, process output variables, do calculations etc.)

4. Wait for the SYNC signal.

5. In case of an “Output Valid”time of 0, activate the outputs to the host application when
receiving the SYNC signal.

6. Alternatively (if the “Output Valid” time value is higher than 0) start a hardware or soft-
ware timer with the positive edge of the SYNC signal to create an “output valid event”.
Activate the outputs to the host application when the timer elapses the “Output Valid”
point.

See Buffer Control Register, p. 31 and Interrupt Status Register, p. 33 for more information on
RDPD (Read Process Data) and RPDPI (Read Process Data Interrupt)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 22 (164)

Handling of Input Data
Each device needs time to capture, prepare and send new input data. This time is not constant,
but jitters.

The following steps have to be performed by the device:

1. Wait for the SYNC signal.

2. In case of an “Input Valid” time of 0, capture the current input process variables of the
host application (as fast as possible) when receiving the SYNC signal (“Input Capture”
point).

3. Alternatively (if the “Input Valid”time is higher than 0), start a hardware or software timer
with the positive edge of the SYNC signal to create an “input capture event”. Capture
the current input process data when the timer elapses the “Input Valid” point.

4. Handle the new input process data (prepare it so it can be written to theAnybus Com-
pactCom 40).

5. Write the new process input data to theAnybus CompactCom 40.

Host Application Programming Guidelines
To support SYNC using the Anybus CompactCom 40, there are things to consider and
implement.

See Sync Object (EEh), p. 128 for more information.

1. Implement the SYNC Object (part 1)

7 Sync mode Get/Set UINT16 This attribute is used to select synchroniza-
tion mode. It enumerates the bits in attribute
8
0: Non synchronous operation. (Default value
if non synchronous operation is supported)
1: Synchronous operation
2 - 65535: Reserved. Any attempt to set sync
mode to an unsupported value shall generate
an error response

8 Supported sync modes Get UINT16 A list of the synchronization modes the appli-
cation supports. Each bit corresponds to a
mode in attribute 7
Bit 0: 1 = Non synchronous mode supported
Bit 1: 1 = Synchronous mode supported
Bit 2 - 15: Reserved (0)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 23 (164)

2. Implement the SYNC Object (part 2)

4 Output processing Get UINT32 Minimum required time, in nanoseconds, be-
tween RDPDI interrupt and “Output valid”

5 Input processing Get UINT32 Maximum required time, in nanoseconds, from
“Input capture” until write process data has
been completely written to the Anybus Com-
pactCom 40

6 Min cycle time Get UINT32 A list of the synchronization modes the appli-
cation supports. Each bit corresponds to a
mode in attribute #7
Bit 0: 1 = Non synchronous mode supported
Bit 1: 1 = Synchronous mode supported
Bit 2 - 15: Reserved (0)

The time elapsed between receiving a RDPDI interrupt and when the process output
variables have been taken over by the application has to be measured. The maximum
time must be provided by the application when the Anybus CompactCom 40 asks for at-
tribute #4 “Output processing”.

The time elapsed between capturing the input process variables and when the input
process data is written to the CompactCom 40 must be measured. The maximum time
must be provided by the application when the Anybus CompactCom 40 asks for attrib-
ute #5 “Input processing”.

The host application must measure the maximum time needed to handle all process da-
ta (the time from receiving the RDPDI interrupt until the input process data has been
written to the Anybus CompactCom 40). This value must be provided by the application
when the Anybus CompactCom 40 asks for attribute #6 “Min cycle time”.

3. Implement the SYNC Object (part 3)

1 Cycle time Get/Set UINT32 Application cycle time in nanoseconds
2 Output valid Get/Set UINT32 Output valid point relative to SYNC events, in

nanoseconds
Default value: 0

3 Input capture Get/Set UINT32 Input capture point relative to SYNC events, in
nanoseconds
Default value: 0

These three attributes can all be set by the Anybus CompactCom 40.

Using attribute #1, “Cycle time”, theAnybus CompactCom 40 informs the host applica-
tion about the real used cycle time (by the Set_Attribute command). This value must be
evaluated by the host application and refused if not acceptable (not suitable, e.g. in con-
flict with other cyclic tasks of the host application or not within the defined range). If re-
fused, the Anybus CompactCom 40 will report this to the PLC.

Attributes #2 and #3 reflect functionality present on some networks (e.g. EtherCAT,
SERCOS and PROFINET), where the input and output valid points can be fine-tuned.
This can be used to offset one device relative to another by a small amount of time. To
support values other than zero (0), timers will have to be implemented in the application.

4. Implement the Application Status Register

See Application Status Register, p. 31 for more information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 24 (164)

5. Do the right thing when receiving an RDPDI and a SYNC signal

When receiving an RDPDI interrupt, read the output process data from the Anybus
CompactCom 40, prepare it (handle and assign it to process output variables) so that it
can be activated when receiving a SYNC signal.

When receiving a SYNC signal, do the following:

a. Take over the output process variables to the application immediately.

b. Capture all input process variables immediately.

c. Prepare and assign the input process variables to the input process data.

d. Write the input process data to the CompactCom.

Steps 2, 3 and 4 must be done within the time specified by attribute #5 “Input process-
ing” (in relation to the Input Capture time).

Steps 1 and 2 assumes Output Valid and Input Capture to be zero (0).

The Easiest Realization of a Synchronous Application

Cycle time

MI0/SYNC Signal

Max: “Input
Processing”

WRPD Written to
Anybus

Output Valid Point
and
Input Capture Point

Fig. 8

The following steps show how to create a very simple synchronous application.

1. Set up an interrupt routine triggered by the positive SYNC edge. Disable the RDPDI
interrupt.

2. In the SYNC interrupt routine:

– Sample the input data and write it to the Anybus CompactCom 40.

– Read the output data from the Anybus CompactCom 40 and start using it
immediately.

3. For this application, attribute 4 ““utput processing”in the SYNC object should be set to
zero (0). No measurement needed.

4. Attribute #5 “Input processing”must be determined. It can probably be hard coded to a
fixed value, but this is application specific and dependent of the complexity of the SYNC
interrupt routine and the application processor performance.

5. For attributes #2 “Output valid”and #3 “Input capture”, only the value zero (0) will be ac-
cepted by the application.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 25 (164)

This simple step-by-step method will work fine in all applications where the process data han-
dling can be made fast and simple.

3.8 Multilingual Support
Where applicable, the Anybus CompactCom 40 supports multiple languages. This mainly af-
fects instance names and enumeration strings, and is based on the current language setting in
the Anybus Object. Note that this also applies to Host Application Objects, which means that
the host application should be capable of changing the language of enumeration strings etc.
accordingly.

When applicable, the Anybus CompactCom 40 forwards change-of-language-requests from the
network to the Application Object. It is then up to the host application to grant or reject the re-
quest, either causing the module to change its language settings or to reject the original network
request.

Supported languages:

• English (default)

• German

• Spanish

• Italian

• French

See also...

Application Object (FFh), p. 114

3.9 Firmware Download
Download and upgrade of network communication firmware for a specific fieldbus or industrial
network can be performed in different ways, depending on which Anybus CompactCom 40 that
is to be upgraded.

3.9.1 Important
When the Anybus CompactCom 40 is restarted after a firmware download, the application must
wait for the installation to finish before initialization is started. The Anybus CompactCom 40 is
protected against power failure during download and/or installation and will recover upon restart.

• If download through e.g. Firmware Manager or FTP, is interrupted, please restart the
firmware download process from the beginning.

• To install the new firmware after download is completed, reset the Anybus Compact-
Com 40. If the installation of the new firmware is interrupted, e.g. due to power loss,
please restart the Anybus CompactCom 40. The installation process will automatically
start from the beginning and the new firmware will be installed without any further action.

For more information see, Startup Procedure, p. 58

3.9.2 Using Firmware Manager II
This tool is available without cost from www.anybus.com. It can be used to download new firm-
ware for any Anybus CompactCom 40.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 26 (164)

Fig. 9

Using the tool, perform the following steps to download new firmware to the module.

1. Connect a computer with the Firmware Manager II software installed to the network
containing the module.

2. Start the Firmware Manager II tool.

3. Scan the network and find the module.

4. Click the Firmware Repository icon in the menu, to open the Firmware Repository win-
dow. Drag the firmware folder into the window to add the new firmware to the repository.
Close the Firmware Repository window.

5. In the scan window, under the “Available Networks” tab, select the appropriate firmware
for the module. Click the Change Network button. A confirmation window will appear.
Click Yes to start the download of the new firmware. Please make sure that download is
completely finished before continuing.

6. After download, a restart of the module is needed to install the new firmware. If the ap-
plication allows it, it is possible to restart the module via the Restart Module button in
the Firmware Manager II tool. If the application does not allow restart from the network,
a manual restart of the module is needed.

For more information, see the help file in the Firmware Manager II software.

3.9.3 Using the Internal File System
The internal file system can be accessed via the File System Interface Object. Interfacing this
object from the host application, makes it possible to store the new firmware in the /firmware di-
rectory in the internal file system. The next time the module is started the firmware will be up-
graded. After the firmware is installed, the firmware file is deleted from the /firmware directory.

In the firmware folder, it is not possible to use append mode when writing a file. Be
sure to use write mode only.

See also ...

• Application File System Interface Object (EAh), p. 121

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Software Introduction 27 (164)

3.9.4 Using FTP
If the module supports FTP, this can be used to access the file system and upload the new firm-
ware directly to the /firmware directory. The next time the module is started the firmware will be
upgraded. After the firmware is installed, the firmware file is deleted from the /firmware directory.

See also ...

• Application File System Interface Object (EAh), p. 121

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 28 (164)

4 Host Communication Layer
4.1 General Information

The main communication layer is used by the 8-bit/16-bit parallel modes and the SPI mode. It is
divided into process data read/write areas, message data read/write areas and a number of
control registers.

Below is a detailed description of the memory map and the different control registers.

4.1.1 Communication Basics
The communication between the host and the Anybus CompactCom 40 is simple, fast and
flexible.

The host can read or write process data at any time. It can check for incoming data via the buf-
fer control register or by enabling appropriate interrupts via the interrupt mask register.

Attempts to access reserved registers will produce unpredictable results. Attempts
to write to a read-only register will produce unpredictable results. Reserved bits
shall be written with zeros (0). Reading reserved bits returns undefined values.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 29 (164)

4.2 Memory Map
The address offset specified below is relative to the base address of the module, i.e. from the
beginning of the area in host application memory space where the interface has been
implemented.

The memory area is not available during reset.

The shaded areas and registers are used for backward compatibility with the Anybus Compact-
Com 30 series.

Byte Address Word Address Area Bytes Access,
seen
from
host

Notes

0000h - 0FFFh 0000h - 07FFh Process data, write
area

4096 R/W This is the total size of
the area. The actual
size depends on the
network. For network
specific process area
sizes, see Network
Comparison, p. 138.
Applicable to all
protocols

1000h - 1FFFh 0800h - 0FFFh Process data, read
area

4096 R

2000h - 25FFh 1000h - 12FFh Message data, write
area

1536 R/W Applicable to all
protocols

2600h - 2FFFh 1300h - 17FFh Reserved 2560 -
3000h - 35FFh 1800h - 1AFFh Message data, read

area
1536 R

3600h - 37FFh 1B00h - 1BFFh Reserved 512 -
3800h - 38FFh 1C00h - 1C7Fh Process data, write

area
256 R/W

3900h - 39FFh 1C80h - 1CFFh Process data, read
area

256 R

3A00h - 3AFFh 1D00h - 1D7Fh Reserved 256 -
3B00h - 3C06h 1D80h - 1E03h Message data, write

area
263 R/W

3C07h - 3CFFh 1E04h - 1E7Fh Reserved 249 -
3D00h - 3E06h 1E80h - 1F03h Message data, read

area
263 R

3E07h - 3FE7h 1F04h - 1FF3h Reserved 479 -
3FE8h - 3FEFh 1FF4h - 1FF7h Current network time 8 R
3FF0h - 3FF1h 1FF8h Module capability

register
2 R

3FF2h - 3FF3h 1FF9h LED status register 2 R
3FF4h - 3FF5h 1FFAh Application status

register
2 R/W Applicable to the event

driven protocol.
3FF6h - 3FF7h 1FFBh Anybus Compact-

Com module status
register

2 R

3FF8h - 3FF9h 1FFCh Buffer control
register

2 R/W

3FFAh - 3FFBh 1FFDh Interrupt mask
register

2 R/W

3FFCh - 3FFDh 1FFEh Interrupt status
register

2 R/W

3FFEh 1FFFh Control register 1 R/W Applicable to the half
duplex protocol3FFFh Status register 1 R

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 30 (164)

If an application is to use “current network time”, the network time must first be sampled. This is
performed by writing to this register. The register will be updated with the actual value from the
network, which then can be read by the application.

C-programmers are reminded to declare the entire shared memory area as volatile.

4.3 Communications Registers
4.3.1 Module Capability Register

The module capability register contains one of the values below, indicating module type. The
application should determine the module type by examining the low byte only. The high byte is
reserved for future use.

Value Module Type
0000h Active Anybus CompactCom 30 series module, supporting the half duplex protocol

only
8 bit parallel and serial modes

000Bh Active Anybus CompactCom 40 series module, supporting the event driven as well as
the half duplex protocol
8 bit/16 bit parallel, shift register, SPI and serial modes

000Ch Active Anybus IP with parallel AXI bus
0101h Passive RS232
0202h Passive RS422
0303h Passive USB
0404h (reserved)
0505h Passive Bluetooth
0606h - 0909h (reserved)
0A0Ah Passive RS485
0C0Ch - 0F0Fh (reserved)

All passive modules belong to the Anybus CompactCom 30-series. There are no passive mod-
ules in the Anybus CompactCom 40-series.

4.3.2 LED Status Register
This register reflects the LED status, as represented by the value of the instance attribute LED
status (#13) in the Anybus Object. See Anybus Object (01h), p. 62 for more information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 31 (164)

4.3.3 Application Status Register
The application status register is primarily used in SYNC applications. It is used in applications
where the network in question supports the ability to indicate critical process data errors to the
master. If this is supported, the Anybus CompactCom 40 module will accept and handle the be-
low listed status codes written by the application.

This register is optional to use. For networks which do not support indications of critical process
data errors, the module will ignore this register.

Status Code Error Description
0000h No error Ready for transition to state PROCESS_ACTIVE

(Default)
0001h Not yet synchronized Not ready for transition to state PROCESS_ACTIVE
0002h Sync configuration error A problem with the current attribute values in the Sync object

prevents the transition to state PROCESS_ACTIVE
0003h Read process data configu-

ration error
A problem with the current read process data mapping pre-
vents the transition to state PROCESS_ACTIVE

0004h Write process data configura-
tion error

A problem with the current write process data mapping pre-
vents the transition to state PROCESS_ACTIVE

0005h Synchronization loss The application has lost synchronization lockIf the Anybus
CompactCom is in the state PROCESS_ACTIVE, it will
change to a lower state

0006h Excessive data loss The application has detected a significant loss of process data
from the network
If the Anybus CompactCom is in the state PROCESS_AC-
TIVE, it will change to a lower state

0007h Output error Application malfunction
If the Anybus CompactCom is in the state PROCESS_AC-
TIVE, it will change to a lower state

The Anybus state machine is described in The Anybus State Machine, p. 44

4.3.4 Anybus CompactCom Module Status Register
This register contains the current Anybus CompactCom module state, and a supervised bit indi-
cated by the Anybus CompactCom module. The Anybus state machine is described in The Any-
bus State Machine, p. 44

Bit Name Description
0 - 2 S[0..2] The current Anybus CompactCom module state
3 Supervised bit 1 = Supervised by another network device

0 = Not supervised by another network device
See Supervised Bit (SUP), p. 34.

4 - 15 - Reserved (0)

4.3.5 Buffer Control Register
This register is used by the application to control the event driven communication with the Any-
bus CompactCom module.

By writing to this register, it is possible to trigger appropriate events. Write “1” to trigger bits, and
“0” to leave bits unaffected.

Reading this register gives the current status of the different memory areas.

For more information about how to implement and use bits 0–3, seeCommunication Basics, p.
36

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 32 (164)

Bit Name Description
0 WRPD

(Write Process Data)
The application shall write “1” to this bit when new data has been written.

1 RDPD
(Read Process Data)

When the module has updated the read process data, this bit will be
read as “1”.
The application shall write “1”to this bit to request the latest read process
data. By doing this the bit is cleared.

2 WRMSG
(Write Message
Data)

This bit is read as “1”when the write message area is occupied.
This bit is cleared by the module when the write message area is avail-
able for a new message.
When the application sends a write message to the module, it shall write
“1”to this bit.
The application is only allowed to write to the write message area while
this bit is “0”.
Note: it is only allowed to write command messages when the ANBR bit
is also set.

3 RDMSG
(Read Message
Data)

This bit will be read as “1”when the module has posted a new read
message.
The application writes “1” to this bit to acknowledge the message. By
doing this the bit is cleared.
The application is only allowed to read the read message area while this
bit is “1”.

4 ANBR
(Anybus Ready)

This bit is set to “1” when the module is ready to receive a new command
message.
The application is only allowed to send command messages while this
bit is “1”.
This bit can only change from “1”to “0” while WRMSG is “1”.
It can change from “0”to “1”at any time.

5 APPR
(Application Ready)

The application writes ‘1’ to this bit when it is ready to receive a new
command message.
The module will only send command messages while this bit is “1”.
Use APPRCLR to set this bit to “0”.

6 APPRCLR
(Application Ready
Clear)

The application can write “1” to this bit to clear the APPR bit. This is only
allowed when RDMSG is “1”.

7 - 15 - Reserved

4.3.6 Interrupt Mask Register
This register makes it possible for the application to enable or disable individual interrupts, ac-
cording to the table below.

Bit Name Description
0 RDPDIEN Set this bit to “1” to enable interrupt for when the RDPD bit in the buffer

control register transitions from “0”to “1”.
1 RDMSGIEN Set this bit to “1” to enable interrupt for when the RDMSG bit in the buffer

control register transitions from “0”to “1”.
2 WRMSGIEN Set this bit to “1” to enable interrupt for when the WRMSG bit in the buf-

fer control register transitions from “1”to “0”.
3 ANBRIEN Set this bit to “1” to enable interrupt for when the ANBR bit in the buffer

control register transitions from “0”to “1”.
4 STATUSIEN Set this bit to “1” to enable interrupt for an Anybus CompactCom module

status register change.
5 - Reserved
6 SYNCIEN Set this bit to “1” to enable interrupt for a SYNC event.
7 - 15 - Reserved

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 33 (164)

4.3.7 Interrupt Status Register
The module indicates the pending interrupts in this register, according to the table below.

Bit Name Description
0 RDPDI This bit is set to “1” when RDPD in the buffer control register transitions

from “0”to “1”.
The application shall write “1” to this bit to set it to “0”.

1 RDMSGI This bit is set to “1” when RDMSG in the buffer control register transi-
tions from “0”to “1”.
The application shall write “1” to this bit to set it to “0”.

2 WRMSGI This bit is set to “1” when WRMSG in the buffer control register transi-
tions from “1”to “0”.
The application shall write “1” to this bit to set it to “0”.

3 ANBRI This bit is set to “1” when ANBR in the buffer control register transitions
from “0”to “1”.
The application shall write “1” to this bit to set it to “0”.

4 STATUSI This bit is set to “1” on an Anybus CompactCom module status register
change.
The application shall write “1” to this bit to set it to “0”.

5 PWRI This bit is set to “1” when the module is ready to start communication
after a power-up or a hardware reset.
The application shall write “1” to this bit to set it to “0”.

6 SYNCI This bit is set to “1” on each SYNC event.
The application shall write “1” to this bit to set it to “0”.

7 - 15 - Reserved

4.3.8 Control Register (Read/Write)

Only used for the half duplex (ping/pong) protocol.

This register controls the communication towards the Anybus module.

b7
(MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)
CTRL_T CTRL_M CTRL_R CTRL_

AUX
- - - -

Bit Description
CTRL_T The host application shall toggle this bit when sending a new telegram. CTRL_T must be set to “1”

in the initial telegram sent by the application to the module.
CTRL_M If set, the message subfield in the current telegram is valid.
CTRL_R If set, the host application is ready to receive a new command.
CTRL_
AUX

(ignored)

- (reserved, set to zero)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 34 (164)

4.3.9 Status Register (Read Only)

Only used for the half duplex (ping/pong) protocol.

This register holds the current status of the Anybus module.

b7
(MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)
STAT_T STAT_M STAT_R STAT_

AUX
SUP S2 S1 S0

Bit Description
STAT_T When the module issues new telegrams, this bit will be set to the same value as CTRL_T in

the last telegram received from the host application.
STAT_M If set, the message subfield in the current telegram is valid.
STAT_R If set, the Anybus module is ready to process incoming commands.
STAT_AUX See Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 35.
SUP Value: Meaning:

0: Module is not supervised.
1: Module is supervised by another network device.
See Supervised Bit (SUP), p. 34.

S[0... 2] These bits indicates the current state of the module (see also “The Anybus State Machine” on
page 42).
S2 S-

1
S0 Anybus State

0 0 0 SETUP
0 0 1 NW_INIT
0 1 0 WAIT_PROCESS
0 1 1 IDLE
1 0 0 PROCESS_ACTIVE
1 0 1 ERROR
1 1 0 (reserved)
1 1 1 EXCEPTION

The Status Register shall be regarded as cleared at start-up. The first telegram issued by the
host application must therefore not contain a valid message subfield since STAT_R is effectively
cleared (0).

4.3.10 Supervised Bit (SUP)
While the Anybus State Machine reflects the state of the cyclic data exchange, the SUP-bit indi-
cates the overall status of the network communication, including acyclic communication. For ex-
ample, on CIP, this bit indicates that the master has a connection towards the module. This
connection may be an I/O connection, or an acyclic (explicit) connection. In case of the latter,
the communication will be “silent” for extended periods of time, and the state machine will indi-
cate that the network is Idle. The SUP-bit will however indicate that there still is a connection to-
wards the module.

Exactly how this functionality should be handled, the offered level of security, and how to cor-
rectly activate it is network specific and often depends on external circumstances, e.g. configu-
ration of the network as well as other network devices. Whether use of the SUP-bit is
appropriate must therefore be decided for each specific application and network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Communication Layer 35 (164)

4.3.11 Auxiliary Bit (STAT_AUX, CTRL_AUX)
The Anybus CompactCom 40 module ignores the CTRL_AUX bit in the Control Register..

The module will set the STAT_AUX bit in the Status Register if new process data has been re-
ceived from the network since the last telegram.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Parallel Host Communication 36 (164)

5 Parallel Host Communication
5.1 Flow Control

The following only applies to the event driven modes (full duplex modes). For information about
the half duplex mode, see Serial Host Communication (UART), p. 43.

Data can be read or written from either the host or the Anybus CompactCom module, at any
point and in any order. Communication can be fully controlled by writing to and reading from the
buffer control register, or it can be achieved by enabling interrupts for appropriate events using
the interrupt mask register. If enabled, an interrupt is generated each time the module has made
new data available.

See Buffer Control Register, p. 31 and Interrupt Mask Register, p. 32.

5.1.1 Communication Basics
When using the parallel host interface, data is exchanged via the shared memory area. For
more information, see Memory Map, p. 29.

Data Transmission
To write process data :

1. Write data to the write process data memory area. The area currently mapped by ADIs
for process data must be refilled with new data.

2. Finalize the write process by writing “1” to bit 0 (WRPD) in the buffer control register.

To write message data:

1. Read bit 2 (WRMSG) in the buffer control register.

– If it is “0”, the area is available for new message data.

– If it is “1”, the area is occupied and is not yet available to receive new message
data.

2. Write data to the write message data memory area.

3. Finalize the write process by writing “1” to bit 2 (WRMSG) in the buffer control register.

Data Reception
For the latest read process data:

1. Write “1” to bit 1 (RDPD) in the buffer control register, to gain access to the process
data.

2. Read the latest read process data from the read process data area.

For the latest message data:

1. Read bit 3 (RDMSG) in the buffer control register.

– If it is “0”, no new message data has been posted.

– If it is “1”, there is a new message in the read message data area.

2. Read the latest message data from the read message data area.

3. Write “1” to bit 3 (RDMSG) in the buffer control register.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Parallel Host Communication 37 (164)

5.2 Anybus Event Driven Watchdog
It is possible for the host to establish whether or not the Anybus CompactCom module is work-
ing properly by periodically measuring the message response time. If this time exceeds a speci-
fied value, the module can be assumed to be malfunctioning. The host can then enter an
application specific safe state, reset the module, or take similar actions.

It is strongly recommended to have at least a rudimentary watchdog mechanism, to be able to
restart the module if needed.

5.3 Application Event Driven Watchdog
If desired by the application, an application watchdog timeout can be enabled within the Anybus
CompactCom module. When this is enabled, the module will assume that the application is not
working properly if the time between two write process data buffer updates exceeds the watch-
dog timeout selected by the application.

The application watchdog timeout is specified in the Anybus Object, instance attribute #4 (Appli-
cation watchdog timeout). See Anybus Object (01h), p. 62.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

SPI Host Communication 38 (164)

6 SPI Host Communication
6.1 General Information

The SPI (Serial Peripheral Interface) is a serial, full duplex protocol. It is a master/slave mode,
where the host acts as the master and the Anybus CompactCom module as the slave.

Each byte in the SPI frame is transmitted with the most significant bit first, but the byte order is
little endian. The least significant byte is transmitted first. Errors are detected by a 32-bit CRC.

6.2 SPI Frame Format

MISO

SPI
CTRL

5 Words

Reserv
ed MSGLEN APP

STAT
INT

MASK

LEDSTAT ANB
STAT

SPI
STAT RdMsgField RdPdField CRC

MOSI

MSG LEN Words PD LEN Words

4 Words

2 Words

WrPdField CRC

1 WordMSG LEN Words PD LEN Words 2 Words
PDLEN

Reserv
ed

Reserv
ed NETTIME

WrMsgField PADDING

Fig. 10

6.2.1 Data Definitions for the MOSI (Master Output, Slave Input) Frame
SPI MOSI Frame Format
Byte Name Description
0 SPI CONTROL SPI control byte, see SPI Control Byte table below.
1 (reserved)
2 - 3 MSGLEN The size of the message field, in words.
4 - 5 PDLEN The size of the write process data field, in words.
6 APPSTATUS Application status, see Application Status Register, p. 31.
7 INTMASK Interrupt mask, see Interrupt Mask Register, p. 32.
MSGLEN words MSGFIELD Message field.
PDLEN words WRPDFIELD Write process data field.
2 words CRC -
1 word PADDING Dummy data.

SPI Control Byte
Bit Name Description
0 WRPD VALID If this bit is set, the Anybus CompactCom 40 will act on the content of the

write process data field.
If this bit is not set, the module will ignore the content of the write process
data field.

1 - 2 CMDCNT These two bits indicate the number of commands the application is pre-
pared to receive.
00 = The application is not prepared to receive any commands.
01 = The application is prepared to receive at least one command.
10 = The application is prepared to receive at least two commands.
11 = The application is prepared to receive at least three commands.

3 M If set, the message field contains a message.
4 LAST FRAG If set, the message field contains the last fragment of a message.
5 - 6 - Reserved, set to 0
7 TOGGLE For the initial transmission, this bit shall be set to “1”.

This bit shall toggle for every SPI transfer.
Note: When a CRC error has been detected, this bit shall NOT be toggled
to indicate a retransmission.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

SPI Host Communication 39 (164)

6.2.2 Data Definitions for the MISO (Master Input, Slave Output) Frame
SPI MOSI Frame Format
Byte Name Description
0–1 (reserved)
2 - 3 LEDSTATUS LED state, see LED Status Register, p. 30.
4 ANBSTATUS Anybus CompactCom module state, see Anybus Compact-

Com Module Status Register, p. 31

5 SPISTATUS SPI status, see SPI status byte table below.
6–9 NETTIME These 4 bytes hold the lower 32 bits of the network time.
MSGLEN words MSGFIELD Message field.
PDLEN words RDPDFIELD Read process data field.
2 words CRC -

SPI Status Byte
Bit Name Description
0 WRMSG FULL If set, the write message buffer is full. If there was a message in the MOSI

frame, it has been ignored by the Anybus CompactCom 40 and must be
sent again.
Important: The toggle bit must still be toggled, in this case.

1 - 2 CMDCNT These two bits indicate the number of commands the module is prepared
to receive.
00 = The module is not prepared to receive any commands.
01 = The module is prepared to receive at least one command.
10 = The module is prepared to receive at least two commands.
11 = The module is prepared to receive at least three commands.
When WRMSG FULL is set, the module has not yet parsed the latest
"write message". As a consequence, the CMDCNT may not reflect the last
command. Applications that wish to send several consecutive commands
without waiting in between must take this into consideration when evaluat-
ing the CMDCNT.

3 M If set, the message field contains a message.
4 LAST FRAG If set, the message field contains the last fragment of a message.
5 NEW PD If set, the RDPDFIELD contains data that has been updated from the net-

work since the last SPI transfer. Note that "updated" data does not neces-
sarily mean "changed data".
If not set, the RDPDFIELD contains the same data as in the last SPI
transfer.
Note that even SPI transfers with corrupt CRCs may clear this bit.

6 Reserved -
7 Reserved -

6.3 Message Fragmentation
The SPI protocol supports message fragmentation.

To disable fragmentation, just set the MSGLEN field to a value large enough to fit the maximum
size of the messages that the host will send. The M and the LAST FRAG bits shall be set for
every message.

To enable fragmentation, set the MSGLEN field to a value smaller than the maximum message
size. The M bit shall be set for all SPI frames containing a message or message fragment. The
LAST FRAG bit indicates that the current fragment is the last fragment of a message.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

SPI Host Communication 40 (164)

6.4 SPI Error Handling
Errors are detected using a 32-bit CRC. The position of the CRC in the MISO and the MOSI
frames is shifted. If the Anybus CompactCom 40 detects an error in the MOSI frame, it will send
an invalid CRC to the host.

When the host detects a CRC error in the MISO frame, it shall ignore the contents and retrans-
mit the original frame. The retransmitted frame must keep the TOGGLE bit, the M bit, the LAST
FRAG bit, as well as the MSGLEN and the MSGFIELD, set to the same values as the original
frame. All other fields may contain new values.

The image below depicts a normal scenario. The host sends the SPI frame cyclically, toggling
the toggle bit in the SPI control byte each time.

Fig. 11

In case of a reception error on the MISO line, the host will detect this using the MISO CRC and
perform a retransmission. Retransmissions are indicated by NOT toggling the toggle bit in the
SPI control byte of the MOSI header.

This scenario is depicted in the figure below.

Fig. 12

In case of a reception error on the MOSI line, the Anybus CompactCom will detect this using
the MOSI CRC. The Anybus will respond with destroying the MISO CRC, which will result in a
retransmission of the SPI frame from the host.

Fig. 13

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

SPI Host Communication 41 (164)

6.5 Application Event Driven Watchdog
If desired by the application, an application watchdog timeout can be enabled within the Anybus
CompactCom 40. When this is enabled, the module will assume that the application is not work-
ing properly if the time between two write process data buffer updates exceeds the watchdog
timeout selected by the application.

The application watchdog timeout is specified in the Anybus Object, instance attribute #4 (Appli-
cation watchdog timeout). See Anybus Object (01h), p. 62.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Shift Register Host Communication 42 (164)

7 Shift Register Host Communication
7.1 General Information

The Anybus CompactCom 40 can be used stand-alone, with no host processor. Process data is
communicated to shift registers on the host. The Anybus CompactCom 40 supports up to 32
registers in each direction, for a total of 256 bits of data.

INPUT SHIFT
REGISTER 32

Input Byte 31Input Byte n-1

Output Byte 31Output Byte n-1

OUTPUT SHIFT
REGISTER 32

INPUT SHIFT
REGISTER 1

INPUT SHIFT
REGISTER 2

INPUT SHIFT
REGISTER 3

OUTPUT SHIFT
REGISTER 1

OUTPUT SHIFT
REGISTER 2

OUTPUT SHIFT
REGISTER 3

INPUT SHIFT
REGISTER n

Input Byte 0 Input Byte 1 Input Byte 2

Output Byte 0 Output Byte 1 Output Byte 2

OUTPUT SHIFT
REGISTER n

Fig. 14

The Anybus CompactCom 40 will automatically detect the number of connected input and out-
put shift registers. Every shift register will be represented by one UINT8 ADI. The input ADIs will
be named “Input 0”, “Input 1”, etc. The output ADIs will be named “Output 0”, “Output 1”, etc.

The Anybus CompactCom 40 will always try to retrieve network specific attributes from a host
application. As this is not possible in stand-alone mode, a virtual attribute list, stored in nonvola-
tile memory, will be used instead, see Anybus Object (01h), p. 62, section “Virtual Attributes”.
Some attributes are mandatory to implement in order to pass conformance tests, see Conform-
ance Test Information, Stand-Alone Mode, p. 146

7.2 Reset
In stand-alone mode there is no application available to handle a reset request from the net-
work. The reset will be handled by the Anybus CompactCom 40 and the module will reset
automatically.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Serial Host Communication (UART) 43 (164)

8 Serial Host Communication (UART)
8.1 General Information

This mode is supported for backward compatibility with the Anybus CompactCom 30, and
should not be used for pure Anybus CompactCom 40 applications.

On the serial host interface, telegrams are transmitted through a common asynchronous serial
interface. The baud rate is determined by certain signals on the host interface connector of the
module; consult the Anybus CompactCom 40 Hardware Design Guide for further information.

For more information on the serial host communication mode, please consult the Anybus
CompactCom 30 Software Design Guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

The Anybus State Machine 44 (164)

9 The Anybus State Machine
9.1 General Information

A fundamental part of the Anybus CompactCom 40 is the Anybus State Machine. At any given
time, the state machine reflects the status of the module and the network, see Status Register
(Read Only), p. 34.

The state machine shall be regarded as a Moore machine; i.e. the host application is not re-
quired to keep track of all state transitions, however it is expected to perform certain tasks in
each state

SETUP
(00h)

WAIT_PROCESS
(02h)

PROCESS_ACTIVE
(04h)

IDLE
(03h)

EXCEPTION
(07h)

(Power up)

(From all states)

ERROR
(05h)

NW_INIT
(01h)

Fig. 15

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

The Anybus State Machine 45 (164)

9.2 State Dependent Actions
The expected actions for each state are listed below.

State Description Expected Actions
SETUP Anybus CompactCom Setup in progress.

The module may not send commands to
the application in this state.

See Anybus Setup (SETUP State), p. 60.

NW_INIT The Anybus CompactCom module is cur-
rently performing network-related initiali-
zation tasks.
Telegrams now contains Process Data (if
such data is mapped), however the net-
work Process Data channel is not yet
active.

See Network Initialization (NW_INIT
State), p. 61.

WAIT_PROCESS The network Process Data channel is
temporarily inactive.

The host application shall regard the
Read Process Data as not valid.

IDLE The network interface is idle. The exact
interpretation of this state is network spe-
cific. Depending on the network type, the
Read Process Data may be either up-
dated or static (unchanged).

The host application may act upon the
Read Process Data, or go to an idle state.

PROCESS_ACTIVE The network Process Data channel is ac-
tive and error free.

Perform normal data handling.

ERROR There is at least one serious network
error.

The Read Process Data shall be re-
garded as not valid. Optionally, the host
application may perform network specific
actions.
Write Process Data could still be for-
warded to the master, so the application
must keep this data updated.

EXCEPTION The module has ceased all network par-
ticipation due to a host application related
error.
This state is unrecoverable, i.e. the mod-
ule must be restarted in order to be able
to exchange network data.

Correct the error if possible (details about
the error can be read from the Anybus
Object, see Anybus Object (01h), p. 62).
When done, reset the Anybus module.

The host application must keep the Write Process Data updated in ‘NW_INIT’
(initial data), ‘WAIT_PROCESS’, ‘IDLE’, ‘ERROR’ and ‘PROCESS_ACTIVE’ since
this data is buffered by the Anybus CompactCom 40 module, and may be sent to
the network after a state shift

See also ...

• Network Configuration Object Name (04h), p. 80

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 46 (164)

10 Object Messaging
10.1 General Information
10.1.1 Basic Principles

Object messaging involves two types of messages; commands and responses. On the mes-
sage level, there is no master-slave relationship between the host application and the Anybus
CompactCom module; both parts may issue commands, and are required to respond. Com-
mands and responses are always associated with an instance within the Anybus object model.
This can either be the object itself (addressed through instance #0), or an instance within it.

Commands can be issued at any time (provided that the receiving end is ready to accept new
commands), while responses must only be sent as a reaction to a previously received com-
mand. Unexpected or malformed responses must always be discarded.

Host Application Anybus Module

Command 1

Response 1

Command 2

Command 3

Response 3

Response 2

Fig. 16

Commands and responses are treated asynchronously, i.e. new commands may be issued be-
fore a response has been returned on the previous one. This also means that commands are

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 47 (164)

not guaranteed to be executed in order of arrival, and that responses may return in arbitrary or-
der (see figure). When necessary, the host application must wait for the response of any com-
mand to which the action or result may affect successive commands.

10.1.2 Source ID
To keep track of which response that belongs to which command, each message is tagged with
a Source ID. When issuing commands, the host application may choose Source IDs arbitrarily,
however when responding to commands issued by the Anybus module, the Source ID in the re-
sponse must be copied from the original command.

10.1.3 Error Handling
When a command for some reason cannot be processed, the receiver is still obliged to provide
a response. In such case, an error shall be flagged in the header of the response message, to-
gether with an appropriate error code in the message data field.

The command initiator must then examine the response to see whether it is a successful re-
sponse to the command or an error message.

See also...

• Error Codes, p. 53

10.2 Message Layout
An object message consists of an 12 byte header followed by message related data.

Offset

Contents

Descriptionb7 b6 b5 b4 b3 b2 b1
b-
0

0 - 1 Message Data Size Size of the MsgData[] field in bytes (up to 1524 bytes)
2 - 3 (reserved) -

4 Source ID See Source ID, p. 47
5 Object Specifies a source/destination within the Anybus Object

model6 Instance (lsb)
7 Instance (msb)
8 E Value:Meaning:

0: Message is either a Command, or a successful
Response
1: Message is an Error Response

C Value:Meaning:
0: Message is a Response 1: Message is a Command

Command Code See Command Codes, p. 52
9 (reserved) -

10 CmdExt[0] Command-specific extension. See Command Specification, p.
52
These fields must be left intact in an error response.11 CmdExt[1]

12...n MsgData[0-n] Message data field

If the Anybus CompactCom 40 is used in a Anybus CompactCom 30 application, an 8 byte
header will have to be used. Please consult the Anybus CompactCom 30 Software Design
Guide for information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 48 (164)

10.3 Message Segmentation
The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes.
In some applications a maximum message size of 255 bytes is supported, e.g. if an Anybus
CompactCom 40 is to replace an Anybus CompactCom 30 without any changes to the applica-
tion. Some objects services must support messages larger than 255 bytes. In order to support
this, the Anybus CompactCom 40 supports a fragmentation protocol. To avoid confusion with
the fragmentation protocol used for serial telegrams, this protocol is called a segmentation
protocol.

10.3.1 Command Segmentation Procedure
When a message is segmented, the initiator of the message sends the same command header
multiple times. For each message, the data field is exchanged for the next segment of data.

Command Details
Command Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2:
Bit 3-7:

FS (first segment)
LS (last segment)
AB (abort)
Reserved (0)

Response Details
Response Segment Bits Description

CmdExt[1] Bit 0-7: Reserved (0)

Procedure
When sending segmented commands, follow the procedure below:

• For the first element, the FS bit shall be set.

• For the subsequent elements, the FS and LS bits shall be cleared (0).

• For the last element, the LS bit shall be set. (For single frame commands (<= 255 or
1524 bytes, depending on message channel) both the FS and the LS bits shall be set).

The command receiver shall send a response (ACK/NACK) for each segment, indicating if the
segment was accepted or not. In case of a NACK, the segment will be discarded. The segmen-
tation will not be terminated, however, so earlier accepted segments remain in the segmentation
buffer.

The response (ACK/NACK) to the last segment contains the actual result of the operation.

The command initiator may at any time abort the operation by sending a message with the AB
bit set. This shall result in that the segmentation buffer is flushed.

To determine if a command is the same as a previous one, the following shall be checked:

• Destination object

• Instance number

• Command number

• Command extension 0 (CmdExt[0])

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 49 (164)

10.3.2 Response Segmentation Procedure
When a response message is segmented, the initiator of the message requests the next seg-
ment by sending the same command multiple times. For each message, the data field is ex-
changed for the next segment of data.

Command Details
Command Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2:
Bit 3-7:

Reserved (0)
Reserved (0)
AB (abort)
Reserved (0)

Response Details
Response Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2-7:

FS (first segment)
LS (last segment)
Reserved (0)

Procedure
When sending segmented responses, follow the procedure below:

• For the first element, the FS bit shall be set.

• For the subsequent elements, the FS and LS bits shall be cleared (0).

• For the last element, the LS bit shall be set. (For single frame commands (<= 255 or
1524 bytes, depending on message channel) both the FS and the LS bits shall be set).

If the LS bit is not set in a response, the command initiator requests the next segment by send-
ing the same command again.

The command initiator may at any time abort the operation by sending a request/response with
the AB bit set. This shall result in that the segmentation buffer is flushed.

To determine if a command is the same as a previous one, the following shall be checked:

• Destination object

• Instance number

• Command number

• Command extension 0 (CmdExt[0])

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 50 (164)

10.4 Data Format
10.4.1 Available Data Types

The Anybus CompactCom 40 uses the following data types as standard. Additional network
specific data types are described in each separate network interface appendix (when
applicable)

Type Bits Description Range Available on
All
Networks

Valid
for
Pro-
cess
Data

0 BOOL 8 Boolean 0 = False, !0 = True Yes Yes
1 SINT8 8 Signed 8 bit integer -128... +127 Yes Yes
2 SINT16 16 Signed 16 bit integer -32768...+32767 Yes Yes
3 SINT32 32 Signed 32 bit integer -231... +(231-1) Yes Yes
4 UINT8 8 Unsigned 8 bit integer 0... +255 Yes Yes
5 UINT16 16 Unsigned 16 bit integer 0... +65535 Yes Yes
6 UINT32 32 Unsigned 32 bit integer 0... +(232-1) Yes Yes
7 CHAR 8 0... +255 Yes No
8 ENUM 8 0... +255 Yes Yes
9 BITS8 8 8 bit bit field 00000000... 11111111 Yes Yes
10 BITS16 16 16 bit bit field 0000000000000000...

1111111111111111
Yes Yes

11 BITS32 32 32 bit bit field 00000000 00000000
00000000 00000000...
11111111 11111111 11111111
11111111

Yes Yes

12 OCTET 8 Undefined 8 bit data 0... +255 Yes No
13–15 (reserved)
16 SINT64 64 Signed 64 bit integer -263... +(263-1) No Yes
17 UINT64 64 Unsigned 64 bit integer 0... +(264-1) No Yes
18 FLOAT 32 Floating point (IEC

60559)
±1.17549435E-38...
±3.40282347E+38

No Yes

32–
48

PADx 0-16 Bit fields of size 0 - 16
used for padding

N/A Yes Yes

65–
71

BITx 1-7 Bit fields of size 1-7 [0...1]... [0000000...1111111] Yes Yes

• Arrays of type CHAR will be translated to the native string type of the network.

• The commands “Set_Indexed_Attribute” and “Get_Indexed_Attribute” cannot be used
for the data type CHAR .

• Data of type ENUM are enumerations, limited to a consecutive range of values starting
at zero.

• The data types BITS8, BITS16, BITS32, OCTET, PADx, and BITx are only supported by
Anybus CompactCom 40.

10.4.2 Bit Fields
The bit field types should be used for parameters where each bit, or group of bits, contains indi-
vidual meaning. Typical examples include control/status words or digital I/O.

Bit field parameters will be translated to network specific data types suitable for digital I/O or
control/status words.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 51 (164)

BITSx
The BITSx data types (BITS8, BITS16, and BITS32) consist of even data byte sizes and must
be byte aligned. They are handled in the same way as other multibyte data types with regard to
byte order.

BITx
The BITx data types (BIT1-BIT7) are packed with bits aligned, and may be placed over byte
boundaries. The type code (65-71) of BITS1-BITS7 may be divided into the 5 most significant
bits as specifier (always 01000) and the 3 least significant bits as bit counter, with valid values
from 1 to 7 for the bit counter field.

10.4.3 Handling of Array of Char (Strings)
Readable strings can be represented in ADIs in two different ways. Either as an array of CHAR
or as a string variable. The recommended way is to represent readable strings in ADIs as a vari-
able using the attribute “Number of subelements” in the Application Data Object (FEh), i.e. a
string variable that consists of one element with several subelements. This section is mainly ap-
plicable when using arrays of CHAR in ADIs. Both these types of strings are hereafter named
string.

Arrays of type CHAR will be translated to the native string type (when applicable). The maxi-
mum string length, and the buffer space required to store it, is defined by the data type and the
number of elements.

All elements of an array of CHAR are significant; the Anybus module does not expect any termi-
nation characters when reading, nor does it generate any when writing. The actual length of the
string is defined in the payload size given in the ‘Get_Attribute’- and ‘Set_Attribute’-commands.

Generally, it is recommended to keep the ‘number of elements’, ‘data type’, and the message
payload length, as consistent as possible. There is no guarantee that the Anybus CompactCom
40 will check consistency between the payload length and the actual buffer space.

See also...

• Application Data Object (FEh), p. 106

10.4.4 OCTET
The OCTET type is used for undefined data of byte size. In ADIs, elements of type OCTET may
have subelements.

10.4.5 PADx
The PADx types consist of 17 types, from PAD0 to PAD16. PADx variables are packed with bit
alignment and might pass any byte boundaries. The value of a PADx variable is irrelevant and
might be skipped completely in a network specific way.

The type code (32-48) might be divided into the 3 most significant bits as specifier (always 001)
and the 5 least significant bits as bit counter, with valid values from 0 to 16 for the bit counter
field.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 52 (164)

10.5 Command Specification
10.5.1 General Information

This chapter covers global commands, i.e. commands which have the same command code re-
gardless of which object that is being accessed.

Some objects have special requirements, which are handled through object-specific commands.
In such cases, unlike global commands, the same command code may have different meaning
depending on context (i.e. which object that is being accessed). Object-specific commands are
described separately for each object (when applicable).

See also...

• Anybus Module Objects, p. 62

• Host Application Objects, p. 101

Regarding generic command descriptions it should be noted that while a command has a de-
fined generic description and structure, the actual effect of it may differ greatly depending on
the context.

For example:

• Application issues Reset →Network Configuration Object = resets network settings

• Network Reset →Anybus issues Reset →Application Object = Anybus shifts to EXCEP-
TION and awaits a hardware reset

Fields marked as reserved must be treated with caution. Reserved fields in
messages sent to the Anybus CompactCom must be set to 0 (zero), since they
may have a defined use in future Anybus revisions. In messages received from the
Anybus CompactCom, reserved fields shall simply be ignored.

10.5.2 Command Codes
The following commands are global, i.e. the same command code is used regardless of which
object that is being accessed. The commands are described in the subsections below.

Command Code Command Name
00h (reserved)
01h Get_Attribute
02h Set_Attribute
03h Create
04h Delete
05h Reset
06h Get_Enum_String
07h Get_Indexed_Attribute
08h Set_Indexed_Attribute
09h... 0Fh (reserved)
10h... 30h (reserved for object specific commands)
31h... 3Eh (reserved)
3Fh (reserved for object specific commands)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 53 (164)

10.5.3 Error Codes
If a command for some reason cannot be executed, the first byte in message data field (MsgDa-
ta[]) of the response is used to supply details about problem to the command initiator.

Additional object specific error information may also be added in the message data section.

Code Error Meaning
00h (reserved) -
01h
02h Invalid message format Command and error bit set
03h Unsupported object Object not registered
04h Unsupported instance The target instance does not exist
05h Unsupported command The target object does not support the specified command
06h Invalid CmdExt[0] Invalid value of CmdExt[0] or invalid combination of CmdExt[0]

and CmdExt[1]
07h Invalid CmdExt[1] Invalid setting in CmdExt[1]
08h Attribute not settable The requested attribute is not settable
09h Attribute not gettable The requested attribute is not gettable
0Ah Too much data Too much data in message data field
0Bh Not enough data Not enough data in message data field
0Ch Out of range A specified value is out of range Use this error code only when

11h or 12h cannot be used
0Dh Invalid state The command is not supported in the current state
0Eh Out of resources The target object cannot execute the command due to limited

resources
0Fh Segmentation failure Invalid handling of the segmentation protocol
10h Segmentation buffer overflow Too much data received
11h Value too high The written data is too high
12h Value too low The written data is too low
13h... FEh (reserved) -

FFh Object specific error The object returned an object specific error code. Additional de-
tails may or may not be included in the message data field
(MsgData[0...n])

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 54 (164)

10.5.4 Get_Attribute
Details

Command Code: 01h

Valid For: (depends on context)

Description
This command retrieves the value of an attribute. The attribute number must be left intact in an
error response.

• Command details:

Field Contents
CMDExt[0] Attribute number
CMDExt[1] (reserved)

• Response details:

Field Contents
MsgData[0..n] Attribute Value

10.5.5 Set_Attribute
Details

Command Code: 02h

Valid For: (depends on context)

Description
This command assigns a value to an attribute. The attribute number must be left intact in an er-
ror response

• Command details:

Field Contents
CMDExt[0] Attribute number
CMDExt[1] (reserved)
MsgData[0..n] Attribute Value

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 55 (164)

10.5.6 Create
Details

Command Code: 03h

Valid For: Object Instance (Instance #0)

Description
This command creates a new instance within the object. If successful, the data portion of the re-
sponse contains the number of the newly created instance.

• Command details:

Object Specific

Not all objects have any specific details for this command. If there are any object specif-
ic details, they are found in the description of the object in question.

• Response details:

Field Contents
MsgData[0] The number of the created Instance (low byte)
MsgData[1] The number of the created Instance (high byte)

10.5.7 Delete
Details

Command Code: 04h

Valid For: Object Instance (Instance #0)

Description
This command deletes a previously created instance (see above). If successful, all resources
occupied by the specified instance will be released.

• Command details:

Field Contents
CMDExt[0] Instance number to delete (low byte)
CMDExt[1] Instance number to delete (high byte)

• Response details (Success):

(No data)

• Response details (Error):

Field Contents
Invalid CMDExt[0] The specified instance does not exist.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 56 (164)

10.5.8 Reset
Details

Command Code: 05h

Valid For: (depends on context)

Description
This command performs a reset command on an object.

• Command details:

Field Contents
CMDExt[0] (reserved)
CMDExt[1] 00h = Power-on reset (actual power-on or simulated)

01h = Factory default reset
02h = Power-on + Factory default reset

• Response details:

(No data)

10.5.9 Get_Enum_String
Details

Command Code: 06h

Valid For: (depends on context)

Description
This command retrieves attributes which are of enumeration type (ENUM). The returned value
is the literal string associated with the specified enumeration value.

• Command details:

Field Contents
CMDExt[0] The number of the attribute
CMDExt[1] The enumeration value

• Response details (Success):

Field Contents
MsgData[0..n] The enumeration string.

• Response details (Error):

Field Contents
Invalid CMDExt[0..n] The enumeration value is out of range.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Object Messaging 57 (164)

10.5.10 Get_Indexed_Attribute
Details

Command Code: 07h

Valid For: (depends on context)

Description
This command retrieves the value of a single element of an attribute which consists of multiple
elements (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents
CMDExt[0] The number of the attribute
CMDExt[1] Index (first element has index 0)

• Response details (Success):

Field Contents
MsgData[0..n] Value

• Response details (Error):

Field Contents
Invalid CMDExt[0..n] Index is out of range

10.5.11 Set_Indexed_Attribute
Details

Command Code: 08h

Valid For: (depends on context)

Description
This command assigns a value to a single element of an attribute which consists of multiple ele-
ments (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents
CMDExt[0] The number of the attribute
CMDExt[1] Index (first element has index 0)
MsgData[0...n] Value to set

• Response details (Success):

(No data)

• Response details (Error):

Field Contents
Invalid CMDExt[1] Index is out of range

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Initialization and Startup 58 (164)

11 Initialization and Startup
11.1 General Information

Before network participation, the following steps must be completed:

1. Startup Procedure

The purpose of the startup procedure is to make sure that both parts (the host applica-
tion and the Anybus CompactCom module) are ready to communicate. Normally an
Anybus CompactCom module is ready to communicate in less than 1.5s. The module
will then enter the ‘SETUP’-state. For more information, see Startup Procedure, p. 58.

2. Anybus CompactCom Setup

This step determines how the module shall operate. When done, the module will enter
the ‘NW_INIT’-state.

For more information, see Anybus Setup (SETUP State), p. 60.

3. Network Initialization

At this stage, the module will attempt to read and evaluate information from the host ap-
plication. When finished, the module will enter the ‘WAIT_PROCESS’-state.

For more information, see Network Initialization (NW_INIT State), p. 61.

When the module is restarted after a firmware download, the application must wait
for the upgrade to finish, before anything else is done, see below.

11.2 Startup Procedure
The startup procedure is slightly different depending on which type of host interface that is used,
but will normally be finished within 1.5 s.

1. Enable power.

2. Release reset to the module.

3. Wait for the Anybus CompactCom 40 to respond. Depending on interface, the expected
response is different:

Interface Expected Response
Parallel Host (8/16 bit) The host application shall wait for the Anybus CompactCom interrupt signal to

go active, before starting to communicate.
SPI After releasing the reset signal to the Anybus CompactCom module, the host

application may optionally wait for the Anybus CompactCom interrupt signal to
go active, thus indicating that the module is ready, before starting SPI
communication.
The other option for the host application is to start SPI communication immedi-
ately after releasing the Anybus CompactCom reset signal. The host applica-
tion may see SPI telegrams with CRC errors at first. These telegrams shall be
retransmitted according to normal error handling rules for the SPI protocol,
see SPI Error Handling, p. 40.

Shift Register The Anybus CompactCom 40 module initializes autonomously after reset is
released.

Serial Host This interface is backwards compatible to the Anybus CompactCom 30-series
serial host interface. Please refer to the Anybus CompactCom 30 Software
Design Guide for information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Initialization and Startup 59 (164)

11.2.1 Suggested Startup Procedure when Upgrading from Network
To allow firmware upgrade from network, implement attribute #5 of the Application Object
(FFh), instance #1. The module will inform the host application when a new firmware candidate
is available in the candidate area. The host application must store the information in non-volatile
memory. See Application Object (FFh), p. 114.

If firmware upgrade from network is allowed, the following startup procedure is suggested:

Do not reset the Anybus CompactCom module during the startup procedure.

1. Enable power.

2. Release reset to the module.

3. Wait for the Anybus CompactCom 40 to respond. Depending on interface the expected
response is different:

Interface Expected Response
Parallel Host (8/16 bit) Interrupt
SPI First SPI telegram without CRC error, or an active interrupt signal
Shift Register N/A
Serial Host First serial telegram without CRC error

4. If a new firmware candidate is available, the module will start to reprogram the firmware.
This can need up to 1 min. If no candidate firmware is available the boot time will always
be less than 1.5 seconds. In case of a firmware update, do not reset the module. If pos-
sible, display a message to the end user: “Waiting for Anybus module”....

5. When a response is detected: Start the initialization of theAnybus CompactCom 40
module. Remove any previously displayed message.

If the module does not respond as described, it has not started up correctly. Please contact
HMS Industrial Networks AB at www.anybus.com/support.

When the Anybus CompactCom 40 is reset after a firmware download, the
application must wait for the installation to finish, before initialization is started. The
Anybus CompactCom is protected against problems occurring during download
and/or installation and will recover upon restart.

To install the new firmware after download, reset the Anybus CompactCom 40. If
the installation of the new firmware is interrupted, e.g. due to power loss, please
restart the Anybus CompactCom 40. The installation process will automatically
start from the beginning and the new firmware will be installed without any further
action.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

http://www.anybus.com/support

Initialization and Startup 60 (164)

11.3 Anybus Setup (SETUP State)
This stage involves four distinctive steps:

1. Gather information about the Anybus Module (Optional)

The host application may retrieve the network type, as well as other properties that may
be relevant when configuring the module, from the Anybus Object (01h). This informa-
tion may also be used to select different implementations based on e.g. the module type
value.

2. Network Configuration (Optional)

At this stage, the host application should update all instances in the Network Configura-
tion Object of which the value originates from physical switches (i.e. node address,
baud rate etc.). Settings which originate from “soft” input devices such as a keypad and
display should not be updated at this point.

3. Process Data Mapping (Optional)

The host application may optionally map ADIs to Process Data.

This step is optional, but may be required by some networking systems and/or Anybus
implementations.

Certain Anybus implementations may attempt to alter the Process Data map during run-
time. For more information, see Application Data Object (FEh), p. 106.

4. Finalize the Setup

The setup procedure is finalized by setting the ‘Setup Complete’-attribute in the Anybus
Object (01h) to TRUE.

If successful, the module now shifts to the state NW_INIT (below), or in case of failure,
to the state EXCEPTION. In case of the latter, further information can then be read from
the attribute Exception in the Anybus Object (01h).

See also..

• Network Data Exchange, p. 15

• The Anybus State Machine, p. 44

• Anybus Object (01h), p. 62

• Network Configuration Object Name (04h), p. 80

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Initialization and Startup 61 (164)

11.4 Network Initialization (NW_INIT State)
At this stage, the Anybus module will attempt to read and evaluate information from the host ap-
plication. The host application is required to respond to incoming requests to Host Application
Objects. If the requested object or attribute is not implemented in the host application, simply re-
spond with an error message. The module will in those cases use its own default values for the
requested attributes, or configured virtual attributes.

The host application is free to update any instances in the Network Configuration Object, includ-
ing those that do not originate from physical switches.

If a serious error is encountered (i.e. any error which prevents the module from proceeding) in
this state, the module will shift to the state EXCEPTION. Further information can then be read
from the attribute Exception in the Anybus Object (01h).

When done, the module enters the state WAIT_PROCESS.

The transition to this state is critical, especially if using the serial host interface,
since telegrams from this point may (depending on the setup) contain Process
Data. It is important to keep Write Process Data updated in this state since this
data is buffered by the module and may be sent to the network on the next state
transition.

See also..

• The Anybus State Machine, p. 44

• Network Configuration Object Name (04h), p. 80

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 62 (164)

12 Anybus Module Objects
12.1 General Information

The objects in this chapter are implemented as standard in all Anybus CompactCom implemen-
tations. Their functionality is categorized to indicate when and how to use the objects.

See also..

• Message Segmentation, p. 48

• Error Codes, p. 53

• Categorization of Functionality, p. 137

For detailed information about each object, see...

• Anybus Object (01h), p. 62

• Diagnostic Object (02h), p. 69

• Network Object (03h), p. 74

• Network Configuration Object Name (04h), p. 80

• Anybus File System Interface Object (0Ah), p. 83

• Functional Safety Module Object (11h), p. 98

12.2 Object Revisions
The purpose of the Object Revision attribute is to make it possible for the host application to de-
termine if the revision of the object in the Anybus module is compatible with the software imple-
mentation in the host application, and/or to make it possible to choose different
implementations based on the object revision.

As a general rule, the object revision is updated when the object is changed in such a way that
the change may cause compatibility issues in the host application software implementation. Mi-
nor changes, such as when an attribute or command has been added, are normally not cause
for a revision change.

12.3 Anybus Object (01h)
Category
Basic

Object Description
This object assembles data about the Anybus CompactCom module itself. The data in question
does not as such represent the industrial network the module is adapted to, but describes data
inherent to the module. This data is available for use in the application. The values may differ,
depending on industrial network, and are in that case described in the respective appendices.

Most attributes in this object have access type “get” where data can be fetched using the com-
mand Get_Attribute. The only attribute that is mandatory to set is “Setup complete” (instance
#1, attribute #5), which is used by the application to notify the module that it has finished the set-
up. If the configuration is not accepted, the module will shift to the state EXCEPTION, and infor-
mation can be read from instance #1, attribute #6 (“Exception Code”).

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 63 (164)

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Anybus”
2 Revision Get UINT8 04h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description
1 Module Type Get UINT16 Value: Meaning:

0401h: Standard Anybus CompactCom
30

0402h: Anybus CompactCom Drive Pro-
file 30

0403h: Standard Anybus CompactCom
40

0404h: Anybus IP
(Other) (reserved for future products)

2 Firmware version Get struct of:
UINT8 Major
UINT8 Minor
UINT8 Build

Firmware version. Note that this value shall
generally not be used to determine if a particu-
lar functionality is available or not. Please use
the attribute Revision of each individual object
for this purpose

3 Serial number Get UINT32 Unique serial number

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 64 (164)

Name Access Data Type Description
4 Application watchdog

timeout
Get/Set UINT16 Application watchdog configuration

Value:
0:
(other):

Meaning:
Disabled (default)
Timeout value (ms)

If enabled, the watchdog timeout time is active
immediately, regardless of the state of the ap-
plication. The internal timer is reloaded every
time it is restarted, so the value of this attribute
can be changed during runtime.

5 Setup complete Get/Set BOOL This attribute shall be set to TRUE when the
Anybus Setup stage has been completed. If
the configuration is accepted, the Anybus
module shifts to the state NW_INIT. If not, i.e.
if a serious error is detected in the configura-
tion, the module will shift to the state EXCEP-
TION. In such case further information can be
read from the attribute Exception Code
(below)
See also...
Anybus Setup (SETUP State), p. 60

6 Exception code Get ENUM See Exception Codes below.
7 FATAL event Get/Set struct of: (HMS

Specific)
The latest FATAL event (if any) is logged to this
instance. Used for evaluation by HMS support.
(The contents of this attribute is only used as
input to HMS support during application
development)

8 Error Counters Get struct of: Error counters (stops counting at FFFFh).
(The contents of this attribute is only used dur-
ing application development.)

UINT16 DC DC: Discarded commands (received
with R = 0)

UINT16 DR DR: Discarded (unexpected)
responses

UINT16 SE SE: Serial reception errors
UINT16 FE FE: Fragmentation errors

9 Language Get/Set ENUM Current language:
Value: Enumeration String:
00h:
01h:
02h:
03h:
04h:

“English” (default)
“Deutsch”
“Español”
“Italiano”
“Français”

See also...
Application Object (FFh), p. 114 , including de-
tails for command Change_Language_request.

10 Provider ID Get UINT16 Preprogrammed and stored permanently in
FLASH by HMS during production (contact
HMS for further information).
Value:
0001h:
FFFFh:
Other:

Meaning:
HMS Networks
(reserved)
Provider specific

11 Provider specific info Get/Set UINT16 The information stored in this attribute is pro-
vider-specific, i.e. it has no predefined mean-
ing and is not evaluated nor used by the
Anybus module.
Any value written to this attribute will be stored
in nonvolatile memory. Default value is 0000h.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 65 (164)

Name Access Data Type Description
12 LED colors Get struct of:

UINT8 LED1A
UINT8 LED1B
UINT8 LED2A
UINT8 LED2B

This attributes specifies the colors of the net-
work status LEDs. See Anybus CompactCom
M40 Hardware Design Guide for more
information.
Value:
00h:
01h:
02h:
03h:
04h:
05h:
06h:

Meaning:
None (not used)
Green
Red
Yellow
Orange
Blue
White

13 LED status Get UINT8 Bit field holding the current state of the net-
work status LEDs as follows:
Bit:
b0:
b1:
b2:
b3:
b4:
b5:
b6:
b7:

Contents:
LED1A status (0=OFF, 1=ON)
LED1B status (0=OFF, 1=ON)
LED2A status (0=OFF, 1=ON)
LED2B status (0=OFF, 1=ON)
LED3A status (0=OFF, 1=ON)
LED3B status (0=OFF, 1=ON)
LED4A status (0=OFF, 1=ON)
LED4B status (0=OFF, 1=ON)

14 Switch status Get struct of
UINT8 SW1
UINT8 SW2

Values of DIP switches representing node ad-
dress and baud rate.
Supported in serial, SPI and shift register
mode. in other modes the attribute contains
random data.
This attribute is only supported on Anybus
CompactCom 40.

15 (not used for Anybus
CompactCom 40)

- - -

16 GPIO configuration Get/Set UINT16 Configuration of the host interface GPIO pins.
Set access is only valid during SETUP state.
Code: Description
0000h, GIP[0..1] are used as general in-

put pins.
GOP[0..1] are used as general
output pins.
For the ABCC40 this mode is
identical to the Extended LED
functionality (0001h) mode

0001h: Extended LED functionality
(default):
GIP[0..1] are used as network
specific, active low LED outputs
associated with the left, or single,
port.
GOP[0..1]are used as network
specific, active low LED outputs
associated with the right port.

0002h: RMII: GIP[0..1], /GOP[0..1], LE-
D1A, LED1B, LED2A, and LED2B
are used to create RMII interface
against the application. Only valid
for modules supporting RMII,
Please note that this code is not
valid when running in 16 bit paral-
lel mode.

0003h Three-state:
GIP[0..1] and GOP[0..1] are set to
three-state.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 66 (164)

Name Access Data Type Description
17 Virtual attributes Get/Set Array of UINT8 This attribute is used to implement virtual host

application attributes in the module, e.g. when
using the module stand-alone.
This attribute is only supported on Anybus
CompactCom 40.
Set access is only valid during SETUP state.
Maximum size: 1524 bytes. Stored in nonvola-
tile memory.
See “Virtual Attributes” below.

18 Black list/White list Get/Set This attribute is used to implement the black
list/white list.
See“ Black List / White List” below..
This attribute is only supported on Anybus
CompactCom 40.

Format:
struct of:
UINT8 InfoBits

InfoBits:
bit 0:

bit 1 - 7:

0 = black list
1 = white list
reserved

UINT8 ListLen ListLen: Length of the list, equal to #n en-
tries (Prot#n)
0 = List disabled

UINT16 Prot#1
UINT16 Prot#2
...
UINT16 Prot#n

Prot#: The network type identifier

19 Network time Get UINT64 The current network time.
The format of the network time is in a network
specific format.
0 = the network does not support network time.
This attribute is only supported on Anybus
CompactCom 40.

20 Firmware custom
version

Get UINT8 This attribute holds a firmware version prefix,
indicating a special branch of the firmware.

21 Anybus IP Licence Get ENUM Information about what licence chip detected
by Anybus IP. See below for enumeration
values.
Only supported on the Anybus IP platform.

Virtual Attributes
The virtual attributes list is a 1524 bytes array, stored in nonvolatile memory. The attributes are
created using the format below:

Object (8 bit)
Instance (16 bit)
Attribute (8 bit)
Length (16 bit)
Data (Length * 8 bit)

The virtual attributes are accessed via attribute #17 in the Anybus object.

When the Anybus CompactCom 40 tries to retrieve network specific attributes from the host ap-
plication and the application cannot supply these attributes, an error code is returned. The mod-
ule will then check for the missing attributes in the virtual attributes list. Please note that the
attribute number has to be left intact in the error response, or the requested attribute can not be
foun in the list.

Using the virtual attributes list, it is possible to provide network specific objects and/or attributes
to the module without implementing them in the host application. This may e.g. be useful when

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 67 (164)

an application is to be adapted to new networks, and need to support network specific attrib-
utes, that are not available in the original application. Some attributes are mandatory in order to
pass conformance tests, see Conformance Test Information, Stand-Alone Mode, p. 146.

If the array data in the virtual attributes list does not fit into a single message, a Get_Attribute re-
quest will return the error code “Messaging channel too small” (14h).

If the Anybus CompactCom 40 is used in stand-alone mode, no host application is available
and the Anybus CompactCom 40 will check for attributes in the virtual attributes list. The virtual
attributes can only be set before the “Setup complete” attribute is set.

If you change the module’s identity when implementing a stand-alone shift register
solution, it is necessary to implement the virtual attributes.

Black List / White List
Using the black list/white list, it is possible for the host to block or accept certain protocol
versions.

Bit 0 in the header of the list decides if it is a black list or a white list. If configured as a white list,
only the protocols in the list will be accepted. If configured as a black list, all protocols in the list
will be rejected.

A white list makes it possible to accept only a predefined choice of protocols.

A black list makes it possible to block already defined protocols.

The black list/white list is accessed via attribute #18 in the Anybus object.

Anybus IP license
Code License Description
0x00 None The security chip has not been probed yet.
0x01 Time bomb The security chip is not mounted or something went

wrong when probing or reading from the security chip. Full
functionality of Anybus IP is enabled but the module only
functional for a limited amount of time.

0x02 Standard Anybus IP is running with limited functionality.
0x03 Extended Full functionality enabled.

See also...

• The Anybus State Machine, p. 44

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 68 (164)

Exception Codes
When in the state EXCEPTION, this attribute provides additional information.

Enumeration String Description
00h No exception -

01h Application timeout The host application has not responded within the speci-
fied watchdog timeout period.

02h Invalid device address The selected device address is not valid for the actual
network.

03h Invalid communication settings The selected communication settings are not valid for the
actual network.

04h Major unrecoverableapp event The host application has reported a major unrecoverable
event to the Diagnostic object.

05h Wait for reset The module is waiting for the host application to execute
a reset.

06h Invalid process data config The Process Data configuration is invalid.
07h Invalid application response The host application has provided an invalid response to

a command.
08h Nonvolatile memory checksum error At least one of the parameters stored in nonvolatile mem-

ory has been restored to its default value due to a check-
sum error.

09h ASM communication error Communication is lost between the Anybus CompactCom
module and the attached Anybus safety module.

0Ah Insufficient application
implementation

The application does not implement the functionality re-
quired for the Anybus module to continue its operation.

0Bh Missing serial number The module is missing a serial number. This might hap-
pen in product configurations which does not have an em-
bedded serial number (e.g. Anybus IP), and the
application fails to supply one.

0Ch Corrupt file system The file system is corrupt and must be formatted by user.
(other) (reserved) -

See also...

• The Anybus State Machine, p. 44

Object Specific Error Codes
The following object-specific error codes may be returned by the module as a response to set-
ting the attribute Setup complete.

Error Description
01h Invalid process data configuration The Process Data configuration is invalid
02h Invalid device address The selected device address is not valid for the actual

network
03h Invalid communication settings The selected communication settings are not valid for the

actual network

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 69 (164)

12.4 Diagnostic Object (02h)
Category
Specific to each industrial network, see network guides.

Object Description
This object provides a standardized way of reporting diagnostic events to the network. Exactly
how this is represented on the network differs, however common to all implementations is that
the module enters the state EXCEPTION in case of a major unrecoverable event.

When the module has been started and initialized, no instances exist in the module. When a di-
agnostic event, e.g. a blown fuse, occurs in the application, the application creates an instance
with information on severity and kind of event. The information in this instance remains avail-
able for the application, until the application deletes the instance. The event code in the in-
stance is processed by the module, to transfer correct network-specific information about the
event to the network used.

Supported Commands

Object: Get Attribute (01h)

Create (03h)

Delete (04)

Instance: Get Attribute (01h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Diagnostic”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (depends on number of created diagnostic

events)
4 Highest instance no. Get UINT16 (network specific)
11 Max no. of instances Get UINT16 Max. no. of instances that can be created (net-

work specific)
Of the maximum number of instances there
should always be one instance reserved for an
event of severity level “Major, unrecoverable”,
to force the module into the state EXCEPTION.

12 Supported
functionality

Get BITS32 Bit 0: “1” if latching events are supported
“0” if latching events are not supported
Bit 1 - 31: reserved (shall be “0”)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 70 (164)

Instance Attributes (Instance #1)
Name Access Type Description
1 Severity Get UINT8 This attribute should be viewed as a bit field

Bit 0 (the least significant bit) indicates
whether extended diagnostics are used by the
instance

• Bit 0 = 1: extended diagnostics are used

• Bit 0 = 0: extended diagnostics are not
used

Bits 4 - 6 are used for severity level informa-
tion. See below.

2 Event Code Get UINT8 See below.
3 NW specific

extension
Get Array of UINT8 Network specific event information (optional)

4 Slot Get UINT16 Indicates which slot in a modular device the di-
agnostic event is associated with
Default value: 0
For more information, see "Modular Device
Object (ECh)" on page 125

5 ADI Get UINT16 Indicates which ADI the diagnostic event is as-
sociated with
Default value: 0 (if the diagnostic instance is
not associated with any particular ADI)

6 Element Get UINT8 Indicates which element in the ADI the diag-
nostic event is associated with
The value 255 is used if the diagnostic event
is associated with the entire ADI
Default value: 255

7 Bit Get UINT8 Indicates the bit in the element that the diag-
nostic event is associated with
The value 255 is used to indicate that the diag-
nostic event is associated with the entire
element
Default value: 255

Severity
This parameter indicates the severity level of the event. Only bits 4 - 6 are used for severity level
information.

Severity Levels
Bit Combination Severity Comment
000 Minor, recoverable -
001 Minor, unrecoverable Unrecoverable events cannot be deleted
010 Major, recoverable -

011 Major, unrecoverable Causes a state-shift to EXCEPTION
101 Minor, latching
110 Major, latching
(other) - (reserved for future use)

Recoverable events shall be deleted by the application when the cause of the error is gone.

Unrecoverable events cannot be deleted. They remain active until the Anybus CompactCom is
reset or power is turned off.

Latching events remain active until explicitly acknowledged by the network master. If the net-
work does not support acknowledgment of latching diagnostic events, the module shall refuse
the creation of latching diagnostic events.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 71 (164)

When the network master acknowledges one or more latching events, the module shall send a
“Reset Diagnostic”request to the application object. The request contains a list of diagnostic in-
stances which the master wishes to acknowledge. The application object shall respond with a
list of diagnostic instances which it allows the module to delete. The module will then delete the
allowed instances, and report the appropriate information to the network master.

Event Codes
Meaning Comment
10h Generic Error -
20h Current -
21h Current, device input

side
-

22h Current, inside the
device

-

23h Current, device output
side

-

30h Voltage -

31h Mains Voltage -

32h Voltage inside the
device

-

33h Output Voltage -

40h Temperature -

41h Ambient Temperature -

42h Device Temperature -

50h Device Hardware -
60h Device Software -
61h Internal Software -
62h User Software -
63h Data Set -
70h Additional Modules -
80h Monitoring -

81h Communication -
82h Protocol Error -
90h External Error -
F0h Additional Functions -
FFh NW specific Definition is network-specific; consult separate network guide for further

information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 72 (164)

Command Details: Create
Details

Command Code: 03h

Valid For: Object

Description

Creates a new instance, in this case representing a new diagnostic event in the host application.

• Command details:

Field Contents Note
CMDExt[0] Bit 0:

Bit 4–6:
Other bits

Extended Diagnostic
Severity
Reserved. Set to zero.

CMDExt[1] Event Code, see previous page
MsgData[0...1] Slot number associated with the event

Set to “0” if unknown or unsupported
These fields only exist if
bit 0 (Extended Diag-
nostic) is set

MsgData[2...3] ADI associated with the event
Set to “0” if unknown or unsupported

MsgData[4] Element associated with the event
Set to “255” if unknown or unsupported

MsgData[5] Bit in element associated with the event
Set to “255”if unknown or unsupported

MsgData[6...7] Reserved. Set to zero
MsgData[0/8...n] Network specific extension (optional, definition is net-

work specific)
MsgData[8-n] if bit 0 in
CmdExt[0] is set
MsgData[0-n] if bit 0 in
CmdExt[0] is not set

• Response details (Success):

Field Contents
MsgData[0...1] The number of the created instance

• Response details (Error):

Error Contents Comment
Object Specific Error MsgData[1] = 02h Error code (Latching event not supported)

The event could not be created since the module
does not support latching events

MsgData[1] = FFh Error code (Network specific error)
The event could not be created due to a network
specific reason.
Information about the event is found in response
MsgData[2-n]

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 73 (164)

Command Details: Delete
Details

Command Code: 04h

Valid For: Object

Description

Deletes an existing instance, i.e. a previously created diagnostic event.

Instances representing unrecoverable events and latching events cannot be deleted.

• Command details:

Field Contents
CMDExt[0] The number of the instance to delete (low byte)
CMDExt[1] The number of the instance to delete (high byte)

• Response details (Error):

Error Contents Comment
Object Specific Error MsgData[1] = 01h Error code (Not removed).

The event could not be removed, either because
the event itself is unrecoverable, latching, or due
to a network specific reason.

MsgData[1] = FFh Error code (Network specific error)
The event could not be deleted due to a network
specific reason
Information about the event is found in response
MsgData[2-n]

See also:

– Error Codes, p. 53

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 74 (164)

12.5 Network Object (03h)
Category
Basic

Object Description
This object holds general information about the network (i.e. network type, data format etc.). It
is also used when mapping ADIs as Process Data from the host application side.

See also...

• Functional Safety Object (E8h), p. 104

• Application Object (FFh), p. 114

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Map_ADI_Write_Area (10h)

Map_ADI_Read_Area (11h)

Map_ADI_Write_Ext_Area (12h)

Map_ADI_Read_Ext_Area (13h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Network”
2 Revision Get UINT8 02h
3 Number of instances Get UINT16 (Module type dependent)
4 Highest instance no. Get UINT16 (Module type dependent)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 75 (164)

Instance Attributes (Instance #1)
Name Access Catego-

ry
Type Description

1 Network type Get Extend-
ed

UINT16 (See separate Network Guide)

2 Network type string Get - Array of CHAR
3 Data format Get Basic ENUM Network data format:

Value:
00h:
01h:

Enumeration String:
“LSB First”
“MSB First”

4 Parameter data
support

Get Extend-
ed

BOOL This attribute indicates if the net-
work supports acyclic data serv-
ices. It can also be used for
deciding what ADIs to map to
Process Data.
Value:
True:
False:

Meaning:
Network supports
acyclic data access
No support for acyclic
data

5 Write Process Data
size

Get - UINT16 The current write Process Data
size (in bytes).
Updated on every successful
Map_ADI_Write_Area, Map_ADI_
Write_Ext_Area, Remap_ADI_
Write_Area or any network specif-
ic mapping command.

6 Read Process Data
size

Get - UINT16 The current read Process Data
size (in bytes).
Updated on every successful
Map_ADI_Read_Area, Map_ADI_
Read_Ext_Area, Remap_ADI_
Read_Area or any network specif-
ic mapping command.

7 Exception
Information

Get - UINT8 Additional network specific infor-
mation may be presented here if
the module has entered the EX-
CEPTION state (see separate
network guide).

Command Details: Map_ADI_Write_Area
Details

Command Code: 10h

Valid For: Instance

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 76 (164)

Description

This command maps an ADI as Write Process Data. If successful, the response data contains
the offset of the mapped ADI from the start of the Write Process Data image.

• It is strongly recommended not to map an ADI more than once (i.e. map it multiple times
to the Read- or Write Process Data, or map it to both the Read- and Write Process Da-
ta) since this is not accepted by some networks.

• It is not possible to map only part of an ADI, i.e. all elements of an ADI must always be
mapped.

• It is not allowed to mix mapping commands Map_ADI_Read/Write_Area and Map_
ADI_Read/Write_Ext_Area within one area.

• It is not allowed to map BITSx types of fractional byte size (BIT1 - BIT7) or PADx types
using this command.

• It is only allowed to map variables and arrays with this command. It is not allowed to
map structures.

• Certain Anybus implementations allow the network to remap the Process Data during
runtime. For more information, see Application Data Object (FEh), p. 106.

See also...

• Application Object (FFh), p. 114

Error control is only performed on the command parameters. The Anybus module
does not verify the correctness of these parameters by a read of the actual ADI
attributes.

• Command details:

Field Contents
CmdExt[0] Instance number of the ADI (low byte)
CmdExt[1] Instance number of the ADI (high byte)
MsgData[0] Data Type of the ADI, see Data Format, p. 50
MsgData[1] Number of elements in the ADI
MsgData[2] Order Number of the ADI (low byte)
MsgData[3] Order Number of the ADI (high byte)

The Order Number in the mapping command equals that of the command Get_In-
stance_Number_By_Order the Application Data Object.

• Response details (Success):

Field Contents
MsgData[0] Offset of the mapped ADI from the start of the Write Process Data

• Response details (Error):

Error Contents
Invalid CmdExt[0] The ADI number is not valid.
Invalid State Mapping of ADIs is only allowed in the SETUP state
Object Specific Error Object specific error, see MsgData[1] for details:

01h: Invalid data type The data type is not valid for Process Data
02h: Invalid number of elements The number of elements is not valid (zero)
03h: Invalid total size The requested mapping is denied because

the resulting total data size would exceed the

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 77 (164)

Error Contents
maximum permissible (depending on network
type)

04h: Multiple mapping The requested mapping was denied because
the specific network does not accept multiple
mapping of ADIs

05h: Invalid Order Number The order number is not valid (zero)
06h: Invalid map command
sequence

The order in which the commands were re-
ceived is invalid

Error control is only performed on the command parameters. The Anybus module does
not verify the correctness of these parameters by a read of the actual ADI attributes.

Command Details: Map_ADI_Read_Area
Details

Command Code: 11h

Valid For: Instance

Description

This command is identical to Map_ADI_Write_Area, described above, except that it maps ADIs
to Read Process Data.

Command Details: Map_ADI_Write_Ext_Area
Details

Command Code: 12h

Valid For: Instance

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 78 (164)

Description

This command is only supported by Anybus CompactCom 40 devices.

This command is equivalent to Map_ADI_Write_Area, but can map more than 256 bytes of data.
It supports mapping fractional byte size types, and it can be used to map only specific parts of
an ADI.

It maps an ADI as Write Process Data. If successful, the response data contains the offset, in
bits, for the mapped ADI from the start of the Write Process Data area.

• Mapping an ADI more than once (i.e. map it multiple times to the Read- or Write Proc-
ess Data, or map it to both the Read- and Write Process Data) is not accepted by all
networks.

• It is not allowed to mix mapping commands Map_ADI_Read/Write_Area and Map_
ADI_Read/Write_Ext_Area within one area (Read/Write).

• It is recommended to only map one item for each mapping command during initial de-
velopment, since data area offset is only given for the first mapping item, and all map-
ping items may be rejected using one single error code.

• All mapped elements, except those of types BIT1-BIT7 and PADx, must be byte aligned.

• The only implicit padding done is from the very last mapped item up to byte alignment,
since the process data needs to be of byte size when the setup is complete.

• Explicit padding is done either through available ADI elements of PADx type, or through
the imaginary ADI 0, which is assumed to be an array with 255 elements of type PAD1.
Explicit padding of process data is the only correct use of ADI 0. Padding bits might not
be visible on the network.

• This command may permanently alter the state of the Anybus CompactCom 40 even
though the command is returned with an error. Network specific restrictions may lead to
n mapping items to be accepted, but with an error on mapping item n+1. If so, the map-
pings up to and including n will be accepted, but all other mapping items, starting with n
+1, are rejected. The number of accepted mappings is declared inCmdExt[0] of the
answer.

• Certain Anybus implementations allow the network to remap the Process Data during
runtime. For more information, see “Application Data Object (FEh)” on page 91.

See also...

Application Object (FFh), p. 114

Error control is only performed on the command parameters. The Anybus module
does not verify the correctness of these parameters by a read of the actual ADI
attributes.

• Command details:

Field Contents
CmdExt[0] The number of ADIs to add (0-217)
CmdExt[1] Reserved. Set to 0
MsgData[0-1] New mapping item 1: ADI number
MsgData[2] New mapping item 1: Number of elements in the ADI
MsgData[3] New mapping item 1: Index to the first element to map (0-254)
MsgData[4] New mapping item 1: Number of consecutive elements to map (1-255)
MsgData[5] New mapping item 1: Number of type descriptors (1-255)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 79 (164)

Field Contents
MsgData[6..n] New mapping item 1: Array of type specifiers for each mapped element
... Repeat MsgData[0-n] (as above) for mapping item 2 and onwards.

• Response details (Success):

Field Contents
CmdExt[0] The number of accepted mapping items (0-217).
MsgData[0] Bit offset of the mapped ADI from the start of the Write Process Data (Least signifi-

cant byte)
MsgData[1] Bit offset of the mapped ADI from the start of the Write Process Data
MsgData[2] Bit offset of the mapped ADI from the start of the Write Process Data
MsgData[3] Bit offset of the mapped ADI from the start of the Write Process Data (Most signifi-

cant byte)

• Response details (Error):

Error Contents
Invalid CmdExt[0] The ADI number is not valid.
Invalid State Mapping of ADIs is only allowed in the SETUP state
Object Specific Error Object specific error, see MsgData[1] for details:

01h: Invalid data type The data type is not valid for Process Data
02h: Invalid number of elements The number of elements is not valid (zero, or

too many elements)
03h: Invalid total size The requested mapping is denied because

the resulting total data size would exceed the
maximum permissible (depending on network
type)

06h: Invalid map command
sequence

The order in which the commands were re-
ceived is invalid

07h: Invalid mapping command Inconsistencies in the command makes it im-
possible to parse

08h: Bad alignment The alignment rules for process data are not
followed

09h: Invalid use of ADI 0 ADI 0 is an array (255 elements) of type
PAD1

FFh: Network specific restriction The mapping is denied because of a network
specific reason, stated in response Data[2-n].
Consult the relevant network guide

Error control is only performed on the command parameters. The Anybus module does
not verify the correctness of these parameters by a read of the actual ADI attributes.

Command Details: Map_ADI_Read_Ext_Area
Details

Command Code: 13h

Valid For: Instance

Description

This command is only supported by Anybus CompactCom 40 devices.

This command is equivalent to Map_ADI_Read_Area, but can map more than 256 bytes of
data.

It is identical to Map_ADI_Write_Ext_Area, described above, except that it maps ADIs to Read
Process Data.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 80 (164)

12.6 Network Configuration Object Name (04h)
Category
Network specific

Object Description
This object contains network specific configuration parameters that may be set by the end user,
typically settings such as baud rate, node address etc. Although the actual definition of the in-
stances in this object are network specific, instance 1 and 2 are fixed (when possible).

When possible, the following convention is used for these instances:

Instance no. Data type Parameter
1 Any 8 bit or 16 bit data type Currently selected network device address (or similar).
2 Any 8 bit or 16 bit data type Currently selected network communication bit rate (or

similar).

The instance values in this object must be updated whenever their originating value changes.
Mechanical switches or similar need therefore be continuously monitored by the host
application.

• Instances tagged with ‘shared’ access (indicated by the descriptor) must be regarded
as volatile; a ‘set’ access towards such an instance may or may not alter its value. The
Anybus module will not respond with an error in case the value remains unaffected.

• When a set request with 8 bits of data is directed to a 16 bit instance, the set request is
accepted and the upper 8 bits are set to zero.

• When a set request with 16 bits of data is directed to a 8 bit instance, the set request is
accepted and the upper 8 bits are discarded.

Differentiation of Input Devices
The Anybus module makes a distinction between parameters originating from “hardwired” input
devices (i.e. physical mechanical switches) and parameters specified using a “soft” input device
such a keypad and display. This permits the Anybus module to fulfill network specific needs re-
lated to the actual origin of a parameter (e.g. some networks require that a change of value on
physical switches is visually acknowledged on the on-board LEDs).

This distinction is based on the following actions from the host application (see table).

State Actions (Host Application) Anybus Behavior
SETUP Poll and update parameters origi-

nating from physical switches
(make sure to issue at least one
Set command for each one of the
affected parameters). Do not up-
date parameters originating from
“soft”input devices (do not issue
any Set commands for these pa-
rameters yet).

The Anybus module identifies the affected parameters as
originating from physical switches. The remainder are as-
sumed to originate from “soft” input devices.

(other
states)

Poll and update all parameters (i.
e. physical switches and “soft” in-
put methods) as necessary.

The Anybus module keeps track of the parameters which
were updated during the SETUP state, and is thus able to
treat them differently if required by the network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 81 (164)

Supported Commands

Object: Get_Attribute (01h)

Reset (05h) (The actual behavior is network specific)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Network Configuration”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (Network dependent)
4 Highest instance no. Get UINT16 (Network dependent)

Instance Attributes (Instance #1... n)
Each instance represents a network configuration parameter. The attributes within it provides a
comprehensive description of the parameter (name, data type etc.). Instance names and enu-
meration strings are multilingual . The actual strings are of course network specific, but the max-
imum number of characters is limited to thirteen (13).

Name Access Catego-
ry

Type Description

1 Name Get Applica-
tion
specific

Array of CHAR Parameter name (e.g. “Node
address”)

2 Data type Get Applica-
tion
specific

UINT8 Data type, see Data Format, p. 50

3 Number of elements Get Applica-
tion
specific

UINT8 Number of elements of the speci-
fied data type

4 Descriptor Get Applica-
tion
specific

UINT8 Bit field specifying the access
rights for the parameter
Bit:
b0:
b1:
b2:

Access:
1: Get Access
1: Set Access
1: Shared Access
Instances tagged with
shared access must
be regarded as vola-
tile; a Set-access to-
wards such an
instance may or may
not alter its value. The
Anybus module will
not respond with an
error in case the value
remains unaffected.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 82 (164)

Name Access Catego-
ry

Type Description

5 Value Deter-
mined by
attribute
#4

Applica-
tion
specific

Determined by
attribute #2

Actual parameter value. Stored in
nonvolatile memory
Get access: the actually used val-
ue will be returned
Set access: the configured (and
possibly the actual) value will be
written

6 Configured value Get Applica-
tion
specific

Determined by
attribute #2

The configured parameter value
Returns the configured value of
an attribute. It is useful when ‘Val-
ue’ is not being used directly when
set, e.g. when a power cycle is
needed

Instance #1 and instance #2 are categorized as Basic, if they exist in an application. All other in-
stances of this object are categorized in the respective network guides.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 83 (164)

12.7 Anybus File System Interface Object (0Ah)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle
to a file stream and contains services for file system operations. This provides the host applica-
tion with access to the built-in file system of the module. Instances are created and deleted dy-
namically during runtime.

The object is structurally almost identical to the Application File System Interface Object (EAh),
see Application File System Interface Object (EAh), p. 121.

Ethernet modules have a file system that is accessible to the application for different purposes, e.
g. for firmware download/upgrade and internal web pages. See the respective network guides
for more information. For all other modules, only one folder is present. This folder is only used
for downloading and upgrading firmware.

Supported Commands

Object: Get_Attribute (01h)

Set_Attribute (02h)

Create (03h)

Delete (04h)

FormatDisc (30h)

Instance: Get_Attribute (01h)

File Open (10h)

File Close (11h)

File Delete (12h)

File Copy (13h)

File Rename (14h)

File Read (15h)

File Write (16h)

Directory Open (20h)

Directory Close (21h)

Directory Delete (22h)

Directory Read (23h)

Directory Create (24h)

Directory Change (25h)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 84 (164)

Object Attributes (Instance #0)
Name Access Data Type Value/Description
1 Name Get Array of CHAR “Anybus File System Interface”
2 Revision Get UINT8 02h
3 Number of instances Get UINT16 -
4 Highest instance no. Get UINT16 -

11 Max no. of instances Get UINT16 4: valid for Anybus CompactCom 40 modules
supporting IT functionality.
1: valid for Anybus CompactCom 40 modules,
not supporting multiple open file/directory
streams.

12 Disable virtual file
system

Set BOOL If the virtual file system is disabled it will not be
possible to access the internal web pages.
0 = the virtual file system is enabled (default)
1 = the virtual file system is disabled

13 Total disc size Get UINT32 Disc size in bytes.
14 Free disc size Get UINT32 Free disc size in bytes.
15 Disc CRC Get UINT32 Disc content CRC.

Please note that it may take more than 30 s to
read this attribute, due to the size of the disc.

16 Disc Type Get UINT8 File system type on disc, see below.
If this attribute is not available, the file system
is of type 1 (no power loss protection).

17 Disc Tolerance Level Get/Set UINT8 Disc fault tolerance level, see below.
If this attribute is not available, the file system
is of type 1 (no power loss protection).

Instance Attributes (Instance #1... 4)
Name Access Catego-

ry
Type Description

1 Instance Type Get Extend-
ed

UINT8 Value:
0:
1:
2:

Meaning:
Reserved
File instance
Directory instance

2 File size Get Extend-
ed

UINT32 File size (0 for a directory)

3 Path Get Extend-
ed

Array of CHAR The file path to where the instance
operates

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 85 (164)

File System Errors
In case of errors for services calling the file system interface object, the module will return FFh
(object specific error). A descriptive file system error will be returned in the error response data
field.

Name Description
1 FILE_OPEN_FAILED Could not open file
2 FILE_CLOSE_FAILED Could not close file
3 FILE_DELETE_FAILED Could not delete file
4 DIRECTORY_OPEN_FAILED Could not open directory
5 DIRECTORY_CLOSE_FAILED Could not close directory
6 DIRECTORY_CREATE_FAILED Could not create directory
7 DIRECTORY_DELETE_FAILED Could not delete directory
8 DIRECTORY_CHANGE_FAILED Could not change directory
9 FILE_COPY_OPEN_READ_FAILED Could not open file for copy
10 FILE_COPY_OPEN_WRITE_

FAILED
Could not open file for destination

11 FILE_COPY_WRITE_FAILED Could not write file when copying
12 FILE_RENAME_FAILED Could not rename file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 86 (164)

Command Details: File Open
Details

Command Code: 10h

Valid for: Instance

Description

Opens a file for reading, writing or appending.

• Command details:

Field Contents Comment
CmdExt[0] 00h - Read mode Opens a file for read only access.

01h - Write mode Opens a file for write only access. If the specified file does
not exist, it will be created. If the specified file already ex-
ists, it will be overwritten.

02h - Append mode Opens a file for writing at end-of-file. If the specified file
does not exist, it will be created. If the specified file exists,
any data written to the file will be appended at end-of-file.

CmdExt[1] (reserved, 0) -

MsgData[0...n] Path + filename of
the file to open rela-
tive to current path

-

• Response details:

(No data)

Command Details: File Close
Details

Command Code: 11h

Valid for: Instance

Description

Closes an open file.

• Command details:

(No data)

• Response details:

Field Contents Comment
CmdExt[0] Reserved (0) -

CmdExt[1] Reserved (0) -

MsgData[0] File size (low byte) The size of the closed file
MsgData[1] File size
MsgData[2] File size
MsgData[3] File size (high byte)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 87 (164)

Command Details: File Delete
Details

Command Code: 12h

Valid for: Instance

Description

Deletes the specified file.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0...n] Path + filename of the file to delete relative to current path

• Response details:

(No data)

Command Details: File Copy
Details

Command Code: 13h

Valid for: Instance

Description

Makes a copy of a file.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Path + filename of the source file, relative to the current path
MsgData[x] NULL (00h)
MsgData[y]... Path + filename of the destination file, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 88 (164)

Command Details: File Rename
Details

Command Code: 14h

Valid for: Instance

Description

Renames or moves a file.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Old path + filename, relative to the current path
MsgData[x] NULL (00h)
MsgData[y]... New path + filename, relative to the current path

• Response details:

(No data)

Command Details: File Read
Details

Command Code: 15h

Valid for: Instance

Description

Reads data from a file open for reading.

• Command details:

Field Contents
CmdExt[0] The number of bytes to read (low byte)
CmdExt[1] The number of bytes to read (high byte)

• Response details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Data read from the file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 89 (164)

Command Details: File Write
Details

Command Code: 16h

Valid for: Instance

Description

Writes data to a file open for writing or appending.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Data to write from the file

• Response details:

Field Contents
CmdExt[0] Bytes written (low byte)
CmdExt[1] Bytes written (high byte)

Command Details: Directory Open
Details

Command Code: 20h

Valid for: Instance

Description

Opens a directory.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Path + name to the directory to open relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 90 (164)

Command Details: Directory Close
Details

Command Code: 21h

Valid for: Instance

Description

Opens a directory.

• Command details:

(No data)

• Response details:

(No data)

Command Details: Directory Delete
Details

Command Code: 22h

Valid for: Instance

Description

Deletes a directory in the file system. The directory must be empty to be deleted. An attempt to
delete a directory that is not empty will result in an error.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Path + name to the directory to delete, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 91 (164)

Command Details: Directory Read
Details

Command Code: 23h

Valid for: Instance

Description

This command reads data from a directory previously opened for reading by the Directory Open
command.

For each command sent the next directory entry (file or directory) is returned. When all entries
in the directory have been read, the response data size will be set to zero (0) and no message
data will be returned, to indicate that no more entries exist in the directory.

• Command details:

(No data)

• Response details:

Field Contents
CmdExt[0] Reserved (0)
CmdExt[1] Reserved (0)
MsgData[0] Size of object (low byte)
MsgData[1] Size of object
MsgData[2] Size of object
MsgData[3] Size of object (high byte)
MsgData[4] Object flags
MsgData[5]... Object name (file or directory)

• Object Flags

Field Contents
01h The object is a directory
02h The object is read only
04h The object is hidden
08h The object is a system object

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 92 (164)

Command Details: Directory Create
Details

Command Code: 24h

Valid for: Instance

Description

Creates a directory in the file system.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Path + name to the directory to create, relative to the current path

• Response details:

(No data)

Command Details: Directory Change
Details

Command Code: 25h

Valid for: Instance

Description

Change directory/path of the instance.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0]... Path + name to the directory to change to, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 93 (164)

Command Details: Format Disc
Details

Command Code: 30h

Valid for: Object

Description

Formats a disc in the file system (will erase all data on the disc).

• Command details:

Field Contents
CmdExt[0] Disc to format. Set to zero (0)
CmdExt[1] (reserved, 0)

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 94 (164)

Examples
In this section are presented examples for a couple of common cases where the end user would
use the File System Interface Object.

An imaginary folder structure will be used in the example, with the following files in the root
folder:

Root

left.jpg

navigation.js

reports

weld_current.txt

weld_formation.txt

index.html

up.jpg

status.html

test.txt

right.jpg

configuration.html

down.jpg

weld_info.txt

Fig. 17

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 95 (164)

Read a File
The following example opens weld_info.txt in the reports folder an read data from the file.

Start

InstX = Obj.Create()

InstX.File Open(R, \reports\
 weld_info.txt)

data = InstX.File Read(Size)

 EOF
(Zero bytes returned)

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open �le for reading (CmdExt[0] = 0) and point
to the �le to open. The instance can now be used
for �le operations. Any directory operations will
be rejected.

Read Size number of bytes from the �le.

Keep reading until the Read command returns
zero (0) or the desired content has been read.

Close the �le.

Delete the instance.

Fig. 18

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 96 (164)

Write a File
The following example opens up the test.txt file for writing.

Start

InstX = Obj.Create()

InstX.File Open(W, \test.txt)

InstX.File Write(data)

 Done

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open �le for reading (CmdExt[0] = 1) and point
to the �le to open. The instance can now be used
for �le operations. Any directory operations will
be rejected.

Write the desired data to the �le.

Keep writing until the desired content has been
written.

Close the �le.

Delete the instance.

Fig. 19

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 97 (164)

List Directory Contents
The following example lists the contents of the reports directory.

Start

InstX = Obj.Create()

InstX.Directory Open(\reports\)

data = InstX.Directory Read()

Done

End

InstX.Directory Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open the report directory. The instance can now
be used for directory operations. Any �le
operations will be rejected.

Read the directory entry by entry.

Keep reading until all entries have been read.
When there are no more entries, this is indicated
by a zero data size in the response.

Close the �le.

Delete the instance.

Fig. 20

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 98 (164)

12.8 Functional Safety Module Object (11h)
Category
Extended

Object Description
This object contains information provided by the Safety Module connected to the Anybus Com-
pactCom module. Please consult the manual for the Safety Module used, for values of the at-
tributes below.

Supported Commands

Object: Get_Attribute

Error_Confirmation

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Functional Safety Module”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description
1 State Get UINT8 Current state of the Safety Module

Please consult the manual for the Safety Mod-
ule used.

2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.
E.g. 0001h (HMS Industrial Networks)
Please consult the manual for the Safety Mod-
ule used.

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Mod-
ule is equipped with.
Please consult the manual for the Safety Mod-
ule used.

4 Firmware version Get Struct of
UINT8
(Major)
UINT8
(Minor)
UINT8
(Build)

Safety Module firmware version.

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at
production.
Please consult the manual for the Safety Mod-
ule used.

6 Output data Get Array of
UINT8

Current value of the Safety Module output data,
i.e. data FROM the network
Note: This data is unsafe, since it is provided by
the Anybus CompactCom module.

7 Input data Get Array of
UINT8

Current value of the Safety Module input data, i.
e. data sent TO the network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 99 (164)

Name Access Data Type Description
Note: This data is unsafe, since it is provided by
the Anybus CompactCom module.

8 Error counters Get Struct of
UINT16
(ABCC DR)
UINT16
(ABCC SE)
UINT16 (SM
DR)
UINT16 (SM
SE)

Error counters (each counter stops counting at
FFFFh)
ABCC DR: Responses (unexpected) from

the Safety Module, discarded
by the Anybus CompactCom
module.

ABCC SE: Serial reception errors detected
by the Anybus CompactCom
module.

SM DR: Responses (unexpected) from
the Anybus CompactCom mod-
ule, discarded by the Safety
Module.

SM SE: Serial reception errors detected
by the Safety Module.

9 Event log Get Array of
UINT8

Latest Safety Module event information (if any)
is logged to this attribute. Any older event infor-
mation is erased when a new event is logged.
For evalutation by HMS support.

10 Exception
information

Get UINT8 If the Exception Code in the Anybus object is
set to “Safety communication error” (09h), addi-
tional exception information is presented here,
see table below.

11 Bootloader version Get Struct of
UINT8 Major
UINT8 Minor

Safety Module bootloader version.

Exception Information
If Exception Code 09h is set in the Anybus object, there is an error regarding the functional
safety module in the application. Exception information is presented in instance attribute #10
according to this table:

Value Exception Information
00h No information
01h Baud rate not supported
02h No start message
03h Unexpected message length
04h Unexpected command in response
05h Unexpected error code
06h Safety application not found
07h Invalid safety application CRC
08h No flash access
09h Answer from wrong safety processor during boot loader communication
0Ah Boot loader timeout
0Bh Network specific parameter error
0Ch Invalid IO configuration string
0Dh Response differed between the safety microprocessors (e.g. different module types)
0Eh Incompatible module (e.g. supported network)
0Fh Max number of retransmissions performed (e.g. due to CRC errors)
10h Firmware file error
11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used

with the current baud rate
12h Invalid SPDU input size in start-up telegram
13h Invalid SPDU output size in start-up telegram

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Anybus Module Objects 100 (164)

Value Exception Information
14h Badly formatted input SPDU
15h Anybus CompactCom to safety module initialization failure

Command Details: Error_Confirmation
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

When the Safety Module has entered the Safe State, for any reason, it must receive an error
confirmation from the application, before it can leave the safe state. The application sends this
command to the Anybus CompactCom module, that forwards it to the Safety Module.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes
Error Code Description Comments
01h The safety module rejected a

message.
Error code sent by safety module is found in MsgData
[2] and MsgData[3].

02h Message response from the safety
module has incorrect format (for ex-
ample, wrong length).

-

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 101 (164)

13 Host Application Objects
13.1 General Information

The objects in this group are meant to be implemented within the host application software. The
Anybus module will issue commands towards these objects to access the settings and data
within them. Their functionality is categorized to indicate when and how to use the objects.

See also ...

• Message Segmentation, p. 48

• Anybus Module Objects, p. 62

• Categorization of Functionality, p. 137

For detailed information about each object, see...

• Application Object (FFh), p. 114

• Application Data Object (FEh), p. 106

• Energy Control Object (F0h), p. 130

• Sync Object (EEh), p. 128

• Modular Device Object (ECh), p. 126

• Assembly Mapping Object (EBh), p. 123

• Application File System Interface Object (EAh), p. 121

• Functional Safety Object (E8h), p. 104

• Energy Reporting Object (E7h), p. 103

13.2 Implementation Guidelines
Implementation of an object is generally a matter of parsing incoming commands and forming
suitable responses. While the exact details as of how this is done is beyond the scope of this
document, it is important to follow the following basic rules:

• An implemented object must feature all object attributes (instance #0) as specified in
this document and/or the network interface appendix.

• In case a command for some reason cannot be executed (i.e. if a particular object, at-
tribute or command hasn’t been implemented), respond with a suitable error code to in-
dicate the source of the problem.

• Support for the Application Object and the Application Data Object are mandatory.

• Support for Network Specific Objects is optional, but recommended. It shall however be
noted that the standard functionality provided by the Anybus module limits network
functionality to the use of certain predefined device information and services. These lim-
itations may be more or less significant and are described in each separate network in-
terface appendix. In case this standard functionality is inadequate, i.e. vendor specific
information or enhanced network functionality is required, Network Specific Objects
may be implemented in the host application.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 102 (164)

• During startup the module will attempt to retrieve values of attributes in the Network
Specific Objects. If the module tries to access an object that is not implemented, re-
spond with an error message (03h, Unsupported Object). If an attribute is not imple-
mented in the host application, respond with an error message (06h, “Invalid CmdExt
[0]”). The module will then use its default value. Also, if the module tries to retrieve a val-
ue of an attribute that is not listed in the network appendix, respond with an error mes-
sage (06h, “Invalid CmdExt[0]”.

• Support for Process Data remapping (by means of commands ‘Remap_ADI_Write_
Area’ and ‘Remap_ADI_Read_Area’) is optional for the Anybus CompactCom 40 range
and may provide better network integration for certain networks.

See also ...

• Error Codes, p. 53

The purpose of the Object Revision attribute is to make it possible for the Anybus
module to establish whether or not the object implementation in the host
application is compatible with that of the Anybus module, and to use different
implementations if necessary. It is therefore imperative that the Object Revision
attribute reflects the actual implementation, and that it is incremented based on
changes in this document and/or the network guide only.

In case of questions, contact the HMS Industrial Networks AB technical support services at
www.anybus.com/support.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

http://www.anybus.com/support

Host Application Objects 103 (164)

13.3 Energy Reporting Object (E7h)
Category
Extended

Object Description
Using this object, the host application has a standardized way of reporting its energy consumed
or produced. The reporting capabilities of this object are limited. On networks providing more
elaborate reporting functionality, the reporting functionality will have to be implemented in a
transparent manner by the application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Energy Reporting”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Extended

Name Access Type Description
1 Energy Reading Get Struct of:

UINT32
UINT32

Amount of energy consumed or produced in
Wh. Stored in nonvolatile memory.
The first UINT32 represents the lower part of
the Energy Reading, the second UINT32 rep-
resents the higher part of the Energy Reading

2 Direction Get BOOL Indicates if the host is consuming or producing
energy.
Value:
0:
1:

Meaning:
Producing
Consuming

3 Accuracy Get UINT16 Accuracy: 0.01% of reading
0: Unknown
The current power consumption in 0.01% of
the Nominal Power consumption
The nominal power consumption in mW

4 Current Power
Consumption

Get UINT16 The current power consumption in 0.01% of
the Nominal Power consumption

5 Nominal Current
Consumption

Get UINT32 The nominal power consumption in mW

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 104 (164)

13.4 Functional Safety Object (E8h)
Category
Extended

Object Description

Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is
to be supported and a Safety Module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Functional Safety”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Default

Value
Comment

1 Safety enabled Get BOOL - When TRUE, enables commu-
nication with the Safety Module.
Note: If functional safety is not
supported, this attribute must
be set to FALSE.

2 Baud Rate Get UINT32 1020 kbit/s This attribute sets the baud rate
of the communication in bits/s
between the Anybus Compact-
Com and the Safety Module.
Valid values:

• 625 kbit/s

• 1000 kbit/s

• 1020 kbit/s (default)
Any other value set to this at-
tribute, will cause the module to
enter the EXCEPTION state.
The attribute is optional. If not
implemented, the default value
will be used.
Note: The host application shall
never implement this attribute
when using the IXXAT Safe
T100.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 105 (164)

Name Access Data Type Default
Value

Comment

3 IO Configuration Get Array of
UINT8

- Optional attribute. Manufacturer
specific settings of the digital I/
O of the Safety Module.
See the manual of the Safety
Module used for information.
Note: The host application shall
never implement this attribute
when using the IXXAT Safe
T100.

4 Cycle Time Get UINT8 - Communication cycle time be-
tween the Anybus and the
Safety module in milliseconds.
Note: The host application shall
never implement this attribute
when using the IXXAT Safe
T100.
Valid values:

• 2 ms

• 4 ms

• 8 ms

• 16 ms
If another value is set in this at-
tribute the Anybus will enter Ex-
ception state.
Opitonal attribute; If not imple-
mented the minimum cycle time
for the chosen baud rate will be
used:

• 2 ms for 1020 kbit/s

• 2 ms for 1000 kbit/s

• 4 ms for 625 kbit/s
The ABCC validates the cycle
time according to the minimum
values above. If e.g. baud rate
is 625 kbit/s and the cycle time
is set to 2 ms the ABCC will en-
ter the EXCEPTION state.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 106 (164)

13.5 Application Data Object (FEh)
Category
Basic. Please note that this object is mandatory.

Object Description
Each instance within this object (a.k.a. Application Data Instance or ADI) correlates to a block
of data to be represented on the network. Each time such data is accessed from the network,
the module translates such requests into object requests towards this object (or instances within
it). The module may also access this object spontaneously if necessary. The exact representa-
tion on the network is highly network specific; e.g. on DeviceNet, ADIs are represented as dedi-
cated CIP objects, while on PROFIBUS, ADIs are accessed by means of acyclic DP-V1 read
and write services.

An Application Data Object instance may be used to model different classes of data: variables,
arrays or structures. Every class can be distinguished by the instance attributes, as described
in the table below.

Class Distinguished by Remarks
Variable Number of elements is 1. Starting with revision 3 of the Application Data object, the at-

tribute Number of subelements used in conjunction with a var-
iable of CHAR type is the recommended way to create a
string variable. I.e. a string variable here consists of one ele-
ment with several subelements.

Array Number of elements is > 1,
and number of data types in
Data type is 1.

The attribute Number of subelements is not valid for arrays.
Arrays of CHAR will be translated to string variables on net-
works supporting strings. See the remark for Variable above,
for the recommended way to represent string variables.

Structure Number of elements is > 1,
and equals the number of
Data types.

A structure consists of elements that may have different data
types. Possible from object revision 3.

To allow the network and the Anybus module to efficiently scan the host application for ADIs, re-
gardless of their instance number, this object implements the additional ‘Get_Instance_Num-
ber_By_Order’-command. This command retrieves the ADI instance number as if the ADIs
were sorted in a numbered list, allowing the Anybus module to query only for the instances that
are actually implemented in the host application. The order number is also used when mapping
ADIs to Process Data, see descriptions of the commands Map_ADI_Write_Area and Map_ADI_
Write_Ext_Area in the Network Object (03h), p. 74.

In the example below, the host application has four ADIs with instance numbers 1,3, and 100..

Instance # Implemented Order Number
1 Yes 1
2 No -
3 Yes 2
4... 99 No -
100 Yes 3

In this particular case, the host application shall respond with instance number 100 to a Get_In-
stance_Number_By_Order request for Order Number 3.

Please take the following into consideration when designing an application:

• The Anybus module does not take over the host application responsibility for error con-
trol of parameter requests, even if a request is clearly erroneous (e.g. a write request to
an ADI with zero byte data, or an attempt to access an attribute that doesn’t exist, will
not be filtered out by the module).

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 107 (164)

• The response time in the host application (i.e. the time spent processing an incoming
request towards this object prior to responding to it) must be taken into consideration,
since some networks may impose certain timing demands. Where applicable, special
timing requirements etc. are specified in each separate network appendix.

• If remapping of Process Data is to be supported, implementation is mandatory of object
commands Remap_ADI_Write_Area, Remap_ADI_Read_Area and Get_Instance_
numbers.

• If remapping of Process Data is supported, object attributes #11 and #12 are mandatory.

• It is recommended to implement the commands Get_Indexed_Attribute and Set_In-
dexed_Attribute for all attributes that are of data class Array or Structure within the Ap-
plication Data Object.

Supported Commands

Object: Get_Attribute (01h)

Get_Instance_Number_By_Order (10h)

Remap_ADI_Write_Area (13h)

Remap_ADI_Read_Area (14h)

Get_Instance_Numbers (15h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Get_Indexed_Attribute (07h)

Set_Indexed_Attribute (08h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Application Data”
2 Revision Get UINT8 03h
3 Number of instances Get UINT16 (depends on application)
4 Highest instance no. Get UINT16
11 No. of read process

data mappable
instances

Get UINT16

12 No. of write process
data mappable
instances

Get UINT16

Attributes #11 and #12 are mandatory for applications supporting remapping of process data.

Instance Attributes (Instance #1... n)
Name Access Type Description
1 Name Get Array of CHAR ADI name (can be multilingual)
2 Data type Get Array of UINT8 Each UINT8 defines the data type of the corre-

sponding element of the instance value for
structures and variables. For arrays, one
UINT8 defines the data type for all subele-
ments of the corresponding array element.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 108 (164)

Name Access Type Description
3 Number of elements Get UINT8 Number of elements in attribute #5,. It is

strongly recommended not to use ADIs with
Number of elements set to zero since this is
not accepted by some networks.

4 Descriptor Get Array of UINT8 Each UINT8 is a bit field specifying the access
rights etc. for the corresponding element of
the instance value for structures and variables.
For arrays, one UINT8 defines the descriptor
for all subelements of the corresponding array
element.
b3 and b4 are mandatory if remapping of Proc-
ess Data is supported.
Bit: Access:

b3 and b4 are mandatory if remapping
of Process Data is supported.

b0: 1: Get Access
b1: 1: Set Access
b2: -: (reserved, set to zero)
b3: 1: Can be mapped as Write Process

Data
b4: 1: Can be mapped as Read Process

Data
5 Value(s) Deter-

mined by
attribute
#4

Determined by
attribute #2

ADI value(s)
Indexed elements can be of different types
and sizes as specified in attribute #2.
This attribute consists of all elements packed
together with bit alignment. No implicit padding
should be used. See table below for specific
alignment restrictions and explicit padding.

6 Max. value Get Determined by
attribute #2

The maximum permitted ADI value.
Implementation of this attribute is optional. If
not implemented, the module will use the max-
imum value of the specified data type for this
attribute.

7 Min. value Get Determined by
attribute #2

The minimum permitted ADI value. Implemen-
tation of this attribute is optional. If not imple-
mented, the module will use the minimum
value of the specified data type for this
attribute.

8 Default value Get Determined by
attribute #2

The default ADI value. Implementation of this
attribute is optional. A zero value (float: +Min.
value) will be used if not implemented.

9 Number of
subelements

Get Array of UINT16 Each UINT16 defines the number of subele-
ments of the corresponding element of the in-
stance value for structures and variables.
Implementation of this attribute is optional ,
and must not be implemented for arrays.
The number of subelements may only differ
from 1 if the corresponding element is of type
CHAR or OCTET.
If this attribute is not implemented, one (1)
subelement for each element is assumed.

10 Element name Get Struct of Strings
(Array of CHAR,
separated by
NULL byte)

This attribute is used to enable reading the
name of each element in an ADI of class
Structure. Each string is separated by a NULL-
byte. There is no NULL byte at the end of the
last string.
The attribute reflects the element names used
on the network. The number of elements in the
Structurehas to be equal to the value of attrib-
ute #3 (Number of elements).
Commands possible for this attribute are Get_
Attribute (response includes strings and sepa-
rating NULL bytes) and Get_Indexed_Attribute
(the string is returned without any NULL byte).
The entire response must fit into the message
data field. The largest response accepted is
255 or 1524 bytes, depending on used
channel..

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 109 (164)

• The byte order of attributes #5–8 is network dependent; the Anybus does not perform
any byte swapping.

• Unless the data class is a structure the Max/Min/Default attributes is common for all ele-
ments in the ADI. That is, there is no separate Max/Min/Default value for each element
in the array. For structured ADIs, the format is the same as for attribute #5.

• The instance value(s) must fit entirely into the message data field. The total byte size of
all elements must therefore never exceed 255 or 1524 bytes, depending on used
channel.

• The only attributes that may be changed during runtime are attribute #1 and #5. Once
defined, all other attributes must be considered fixed; changing them during runtime is
not permitted.

Notes on Parameter Access
The following list gives rules and notes on accessing parameters in the Anybus CompactCom
40.

• Subelements not equal to 1 are only allowed for CHAR and OCTET

• Structures may not contain elements of type ENUM

• If there is a “hole” in a structured ADI, its data type is defined as PAD0. The Descriptor
(attribute #49 should define it as neither settable nor gettable, and “Invalid CmdExt[1]”
(07h) will be returned for the commands Get_Indexed_Attribute/Set_Indexed_Attribute.

• Names of elements are generated by the Anybus CompactCom, if needed, e.g.
“ADIName.0”.

• All elements, except those of data type BIT1 - BIT7 and PAD0 - PAD16, must be byte
aligned.

• The only implicit padding done for parameter access is from the very last accessed ele-
ment up to byte alignment, since messages are always complete bytes.

• Explicit padding is done using elements of PADx data type.

• Elements, which are not byte aligned, shall be shifted down to be byte aligned when ac-
cessed through Get_Indexed_attribute, and vice versa for Set_Indexed_Attribute.

• Descriptors may differ between elements of the same ADI

– For a Get_Attribute of an ADI of class Structure with inconsistent settings of the De-
scriptor bit “Get access” for different elements, the application should fill the un-
readable elements with zero in the response. If the “Get access” descriptor bits are
consistently set to 0, the Get_Attribute should be returned with error code “Attribute
not gettable (09h)”.

– For a Set_Attribute of an ADI of class Structure with inconsistent settings of the De-
scriptor bit “Set access” for different elements, the application should ignore the
non-settable elements and apply the values of the settable ones. If the “Set access”
descriptor bits are consistently set to 0, the Set_Attribute should be returned with
error code “Attribute not settable” (08h).

• Elements with bit alignment are always shifted down to bit 0 when accessed through
Get_Indexed_Attribute/Set_Indexed_Attribute.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 110 (164)

Command Details: Get_Instance_Number_By_Order
Details

Command Code: 10h

Valid for Object

Description

This command requests the actual instance number of an ADI as if sorted in an ordered list.

• Command details:

Field Contents
CmdExt[0] Requested Order Number (low byte)
CmdExt[1] Requested Order Number (high byte)

• Response details (Success):

Field Contents
MsgData[0...1] The instance number of the ADI corresponding to the submitted Order Number.

• Response details (Error):

Error Contents
Invalid CmdExt[0] The requested Order Number is not associated with an ADI.

Command Details: Remap_ADI_Write_Area
Details

Command Code: 13h

Valid for Object

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 111 (164)

Description

The Anybus module issues this command when the network requests changes in the Process
Data map. The ADIs are mapped at the insertion point in the same order as stated by the com-
mand. The command can remove and/or insert multiple mapping items, starting at the point in-
dicated by the mapping item number in CmdExt[0], where a mapping item is an ADI previously
mapped by a Map_ADI_Write_Area command, or an ADI (or elements of a multi-element ADI)
previously mapped by a Remap_ADI_Write_Area command.

The following set of data is included in the command data for each inserted mapping item:

• The ADI number

• The index to the first element to map

• The number of consecutive elements to map

The command may be issued in the following Anybus CompactCom states: NW_INIT, WAIT_
PROCESS, IDLE and ERROR.

All actions specified in the command shall either be carried out or rejected, i.e. the Process Data
map must remain unchanged if the command was not accepted.

The Anybus module is limited to one outstanding remap command at a time.

See also...

• Network Object (03h), p. 74

• Runtime Remapping of Process Data, p. 149

To support this procedure, the host application must be capable of remapping the
Process Data during runtime. This is a mandatory requirement for object rev. 2,
and optional for object rev. 3. Support for this command is highly recommended.

• Command details:

Field Contents
CmdExt[0] Start of remap (low byte) (mapping item number, 0 = first)
CmdExt[1] Start of remap (high byte) (mapping item number, 0 = first)
Data[0-1] The number of current mapping items to remove
Data[2-3] The number of mapping items to insert (0... 62)
Data[4-5] New mapping item 1: ADI number
Data[6] New mapping item 1: Index to the first element to map
Data[7] New mapping item 1: Number of consecutive elements to map
Data[8-9] New mapping item 2: ADI number
Data[10] New mapping item 2: Index to the first element to map
Data[11] New mapping item 2: Number of consecutive elements to map
... (etc.)

• Response details (Success):

Field Contents
MsgData[0] The resulting total size of the write process data area in bytes (low byte)
MsgData[1] The resulting total size of the write process data area in bytes (high byte)

• Response details (Error):

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 112 (164)

Error Code Error Meaning
01h Mapping item error The requested mapping is denied because of a NAK to at

least one mapping item
02h Invalid total size The requested mapping is denied because the resulting

total data size would exceed the maximum permissible for
the application

Command Details: Remap_ADI_Read_Area
Details

Command Code: 14h

Valid for Object

Description

This command is used to (re-)map ADIs to the read process data area. It is otherwise equivalent
to Remap_ADI_Write_Area.

A successful transfer of an ACK to a remap command indicates the point where the process da-
ta map will be changed. For serial applications, this means that a changed process data map
shall be expected or used in telegrams following the empty telegram (or telegrams in case of re-
transmissions) after the ACK (see Runtime Remapping of Process Data, p. 149).

• Network Object (03h), p. 74

• Runtime Remapping of Process Data, p. 149

To support this procedure, the host application must be capable of remapping the
Process Data during runtime. Support for this command is optional, but highly
recommended.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 113 (164)

Command Details: Get_Instance_Numbers
Details

Command Code: 15h

Valid for Object

Description

This command is used to produce lists of ADIs with certain properties. List types 01h - 03h are
mandatory for all applications supporting dynamic process data mapping. For a complete list of
list types, see “Table of List Types” below.

The application shall respond with a number of instances equal to or less than the requested
number (less if a fewer number than requested exists in the application). If the requested start-
ing order number is higher than the highest instance, an empty response shall be returned. If an
unsupported list type is requested, an error response with “Invalid CmdExt[1]” shall be
generated.

The Anybus CompactCom module may issue several commands with increasing order number
to retrieve a complete list.

• Command details:

Field Contents
CmdExt[0] Reserved = 00h
CmdExt[1] List type (See "Table of List Types" below)
Data[0-1] Starting order number
Data[2-3] Requested number of instances

• Response details:

Field Type Contents
MsgData[0-1] UINT16 The instance number of the ADI (with the instance num-

ber corresponding to the order number), matching the se-
lected list type

MsgData[2-3] UINT16 The instance number of the ADI (with the instance num-
ber corresponding to the order number + 1), matching the
selected list type

MsgData[4-5] UINT16 The instance number of the ADI (with the instance num-
ber corresponding to the order number + 2), matching the
selected list type

...

Table of List Types
List Number List Type
00h Reserved
01h All ADIs
02h All read process data mappable ADIs (All ADIs where bit 4 in the descriptor attribute is

set to "1". See "Instance Attributes (Instance #1... n)" on page 93 for more
information.)

03h All write process data mappable ADIs (All ADIs where bit 3 in the descriptor attribute is
set to "1". See "Instance Attributes (Instance #1... n)" on page 93 for more
information.)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 114 (164)

13.6 Application Object (FFh)
Category
Basic, Extended

Object Description
This object is mandatory, and groups general settings for the host application. The object and
its commands makes it possible to support multiple languages, network reset requests and
latching diagnostic events.

A control sum, available from the application, that specifies the current parameter settings, can
be used to enhance startup time.

Information on if there is a candidate firmware available, and if it is possible to configure the ad-
dress of the module via hardware switches, can also be read from this object.

Supported Commands

Object: Get_Attribute (01h)

Reset (05h)

Reset_Request (10h)

Change_Language_Request (11h)

Reset Diagnostic (12h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Application”
2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 115 (164)

Instance Attributes (Instance #1)
Name Access Type Description
1 Configured Get BOOL Indicates if the application parameters have

been changed from their out-of-box value.
Value:
False:
True:

Enumeration String:
Out-of-box state.
Configured, settings have been
altered.

See details for commands “Reset” and “Re-
set_Request” below

2 Supported
languages

Get Array of ENUM List specifying which languages that are sup-
ported by the host application.
Value:
00h:
01h:
02h:
03h:
04h:

Meaning:
“English”.
“Deutsch”.
“Español”.
“Italiano”.
“Français”.

See also ...

• Anybus Object (01h), p. 62, instance #1,
attribute #9

• Details for command Change_Language_
Request below.

3 Serial number Get UINT32 The vendor’s serial number for the device
If a serial number in the corresponding net-
work specific host object is not available, the
module will use this number instead, con-
verted according to network requirements.
If this attribute is missing, the module will use
its own serial number.

4 Parameter control
sum

Get Array of UINT8
(128 bits)

This attribute will hold a control sum from the
application that specifies the current parame-
ter settings in the application. How the applica-
tion calculates the control sum is not specified,
the only requirement is that as soon as a pa-
rameter in the application changes the control
sum also changes.
The control sum is used to improve the startup
time for the Anybus CompactCom for
POWERLINK and PROFINET. Common to
these networks are that the master sets a pa-
rameter (configuration date and configuration
time for POWERLINK and UUID for PROFI-
NET) that specifies the parameter setting the
master will transfer to the slave. In order for
the slave to determine whether the application
already has these parameter settings it must
compare the parameter received from the
master with the parameter received from the
application. If the saved (in non-volatile memo-
ry) master parameter and application parame-
ter match the ones newly received from the
application and master there is no need for re-
parameterization of the application.
It’s not required by the application to imple-
ment this attribute, but it is recommended if
quickconnect/fast startup for the above men-
tioned networks are used.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 116 (164)

Name Access Type Description
5 Candidate firmware

available
Get/Set BOOL Indicates if there is an firmware file available in

the candidate area, for firmware upgrade at
the next restart. The application can use this
to determine if the next restart will be extended
due to a firmware upgrade.
The attribute is cleared at startup.
Value:
False:
True:

Meaning:
Firmware file not available in the
candidate area.
Firmware file available in the can-
didate area.

See also ...

• Firmware Download, p. 25

• Startup Procedure, p. 58

6 Hardware configura-
ble address

Get BOOL Indicates if the address of the module can be
configured via hardware switches.
An address may be hardware configurable,
but not necessarily hardware configured.
Some networks, e.g. EtherNet/IP need to be
able to make this distinction.
Value:
False:
True:

Meaning:
The address is not hardware
configurable.
The address is hardware
configurable.

Command Details: Reset
Details

Command Code: 05h

Valid for: Object

Description

This command is issued by the module when a reset is required. Depending on the network
type, it may, or may not, be preceded by a “Reset_Request” command.

• Command details:

Field Contents Comment
CmdExt[0] (reserved, ignore) -

CmdExt[1] 00h: Power-on reset This shall be regarded as a device reset, i.e. the host ap-
plication shall reset the module via the /RESETsignal.
The Anybus module enters the state EXCEPTION prior to
issuing this type of request.

01h: Factory default
reset

This shall cause the host application to return to an appli-
cation specific out-of-box state. Any network-specific pro-
cedures necessary to set the module to this state are
performed automatically.
The state of the Anybus module, prior to this request, is
network specific.

02h: Power-on +
Factory default

A combination of the two above.
The Anybus module enters the state EXCEPTION prior to
issuing this type of request.

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 117 (164)

Command Details: Reset_Request
Details

Command Code: 10h

Valid for: Object

Description

On certain networks, this command may be issued prior to the Reset command (see below).
This is, as the name implies, a request and not an actual reset command.

The requested reset can be either a Power-on reset, a Factory Default reset, or both. A Power-
on reset shall be regarded as a device reset.

If the request is granted, the host application must also be prepared to receive a corresponding
Reset command (see figure).

The host application is also free to respond with an error in case a reset for some reason cannot
be executed. In such case, no Reset command will be issued by the module.

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(request granted)

Reset acknowledge

Reset (power-on)

State = EXCEPTION

Fig. 21

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 118 (164)

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(reset not granted)

Reset refused acknowledge

Fig. 22

This command is issued by the module when a reset is required. Depending on the network
type, it may, or may not, be preceded by a “Reset_Request” command.

• Command details:

Field Contents
CmdExt[0] (reserved, ignore)
CmdExt[1] 00h: Power-on reset

01h: Factory default reset
02h: Power-on + Factory default

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 119 (164)

Command Details: Change_Language_Request
Details

Command Code: 11h

Valid for: Object

Description

This command will be issued by the module when a change of the current language is re-
quested from the network.

If accepted, it will result in a corresponding change of the Language Attribute (#9) in the Anybus
Object (01h). The host application must also adjust its internal language settings accordingly.

• Command details:

Field Contents
CmdExt[0] Reserved. Value = 00h
CmdExt[1] Reserved. Value = 00h
Msg-Data[0–n] UINT16 list of diagnostic instances which the Anybus CompactCom module

requests
permission to delete
Value:
00h:
01h:
02h:
03h:
04h:

Language:
English.
German
Spanish.
Italian.
French.

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 120 (164)

Command Details: Reset_Diagnostic
Details

Command Code: 12h

Valid for: Object

Description

The Reset_Diagnostic request will be sent to the application object when the network master
wishes to acknowledge/reset one or several latching diagnostic events.

This service is only mandatory if the application supports latching diagnostic events.

It is for the application to decide if diagnostic events can be deleted or not. In the Reset_Diag-
nostic response, the application is expected to provide a list of diagnostic instances that can be
deleted (where the error is no longer present). This list may be identical to the list in the Reset_
Diagnostic request, or it may be a subset of that list. The application may also respond with a
zero sized list, if no instances can be deleted, or with an error in the case that the Reset_Diag-
nostic request is refused.

See Diagnostic Object (02h), p. 69 for more information.

• Command details:

Field Contents
CmdExt[0] Reserved. Value = 00h
CmdExt[1] Reserved. Value = 00h
MsgData[0–n] UINT16 list of diagnostic instances which the Anybus CompactCom module re-

quests permission to delete

• Response details:

Field Contents
CmdExt[0] Reserved. Value = 00h
CmdExt[1] Reserved. Value = 00h
MsgData[0–n] UINT16 list of diagnostic instances which the Anybus CompactCom module is per-

mitted to delete

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 121 (164)

13.7 Application File System Interface Object (EAh)
Category
Extended

Object Description
This object is used to create a file system in the application, that can enlarge the available file
system in the Anybus CompactCom.

The object can be used to create and delete file system interface instances dynamically during
runtime. Each instance is a handle to a file stream and contains services for file system opera-
tions. The object is mostly similar in structure to the Anybus File System Interface Object (0Ah).

Supported Commands
For object specific command details, see Anybus File System Interface Object (0Ah), p. 83

Object: Get_Attribute (01h)

Set_Attribute (02h)

Create (03h)

Delete (04h)

Instance: Get_Attribute (01h)

File Open (10h)

File Close (11h)

File Delete (12h)

File Copy (13h)

File Rename (14h)

File Read (15h)

File Write (16h)

Directory Open (20h)

Directory Close (21h)

Directory Delete (22h)

Directory Read (23h)

Directory Create (24h)

Directory Change (25h)

Object Attributes (Instance #0)
Name Access Data Type Value/Description
1 Name Get Array of CHAR “Application File System Interface”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -
4 Highest instance no. Get UINT16 -

11 Max no. of instances Get UINT16 20 (recommended)
13 Total disc size Get UINT32 Disc size in bytes.
14 Free disc size Get UINT32 Free disc sizes in bytes.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 122 (164)

Instance Attributes (Instance #1... 20
Name Access Type Description

1 Instance Type Get UINT8 Value:
0:
1:
2:

Meaning:
Reserved
File instance
Directory instance

2 File size Get UINT32 File size (0 for a directory)
3 Path Get Array of CHAR The file path to where the instance operates

File System Errors
In case of errors for services calling the file system interface object, the module will return FFh
(object specific error). A descriptive file system error will be returned in the error response data
field.

Name Description
1 FILE_OPEN_FAILED Could not open file
2 FILE_CLOSE_FAILED Could not close file
3 FILE_DELETE_FAILED Could not delete file
4 DIRECTORY_OPEN_FAILED Could not open directory
5 DIRECTORY_CLOSE_FAILED Could not close directory
6 DIRECTORY_CREATE_FAILED Could not create directory
7 DIRECTORY_DELETE_FAILED Could not delete directory
8 DIRECTORY_CHANGE_FAILED Could not change directory
9 FILE_COPY_OPEN_READ_FAILED Could not open file for copy
10 FILE_COPY_OPEN_WRITE_

FAILED
Could not open file for destination

11 FILE_COPY_WRITE_FAILED Could not write file when copying
12 FILE_RENAME_FAILED Could not rename file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 123 (164)

13.8 Assembly Mapping Object (EBh)
Category
Extended

Object Description
This object provides support for the possibility to establish I/O connections to different sets of
data (assemblies). Assemblies represent, for example, PDOs on EtherCATor assembly instan-
ces on EtherNet/IP. Each assembly is represented by an instance of this object, implemented in
the host application.

The sum of the sizes of all write assemblies must not exceed the maximum supported write
process data size.

If the application supports the modular device object, all ADIs within one assembly mapping
must be in slot order.

If this object is not implemented, the module will provide only one read and one write assembly
on the network.

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Write_Assembly_Data (10h)

Read_Assembly_Data (11h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Assembly mapping”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of assembly mappings
4 Highest instance no. Get UINT16 Highest assembly mapping number
11 Write PD instance list Get Array of UINT16 List of currently present instances that can be

mapped to write process data
12 Read PD instance

list
Set Array of UINT16 List of currently present instances that can be

mapped to read process data

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 124 (164)

Instance Attributes (Instance #1 ... n)
Name Access Type (if us-

ing 263
bytes mes-
sage size)

Type (if us-
ing 1536
bytes mes-
sage size)

Description

1 Assembly
descriptor

Get UINT32 UINT32 Bit 0: 0 = Write assembly
1 = Read assembly

Bit 1: 0 = ADI Assembly Map is
static
1 = ADI Assembly Map is
dynamic

Bit 2–31 0 = Reserved
2 ADI Assem-

bly Map 0
Get Array of

BITS32[0-
61]

Array of
BITS32[0-
379]

Array of ADI items populating this assem-
bly. See “ADI Assembly Map” below

3 ADI Assem-
bly Map 1

Get Array of
BITS32[62-
123]

Array of
BITS32[380-
759]

...
12 ADI Assem-

bly Map 10
Get Array of

BITS32[620-
681]

Array of
BITS[3800-
4095]

Set access is supported for attributes #2–12 if dynamic remapping is allowed from the network,
i. e. if bit 1 in the assembly descriptor is set to “1”.

ADI Assembly Map
The ADIs constituting an assembly are defined in ADI assembly maps. A total of 4096/682 ADIs
are allowed for each assembly, for message sizes of 1536/263 respectively. Large ADI assem-
bly maps have to be split up in segments of 380/62 ADI items. Each segment has to be entered
as a list in instance attributes #2–#12. Each ADI assembly map attribute must be fully populated
with ADI items before using the next attribute.

The ADI item format:

Bits Description
0-15 ADI number
16-23 Index of first element to map
24-31 Number of consecutive elements to map

Upon a network connection to a read assembly, the Anybus CompactCom module will read all
ADI assembly map attributes and generate matching Remap_ADI_Read_Area commands.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 125 (164)

Command Details: Write_Assembly_Data
Details

Command Code: 10h

Valid for: Instance

Description

This command is used to write data to all ADIs within a write assembly mapping.

• Command details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0-n] Assembly data

• Response details:

The application can accept the write request, or send an error response.

– If the written assembly contains an ADI currently mapped to the process data chan-
nel, and the Anybus CompactCom module state is PROCESS_ACTIVE, then it is
recommended to NAK the request and send error response: “Attribute controlled
from another channel”.

– Requests where the assembly data size is incorrect shall generate an error re-
sponse with error “Not enough data”, “Too much data” or “Segmentation data
overflow”.

Command Details: Read_Assembly_Data
Details

Command Code: 11h

Valid for: Instance

Description

This command is used to read data from all ADIs within a read assembly mapping.

• Command details:

-

• Response details:

Field Contents
CmdExt[0] (reserved, 0)
CmdExt[1] (reserved, 0)
MsgData[0-n] Assembly data

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 126 (164)

13.9 Modular Device Object (ECh)
Category
Extended

Object Description
This object is used to describe a modular device. Modular devices consist of a backplane with a
number of “slots”. The first slot is occupied by the “coupler” which contains the Anybus Com-
pactCom module. All other slots may be empty or occupied by modules.

Each instance of this object represents a slot in the modular device. Instance #1 corresponds to
the coupler. Instances #2 and onwards correspond to slots in the backplane, occupied as well
as empty. There are no instance attributes, but the command Get_List returns a list of the mod-
ules in the application.

When mapping ADIs to process data, the application shall map the process data of each mod-
ule in slot order. If the application maps the process data in any other order, the Anybus Com-
pactCom module will enter EXCEPTION state.

The implementation of modular device functionality differs between networks.
Please consult the respective Network Guides for more information.

Supported Commands

Object: Get_Attribute (01h)

Get_List (15h)

Instance: -

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Modular device”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of physically connected modules in

the backplane, including the coupler.
4 Highest instance no. Get UINT16 Instance number of the last occupied slot, i.e.

the highest instance number currently used.
11 Number of slot Get UINT16 Number of available slots in the backplane, in-

cluding the coupler
On most networks this attribute must not be
set to a value higher than 256

12 Number of ADIs per
slot

Get UINT16 Used to determine which ADI belongs to which
slot, according to the following formula:

ADI = slot * x + index + 1
slot = (ADI - 1) / x
index = (ADI - 1) MOD x
(x equals the value of THIS attribute)

For compatibility with EtherCAT, the value of
this attribute multiplied with the number of
slots (attribute #11 above) must not exceed
4096

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 127 (164)

Command Details: Get_List
Details

Command Code: 15h

Valid for: Object

Description

This command shall return a list of module type numbers representing the modules and empty
slots in the backplane. For supported list types, see below. List type 01h is mandatory to
implement.

The application shall respond with a number of module type IDs (including empty slots) equal to
or less than the requested number (less if a fewer number of instances than requested exists in
the application). The module type ID is selected by the implementor. It is a unique number for
each type of module in the backplane. The only value that is specified in advance is “empty slot”
, which is 00000000h. If the requested starting order number is higher than the highest instance,
an empty response shall be returned. If an unsupported list type is requested, an error response
with “Invalid CmdExt[1]” shall be generated.

The Anybus CompactCom may issue several commands with increasing item number to re-
trieve a complete list.

• Command details:

Field Contents
CmdExt[0] Reserved (0)
CmdExt[1] List type, see below
MsgData[0–1] Starting instance number
MsgData[2–3] Requested number of instances

• Response details:

Field Type Contents
MsgData[0-3] UINT32 Module type ID of starting instance.
MsgData[4-7] UINT32 Module type ID of starting instance + 1
...

List Types
List Number List Type
00h Reserved
01h List of all module IDs

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 128 (164)

13.10 Sync Object (EEh)
Category
Extended

Object Description
This object contains the host application SYNC settings. For more information about how to use
SYNC in applications, see

• Application Status Register, p. 31

• SYNC, p. 19

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Sync”
2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 129 (164)

Instance Attributes (Instance #1)
Name Access Data Type Value
1 Cycle time Get/Set UINT32 Application cycle time in nanoseconds
2 Output valid Get/Set UINT32 Output valid point relative to SYNC events, in

nanoseconds
Default value: 0

3 Input capture Get/Set UINT32 Input capture point relative to SYNC events, in
nanoseconds
Default value: 0

4 Output processing Get UINT32 Minimum required time, in nanoseconds, be-
tween RDPDI interrupt and "Output valid"

5 Input processing Get UINT32 Maximum required time, in nanoseconds, from
"Input capture" until write process data has
been completely written to the Anybus Com-
pactCom module

6 Min cycle time Get UINT32 Minimum cycle time supported by the
application

7 Sync mode Get/Set UINT16 This attribute is used to select synchronization
mode. It enumerates the bits in attribute #8
0: Non synchronous operation. (Default value
if non synchronous operation is supported)
1: Synchronous operation
2 - 65535: Reserved. Any attempt to set sync
mode to an unsupported value shall generate
an error response

8 Supported sync
modes

Get UINT16 A list of the synchronization modes the appli-
cation supports. Each bit corresponds to a
mode in attribute 7
Bit 0: 1 = Non synchronous mode supported
Bit 1: 1 = Synchronous mode supported
Bit 2 - 15: Reserved (0)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 130 (164)

13.11 Energy Control Object (F0h)
Category
Extended

Object Description
This object implements energy control functionality, i.e. energy specific settings, in the host ap-
plication. The implementation of this object is optional; the host application can support none,
some, or all of the attributes specified below.

Each enabled instance in the object corresponds to an Energy saving mode. The number of
available modes is device specific, and must be defined by the application. The higher the in-
stance number, the more energy is saved. The instance with the highest number always corre-
sponds to the “Power off” mode, i.e. the state where the device is essentially shut down.
Instance 1 of the object represents “Ready to operate”, i.e. the mode where the device is fully
functional and does not save energy at all. Consequently a meaningful implementation always
contains at least two instances, one for energy saving and one for operating. It is recommended
not to use a higher instance number than 9.

Please note that these states are always present, they are not dynamically created or deleted.

Ready to operate

Energy saving mode 1

Energy saving mode 2

Energy saving mode n

Energy saving mode n-1

Power off

Mandatory transition

Optional transition

Fig. 23

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 131 (164)

Supported Commands

Object: Get_Attribute

StartPause

EndPause

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value Description
1 Name Get Array of CHAR “Energy

Control”
Name

2 Revision Get UINT8 01h First revision of object
3 Number of instances Get UINT16 - Number of instances in object

Attributes #3 and #4 will hold
the same value, as the high-
est created instance number
always equals the number of
instances.

4 Highest instance no. Get UINT16 - Highest created instance
number (max. 65534)
Attributes #3 and #4 will hold
the same value, as the high-
est created instance number
always equals the number of
instances.

11 Current Energy Sav-
ing mode

Get UINT16 - Instance number of the cur-
rently used Energy Saving
mode. “Ready to operate” will
equal 1 and “Power off” will
equal Highest instance
number.

12 RemaingTimeToDes-
tination

Get UINT32 FFFFFFFFh
(Default)

When changing mode this pa-
rameter will reflect the actual
time (in milliseconds) remain-
ing until the mode transition is
completed. If a dynamic value
can not be generated, the
static value for the transition
from the source to destination
mode shall be used.
If the value of this attribute is
infinite or unknown, the maxi-
mum value of FFFFFFFFh
shall be used. If the value is
zero, 00000000h shall be
used.

13 EnergyConsumption-
ToDestination

Get FLOAT 0.0 (Default,
also used if
the value is
undefined.)

When changing mode this pa-
rameter will reflect the energy
(in kWh) that will be con-
sumed until the mode transi-
tion is completed. If a dynamic
value can not be generated,
the static value for the transi-
tion from the source to desti-
nation mode shall be used.

Instance Attributes (Instance #1)
Name Access Data Type Value Description
1 ModeAttributes Get UINT16 0 Bit field defining whether stat-

ic or dynamic values are
available.
Bit 0:
0:

Meaning:

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 132 (164)

Name Access Data Type Value Description
1: Only static time

and energy
values
Dynamic time and
energy values

Bits 1–15: reserved
2 TimeMinPause Get UINT32 0 Minimum pause time, tpause

(ms)
3 TimeToPause Get UINT32 0 Expected time to go to this en-

ergy saving state, toff (ms)
4 TimeToOperate Get UINT32 0 Time needed to go the “Ready

to operate” state, ton (ms)
5 TimeMinLengthOf-

Stay
Get UINT32 0 The minimum time that the

device must stay in this state,
toff_min (ms)

6 TimeMaxLengthOf-
Stay

Get UINT32 FFFFFFFFh The maximum time that it is
allowed to stay in this state
(ms)

7 ModePowerCon-
sumption

Get FLOAT 0.0
(This value is
also used if
the value of
the attribute
is
undefined.)

Amount of energy consumed
in this state (kW)

8 EnergyConsumption-
ToPause

Get FLOAT 0.0 Amount of energy required to
go to this state (kWh)
(The value 0.0 is also used if
the value of the attribute is
undefined.)

9 EnergyConsumption-
ToOperate

Get FLOAT 0.0 Amount of energy required to
go to the“ Ready to operate”
state from this state (kWh)
(The value 0.0 is also used if
the value of the attribute is
undefined.)

• If an attribute is not implemented, the default value will be used instead.

• Attributes #2–6: If the value is infinite or unknown, the maximum value of FFFFFFFFh
shall be used. If the value is zero, 00000000h shall be used.

• toff + toffmin + ton = tpause, see picture below

Time

Ready to
operate

Energy saving
mode x TonToff Toff_min

Tpause = Toff + Toff_min + Ton

Fig. 24

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 133 (164)

Command Details: StartPause
Details

Command Code: 10h

Valid for: Instance

Description

The module issues this command to the host application when the system wants to initialize a
pause of the system. The length of the pause is specified in milliseconds. The response con-
tains the destination mode, i.e. the instance number of the selected energy saving state. The
command is always issued towards the object itself.

• Command details:

Field Contents Contents
CmdExt[0] (not used)
CmdExt[1]
MsgData[0] Pause time (low

word, low byte)
Pause time (ms)

MsgData[1] Pause time (low
word, high byte)

MsgData[2] Pause time (high
word, low byte)

MsgData[3] Pause time (high
word, high byte)

• Response details:

Field Type Contents
CmdExt[0... 1] (reserved) (set to zero)
MsgData[0] Instance number

(low byte)
Instance number of the selected Energy mode

MsgData[1] Instance number
(high byte)

If the application does not change modes, the error code ABP_ERR_OUT_OF_RANGE (0Ch)
is returned.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 134 (164)

Command Details: EndPause
Details

Command Code: 11h

Valid for: Instance

Description

The module issues this command to the host application when the system wants to return the
system from a pause mode back to “Ready to operate” mode. The response contains the num-
ber of milliseconds needed to return to “Ready to operate” mode. The command is always is-
sued towards the object itself.

• Command details:

Field Contents Contents
CmdExt[0] (not used)
CmdExt[1]

• Response details:

Field Type Contents
CmdExt[0... 1] (reserved) (set to zero)
MsgData[0] Time to operate (low

word, low byte)
Time needed to switch to “Ready to operate” mode (ms)

MsgData[1] Time to operate (low
word, high byte)

MsgData[2] Time to operate (high
word, low byte)

MsgData[3] Time to operate (high
word, high byte)

If the application is unable to end the pause, the error code ABP_ERR_INV_STAT (0Dh) is
returned.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Host Application Objects 135 (164)

13.12 Host Application Specific Object (80h)
Category
Extended

Object Description
The functionality of this object is not specified. The application is free to specify the functionality.
E.g. the object can be used to access data in the application using the SSI interface on Ethernet
capable modules.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

This page intentionally left blank

Appendix A: Categorization of Functionality 137 (164)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to
use. They will be enough for starting up the Anybus CompactCom and sending/receiving data
with the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given
to the more specific characteristics of the industrial network, not only the basic moving of data
to and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the avail-
able network functionality is enabled and accessible, access to the specification of the industrial
network may be required.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix B: Network Comparison 138 (164)

B Network Comparison
The Anybus CompactCom 40 software interface is designed to be as generic as possible with-
out sacrificing network functionality or integration with the host system.

When designing the host application, it is important to be aware of the limitations and possibil-
ities of each networking system. In most cases, no additional software support is needed to sup-
port a particular network. However, in order to fully exploit certain aspects of the network
functionality, a degree of dedicated software support may be necessary.

A summary of the features offered by the different network implementations is presented in the
table on the next page.

How to interpret the table is described below:

• The figures specify the values that are to be expected in a typical generic
implementation.

• The figures in parenthesis specify the values that are possible with dedicated software
support.

• Of the maximum number of diagnostic instances there is always one instance reserved
for one of severity level “Major, unrecoverable” to force the module into the state
EXCEPTION.

• If a data type is not supported, this means that the network has no direct counterpart for
that particular type. The data may however still be represented on the network, albeit in
some other format (e.g. a UINT64 may be represented as four UINT16s etc.)

• Network specific comments to the table are listed after the table.

The information in this chapter gives a rough idea of the possibilities on the
different network implementations. For in-depth information about a particular
network, consult the corresponding network guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix B: Network Comparison 139 (164)

Item

Et
he
rn
et
/IP

C
C
-L
in
k

C
C
-L
in
k
IE

Fi
el
d

PR
O
FI
B
U
S

D
P-
V1

PR
O
FI
N
ET

IR
T

D
ev
ic
eN

et

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

Network Data
Format

LSB
first

LSB first LSB
first

MSB
first

MSB
first

LSB
first

LSB
first

LSB
first

LSB
first

Acyclic Data
Support

Yes No Yes Yes Yes Yes Yes Yes Yes

Max. no. of Ele-
ments Per ADI

255 112/255 255 240 255 255 32
(255)

255 254

Max. ADI Size (in
bytes)

1524 112/256 1524 240 1308 512 32
(1524)

1524 N/A

Lowest Address-
able ADI no.

1 1 1 1 1 1 1 1 1

Highest Address-
able ADI no.

65535 65535 65535 65025 32767 65535 3839
(6142-
4)

57343
(1638-
3)

57343

Max. Write Proc-
ess Data (in
bytes)

1448 368 1536 244 1308 512 1536 1486 1490

Min. Write Proc-
ess Data (in
bytes)

0 0 0 0 0 0 0 0 0

Max. Read Proc-
ess Data (in
bytes)

1448 368 1536 244 1308 512 1536 1486 1490

Min. Read Proc-
ess Data (in
bytes)

0 0 0 0 0 0 0 0 0

Max. Process
Data (Read +
Write, in bytes)

2896 736 3072 488 2616 1024 3072 2972 2980

Min. Process Da-
ta (Read + Write,
in bytes)

0 0 0 1 0 0 0 0 0

Requires ‘Get/
Set_Indexed_
Attribute’

No No No No No No No Yes Yes

Requires ‘Get_
Instance_Num-
ber_By_Order’

Yes No No No Yes Yes No Yes No

Runtime
Remapping

Yes No No Yes Yes No No Yes Yes

Max. no. of Diag-
nostic Instances

6 6 2 6 6 6 6 6 1

Supports Net-
work Reset Type
0: ‘Power-on-
reset’

Yes No No No Yes Yes No Yes Yes

Supports Net-
work Reset Type
1: ‘Factory de-
fault reset’

Yes No No No Yes Yes No Yes No

Supports SINT64 Yes Yes Yes Yes Yes Yes Yes Yes Yes
Supports UINT64 Yes Yes Yes Yes Yes Yes Yes Yes Yes
Supports FLOAT Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cycle time 1 ms ~1ms 200 µs

- 200
ms

- 250 µs 10 ms - 100 µs 200 µs
-
21474-
83 µs

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix B: Network Comparison 140 (164)

• EtherNet/IP (EIP):

– The command Get_Instance_Number_By_Order is needed when accessing attrib-
utes in the Parameter Object from a CIP network.

– The command Get_Instance_Number_By_Order is also used for modules, that
support internal web pages, when the parameter web page is opened.

• CC-Link (CCL):

– The max. no of elements per ADI and the max. ADI size depend on ADI mapping,
please consult the Anybus CompactCom 40 CC-Link Network Guide

– The cycle time is given for transmission speed 10Mbps and only one Remote de-
vice occupying one station on the network. Depends on network configuration.

• PROFIBUS (DPV1):

– Due to technical reasons, it is generally not recommended to use ADI numbers
1...256, since this may cause problems when using certain PROFIBUS configura-
tion tools. Lowest addressable ADI no. would in that case be 257.

• DeviceNet (DEV):

– The command Get_Instance_Number_By_Order is needed when accessing attrib-
utes in the Parameter Object from a CIP network.

• Modbus-TCP (EIT):

– The Highest addressable ADI no. default value is 3839.

– If changing Number of ADI indexing bits and limiting ADI size, the highest address-
able ADI is as high as 61424.

• EtherCAT (ECT):

– The Highest addressable ADI when the module is in generic mode is 57343.

– The Highest addressable ADI when the modular device profile is enabled is 16383.

– The command Get_Instance_Number_By_Order (or alternatively, Get_Instance_
Numbers) is used during initialization to find number of ADIs

– Network Reset Type 0 is supported for firmware upgrade purposes.

• Ethernet POWERLINK (EPL):

– The network puts no limit to max. ADI Size.. The present implementation allows 30
kB / ADI.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix C: Industrial Ethernet Network Comparison 141 (164)

C Industrial Ethernet Network Comparison
The Anybus CompactCom 40 series product family support a number of Industrial Ethernet net-
works. In the product family there is also a Common EtherNet module, offering an Ethernet plat-
form which can be used as is or to which you can download the Ethernet firmware of your
choice.

The tables below show what Ethernet features are available for the different networks. In the
first table, features common to the available Industrial Ethernet networks are listed. The follow-
ing tables show features specific to the different networks. For network type abbreviations, see
Network Trademark Information, p. 8

For in-depth information about a particular network, consult the corresponding
network guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix C: Industrial Ethernet Network Comparison 142 (164)

Item

Et
he
rn
et
/IP

PR
O
FI
N
ET

IR
T

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

C
C
-L
in
k
IE

Fi
el
d

Application
interfaces

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

8/16-bit
DPRAM (30
ns)
SPI (max.
20 Mbit/s)
Shift regis-
ter (12.5
MHz)

Network cycle time ≥ 1 ms ≥ 250 µs N/A ≥ 100 µs ≥ 200 µs ≥ 260 µs
Latency 160 µs with

32 bytes of
process
data

tbd N/A < 250 ns < 15 µs < 3 µs with
32 bytes of
process
data

Jitter 40 µs with
32 bytes of
process
data

tbd N/A < 200 ns 200 ns N/A

Max. process data
(in/out, byte)

1448 / 1448 1440 / 1440
including
status byte

1536 / 1536 1486 / 1486 1490 / 1490 1536/1536

Max. parameter
data (in/out, byte)

1448 1512 / 1294 248 / 248 1524 /1524 1490 / 1490 960/960

IT protocol support TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

No No

Web server
included

Yes Yes Yes Yes No No

Optional HTTP
forwarding

Yes Yes Yes Yes No No

Network accessi-
ble FLASH disk

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

No No

Socket communi-
cation support

Max 20 con-
nections at
the same
time

Max 20 con-
nections at
the same
time

Max 20 con-
nections at
the same
time

Max 20 con-
nections at
the same
time

No No

Port disabling
supported

Yes No N/A No N/A No

Diagnostic
capabilities

LED out-
puts, ABCC
Diagnostic
Object,
EtherNet/IP
diagnostic
counter
support,
web site

LED out-
puts, ABCC
Diagnostic
Object, web
site, SNMP
MIB2

LED, ABCC
Diagnostic
Object, web
site

LED out-
puts, ABCC
Diagnostic
Object, di-
agnostics in
ESC

LED out-
puts, ABCC
Diagnostic
Object

LED out-
puts, ABCC
Diagnostic
Object, acy-
clic “Get
Statistics”
service

Node address
setting

Configura-
tion object,
DIP switch,
via network,
IPconfig,
HTTP

Configura-
tion object,
via network,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch

Configura-
tion object,
DIP switch

Approvals UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL
Network
conformance

CT11, EIP
PlugFest

PROFINET
2.31

Modbus
TCP Con-
formance
Test 3.0

EtherCAT
conform-
ance test
passed
2014-06-06

DS301
V1.1.0

CC-Link IE
Field Net-
work Intelli-
gent Device
Conform-
ance Test
(pending)

ITsecurity HTTP au-
thentication
(basic +

HTTP au-
thentication
(basic +

HTTP au-
thentication
(basic +

HTTP au-
thentication
(basic +

N/A (no IT
support)

N/A (no IT
support)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix C: Industrial Ethernet Network Comparison 143 (164)

Item

Et
he
rn
et
/IP

PR
O
FI
N
ET

IR
T

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

C
C
-L
in
k
IE

Fi
el
d

digest), FTP
password

digest), FTP
password

digest), FTP
password

digest), FTP
password

Safety support CIP Safety,
T100 IO &
black chan-
nel. planned

PROFIsafe,
T100 IO &
black chan-
nel, Q1/
2015

No FSoE, T100
IO & black
channel,
planned

TBD No

Secure Host IP
Configuration Pro-
tocol (HICP)

Yes Yes Yes Yes No No

HMS Firmware
Manager
supported

Yes Yes Yes Yes Yes Yes

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix D: Object Overview 144 (164)

D Object Overview
Each device in the Anybus CompactCom 40 series supports a subset of the objects, described
in this design guide and in the respective network guides. The following tables give an overview.

For network type abbreviations, see Network Trademark Information, p. 8

If the firmware of a module has been upgraded recently, these tables may be subject to update
in the next revision of this document.

D.1 Anybus Module Objects
These objects are implemented in the product.

Et
he
rN
et
/

IP C
C
-L
in
k

C
C
-L
in
k
IE

Fi
el
d

PR
O
FI
B
U
S

D
P-
V1

PR
O
FI
N
ET

D
ev
ic
eN

et

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

C
om

m
on

Et
he
rn
et

01h Anybus Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
02h Diagnostic Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
03h Network Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
04h Network Configura-

tion Object
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

07h Socket Interface
Object

Yes No No No Yes No Yes Yes No Yes

08h Network CC-Link
Object

No Yes No No No No No No No No

09h SMTP Client Object Yes No No No Yes No Yes Yes No Yes
0Ah Anybus File System

Interface Object
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

0Ch Network Ethernet
Object

Yes No No No Yes No Yes Yes No Yes

0Dh CIP Port Configura-
tion Object

Yes No No No No No No No No No

0Eh Network PROFINET
IO Object

No No No No Yes No No No No No

10h PROFIBUS DP-V0
Diagnostic Object

No No No Yes No No No No No No

11h Functional Safety
Module Object

Yes No No No Yes No No No No No

12h Network CC-Link IE
Field Object

No No Yes No No No No No No No

D.2 Host Application Objects
These objects are possible to implement in the host application. Depending on the application,
not all objects available for a network, may be necessary.

Et
he
rN
et
/

IP C
C
-L
in
k

C
C
-L
in
k
IE

Fi
el
d

PR
O
FI
B
U
S

D
P-
V1

PR
O
FI
N
ET

D
ev
ic
eN

et

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

C
om

m
on

Et
he
rn
et

E6h CC-Link Field Net-
work Host Object

No No Yes No No No No No No No

E7h Energy Reporting
Object

Yes No No No No Yes No No No No

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix D: Object Overview 145 (164)

Et
he
rN
et
/

IP C
C
-L
in
k

C
C
-L
in
k
IE

Fi
el
d

PR
O
FI
B
U
S

D
P-
V1

PR
O
FI
N
ET

D
ev
ic
eN

et

M
od

bu
s-

TC
P

Et
he
rC
AT

Et
he
rn
et

PO
W
ER

-
LI
N
K

C
om

m
on

Et
he
rn
et

E8h Functional Safety
Object

Yes No No No No No No No No No

E9h POWERLINK Object No No No No No No No No Yes No
EAh Application File Sys-

tem Interface Object
Yes No No Yes Yes Yes Yes Yes No Yes

EBh Assembly Mapping
Object

Yes No No No No No No Yes No No

ECh Modular Device
Object

Yes No No Yes No Yes No Yes No No

EDh CIP Identity Host
Object

Yes No No No No Yes No No No No

EEh Sync Object Yes No No No Yes No No Yes Yes No
F0h Energy Control

Object
Yes No No No No Yes No No No No

F5h EtherCAT Object No No No No No No No Yes No No
F6h PROFINET IO

Object
No No No No Yes No No No No No

F7h CC-Link Host Object No Yes No No No No No No No No
F8h EtherNet/IP Host

Object
Yes No No No No No No No No No

F9h Ethernet Host Object Yes No Yes No Yes No Yes Yes Yes Yes
FAh Modbus Host Object No No No No No No Yes No No No
FCh DeviceNet Host

Object
No No No No No Yes No No No No

FDh PROFIBUS DP-V1
Object

No No No Yes No No No No No No

FEh Application Data
Object

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

FFh Application Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

E Conformance Test Information, Stand-Alone
Mode
In order to pass conformance tests in stand-alone shift register mode, the host application has
to implement some virtual attributes.

E.1 EtherCAT
Virtual attributes, needed to pass EtherCATcertification test in shift register mode:

E.1.1 Mandatory Implementations
EtherCAT Object (F5h), instance #1:

Attribute # Attribute Name Value range Default
value

Description

1 Vendor ID UINT32 0xE000001B
HMS

HMS secondary vendor id. A secondary
vendor id will never pass the CT test.

E.1.2 Optionally – Improved Functionality, Customization and Identification
of the Product
EtherCAT Object (F5h), instance #1:

Attribute # Attribute Name Value range Default
value

Description

2 Product code UINT32 00000036h
ABCC 40
ECT

6 Manufacture De-
vice Name

Array of
CHAR (Max
64 bytes)

“Anybus
Compact-
Com 40
EtherCAT”

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

E.2 CC-Link
Virtual attributes needed to pass CC-Link certification test in shift register mode:

E.2.1 Mandatory Implementations
Host CC-Link Object (F7h), instance #1:

Attribute # Attribute Name Value range Default
value

Description Validation in
Test ref.

1 Vendor code NA NA Extracted from the
CLPA assigned
member number.

3.(1) Confirma-
tion of station in-
formation ac-
cording BAP-
C0401-012-F.

E.2.2 Optionally – Improved Functionality, Customization and Identification
of the Product
Host CC-Link Object (F7h), instance #1:

Attribute # Attribute Name Value range Default
value

Description Validation in
Test ref.

2 SW Version 1-63 Depends on
ABCC
version.

Incremented when
the CC-Link network
behavior is affected.

3.(1) Confirma-
tion of station in-
formation ac-
cording BAP-
C0401-012-F.

3 Model code 1-127 127 Corresponds to the
module profile.

3.(1) Confirma-
tion of station in-
formation. 8(1)
Profile confirma-
tion according
BAP-C0401-012-
F.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

E.3 Ethernet POWERLINK
Virtual attributes needed to pass Ethernet POWERLINK certification test in shift register mode:

E.3.1 Mandatory Implementations
POWERLINK Object (E9h), instance #1:

Attribute # Attribute Name Value range Default
value

Description Note.

1 Vendor ID UINT32 NA This value replace
the default value for
CANopen identity ob-
ject (0x1018 sub-in-
dex 0x01).

A unique Ven-
dor-ID SHALL
be assigned to
the vendor by
EPSG.

E.3.2 Optionally – Improved Functionality, Customization and Identification
of the Product
POWERLINK Object (E9h), instance #1:

Attribute # Attribute Name Value range Default
value

Description

2 Product code UINT32 0x00000028 This value replace the default value for
CANopen identity object (0x1018 sub-in-
dex 0x02).

3 Revision High
word

UINT16 0x0000 This value replace the default value for
CANopen identity object (0x1018 sub-in-
dex 0x03, high word).

4 Revision low
word

UINT16 ABCC (hard-
ware
revision)

This value replace the default value for
CANopen identity object (0x1018 sub-in-
dex 0x03, low word).

6 Manufacture De-
vice Name

Array of
CHAR (max
64 bytes)

“Anybus
Compact-
Com 40
Ethernet
POWER-
LINK”

Corresponds to Manufacturer Device
Name object (0x1008).

14 Manufacture
Name

Array of
CHAR (max
64 bytes)

“HMS” Will be used as part of Interface Descrip-
tion string in the Interface Group object
(0x1030)

To ensure the functioning of the SYNC signal, define the following attributes in the SYNC Object
(EEh), instance #1:

Attribute # Attribute Name Value range Default
value

Description

1 Cycle time UINT32 - NMT Cycle Length Object 0x1006 (con-
verted from microseconds to
nanoseconds).

7 Sync mode UINT16 - If attribute 8 indicates support for syn-
chronous operation, the ABCC will set
this attribute to 1 at the start of synchro-
nous operation and to 0 at the start of
non-synchronous operation. If synchro-
nous operation is not supported the
ABCC will never change the value.

8 Supported sync
modes

UINT16 - Bit 0: Nonsynchronous operation. (De-
fault value if nonsynchronous operation is
supported.)
Bit 1: 1=Synchronous operation
supported.
Bit 2-15: Reserved. Set to zero.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 149 (164)

F Runtime Remapping of Process Data
This appendix describes how to handle a request from the network to remap read or write proc-
ess data.

The functionality is available on EtherNet/IP, EtherCAT, PROFINET, PROFIBUS, and Ethernet
POWERLINK.

F.1 SPI Mode
In SPI mode, telegrams are sent in full duplex. In the pictures this is illustrated by showing MISO
and MOSI telegrams adjacent to each other. For more information on the SPI mode see SPI
Host Communication, p. 38

F.1.1 Read Process Data
When the application has received a Remap_ADI_Read_Area request from the Anybus Com-
pactCom 40 and has acknowledged the request, the Anybus CompactCom 40 will start sending
read process data to the application according to the new mapping, the next time it receives
new process data from the network. Not updated read process data will be sent according to
the old mapping.

The Anybus CompactCom 40 sends Remap_ADI_Read_Area requests to the application in
states where the read process data is inactive/invalid. Valid process data according to the new
mapping will typically not be detected until the next time the Anybus CompactCom 40 enters
the PROCESS_ACTIVE state.

A pp lica tion

H and le R em ap read

H and le R em ap A C K
Use new read process
data map on updated
process data
(RPD2)

RPD1 = Read Process Data according to previous mapping
RPD2 = Read Process Data according to new mapping
WPD = Write Process Data

MSG:

MSG:

RPD1

WPD

MSG:

MSG:
Remap read

WPD

RPD1

MISO

MOSI

MISO

MOSI

MSG:

MSG:

RPD2

WPD

MSG:

MSG:

RPD1

WPD
Remap ACK

MISO

MOSI

MISO

MOSI

Anybus
CompactCom

Fig. 25

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 150 (164)

F.1.2 Write Process Data
When the application has received a Remap_ADI_Write_Area request, it sends process data
according to the new mapping starting with the SPI telegram that acknowledges the Remap_
ADI_Write_Area request.

A pp lica tion Anybus
CompactCom

H and le R em ap read

H and le R em ap A C K

WPD1 = Write Process Data according to previous mapping
WPD2 = Write Process Data according to new mapping
RPD = Read Process Data

U se new write
p rocess da ta m ap
(WPD2)

MSG:

MSG:

RPD

WPD1

MSG:

MSG:
Remap write

WPD1

RPD

MISO

MOSI

MISO

MOSI

MSG:

MSG:

RPD

WPD2

MSG:

MSG:

RPD

WPD2
Remap ACK

MISO

MOSI

MISO

MOSI

Fig. 26

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 151 (164)

F.2 Parallel Mode, 8/26 Bits, Event Driven
F.2.1 Read Process Data

When the application has received a Remap_ADI_Read_Area request from the Anybus Com-
pactCom 40 and has acknowledged the request, the Anybus CompactCom 40 will start sending
read process data to the application according to the new mapping the next time it receives
such data from the network.

The Anybus CompactCom 40 sends Remap_ADI_Read_Area requests to the application in
states where the read process data is inactive/invalid. Valid process data according to the new
mapping will typically not be detected until the next time the Anybus CompactCom 40 enters
the PROCESS_ACTIVE state.

A pp lica tion Anybus
CompactCom

R em ap A C K

W PD

R em ap readM

RPD2

M

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

P rocess da ta

M essage

RPD1 = Read Process Data according to previous mapping
RPD2 = Read Process Data according to new mapping
WPD = Write Process Data

W PD

RPD1

Fig. 27

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 152 (164)

F.2.2 Write Process Data
When the application has received a Remap_ADI_Write_Area requests, it starts sending proc-
ess data according to the new mapping to the Anybus CompactCom 40 before acknowledging
the Remap_ADI_Write_Area request.

The Anybus CompactCom 40 regards the write process data as invalid between the time it
sends a Remap_ADI_Write_Area request to the application until the remap request is acknowl-
edged or not acknowledged.

A pp lica tion Anybus
CompactCom

R em ap A C K
Use new write
p rocess da ta m ap
(WPD2)

W PD1

R em ap writeM

RPD

M

H and le R em ap write

H and le R em ap A C K

P rocess da ta

M essage

W PD2

RPD

W PD2

WPD1 = Write Process Data, according to previous mapping
WPD2 = Write Process Data, according to new mapping
RPD = ReadProcess Data

Fig. 28

F.3 Backwards Compatible Modes
In this section is described runtime remapping of process data in parallel and serial modes,
backwards compatible to the Anybus CompactCom 30 series.

Please note that the telegrams are exchanged in a ping-pong fashion.

F.3.1 Parallel mode
Runtime remapping of process data in parallel mode is rather straightforward, see figures below.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 153 (164)

Read Process Data

A pp lica tion Anybus
CompactCom

R em ap A C K
E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap readM

RPD2

W PDM

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 29

Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

RPD = Read Process Data
WPD = Write Process Data

Fig. 30

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 154 (164)

F.3.2 Serial Mode
Please note that the telegrams are exchanged in a ping-pong fashion, and that a telegram with-
out a message ends each command. A number of telegrams will thus have to be exchanged be-
fore the re-mapping takes effect

This mode is backwards compatible to Anybus CompactCom 30.

Read Process Data

A pp lica tion A B C C

R em ap A C K

E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap read

RPD1

W PD

M

RPD1

W PDM

W PD

R PD2

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

N o m essage (M = 0)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 31

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 155 (164)

Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

W PD1

R PD

W PD1

R PD

No Message (M = 0)

RPD = Read Process Data
WPD = Write Process Data

Fig. 32

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix F: Runtime Remapping of Process Data 156 (164)

F.4 Example: Remap_ADI_Write_Area

ADI

2

3

4

b

c d e

5

8

12

(1 * UINT8)

(1 * UINT16)

(3 * UINT16)

(4 * UINT8)

(4 * UINT8)

(1 * UINT8)

a

f

j

h

l

i

m

g

k

n

Mapping Item 0 1 2 3
ADI Element

CmdExt[0]
CmdExt[1]
Data[0...1]
Data[2...3]
Data[4...5]
Data[6]
Data[7]
Data[8...9]
Data[10]
Data[11]

Start remap from mapping item 1
(reserved)
Remove 2 mapping items (i.e. 1 and 2)
Insert 2 mapping items
New mapping item 1: Instance no. #8
New mapping item 1: Map from element 1 (k)
New mapping item 1: Map 3 elements (k... m)
New mapping item 2: Instance no. #12
New mapping item 2: Map from element 0 (n)
New mapping item 2: Map 1 element (n)

1
0
2
2
8
1
3

12
0
1

a b c d e f g h i

Initial Mapping:

Mapping Item 0 1 2 3
ADI Element a k l m n f g h i

Result:

Command Remap_ADI_Write_Area:

Fig. 33

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix G: CRC Calculation (16–bit) 157 (164)

G CRC Calculation (16–bit)
G.1 General

The following information applies only when using the serial interface.

To allow the receiving part to detect transmission errors, each serial telegram frame contains a
16-bit Cyclic Redundancy Check.

The CRC is calculated as follows:

1. Load a 16-bit register with FFFFh. (Let’s call it the CRC-register for simplicity)

2. XOR the first byte of the message with the low order byte of the CRC-register, putting
the result in the CRC-register.

3. Shift the CRC-register one bit to the right (towards the LSB), zero-filling the MSB.

4. Examine the LSB that was just shifted out from the register. If set, Exclusive-OR the
CRC-register with the polynomial value A001h (1010 0000 0000 0001).

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. XOR the next byte from the message with the low order byte of the CRC-register, put-
ting the result in the CRC-register

7. Repeat steps 3...6 until the complete message has been processed.

8. The CRC-register now contains the final CRC16-value.

G.2 Example
When implementing the CRC calculation algorithm, use these example strings (below) to en-
sure that the algorithm yields the same results as the Anybus CompactCom module.

The array { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 } should yield the follow-
ing CRC16: { 0xb0, 0xcf }.

The array { 0x00, 0x55, 0xAA, 0xFF, 0x0F, 0x5A, 0xA5, 0xF0 } should yield the follow-
ing CRC16: { 0x11 , 0x03 }.

The array { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } should yield the follow-
ing CRC16: { 0x77 , 0x28 }.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix G: CRC Calculation (16–bit) 158 (164)

G.3 Code Example
This example uses a fast approach to calculate the CRC; all possible CRC-values are pre-
loaded into two arrays, which are simply indexed as the function increments through the mes-
sage buffer.

const UINT8 abCrc16Hi[] =
{

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00,
0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40

};
const UINT8 abCrc16Lo[] =
{

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07,
0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF,
0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8,
0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F,
0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16,
0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30,
0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5,
0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE,
0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9,
0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22,
0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64,
0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A,
0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C,
0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3,
0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53,
0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C,
0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A,

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix G: CRC Calculation (16–bit) 159 (164)

0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84,
0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41,
0x81, 0x80, 0x40

};

UINT16 CRC_Crc16(UINT8* pbBufferStart, UINT16 iLength)
{

UINT8 bIndex;
UINT8 bCrcLo;
UINT8 bCrcHi;
bCrcLo = 0xFF;
bCrcHi = 0xFF;
while(iLength > 0)
{

bIndex = bCrcLo ^ *pbBufferStart++;
bCrcLo = bCrcHi ^ abCrc16Hi[bIndex];
bCrcHi = abCrc16Lo[bIndex];
iLength--;

}
return(bCrcHi << 8 | bCrcLo);

}

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix H: CRC Calculation (32–bit) 160 (164)

H CRC Calculation (32–bit)
H.1 Example

When implementing the CRC calculation algorithm, use these example strings (below) to en-
sure that the algorithm yields the same results as the Anybus CompactCom module.

The array { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 } should yield the follow-
ing CRC32: { 0xeb 0xf4 0x72 0x27 }.

The array { 0x00, 0x55, 0xAA, 0xFF, 0x0F, 0x5A, 0xA5, 0xF0 } should yield the follow-
ing CRC32: { 0xbe 0xa7 0x3a 0x2d }.

The array { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } should yield the follow-
ing CRC32: { 0x9a 0xf6 0x4b 0x49 }.

H.2 Code Example
This example uses a fast approach to calculate the CRC.

const UINT8 abBitReverseTable16[] = { 0x0, 0x8, 0x4, 0xC, 0x2, 0xA,
0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF };

const UINT32 crc_table32[] = {
0x4DBDF21CUL, 0x500AE278UL, 0x76D3D2D4UL, 0x6B64C2B0UL,
0x3B61B38CUL, 0x26D6A3E8UL, 0x000F9344UL, 0x1DB88320UL,
0xA005713CUL, 0xBDB26158UL, 0x9B6B51F4UL, 0x86DC4190UL,
0xD6D930ACUL, 0xCB6E20C8UL, 0xEDB71064UL, 0xF0000000UL

};
UINT32 CRC_Crc32(UINT8* pbBufferStart, UINT16 iLength)
{

UINT8 bCrcReverseByte;
UINT16 i;
UINT32 lCrc = 0x0;
for(i = 0; i < iLength; i++)
{

bCrcReverseByte =
lCrc ^ abBitReverseTable16[(*pbBufferStart >> 4) & 0xf];

lCrc = (lCrc >> 4) ^ crc_table32[bCrcReverseByte & 0xf];
bCrcReverseByte =

lCrc ^ abBitReverseTable16[*pbBufferStart & 0xf];
lCrc = (lCrc >> 4) ^ crc_table32[bCrcReverseByte & 0xf];
pbBufferStart++;

}

lCrc = ((UINT32)abBitReverseTable16 [(lCrc & 0x000000F0UL) >> 4])|
((UINT32)abBitReverseTable16 [(lCrc & 0x0000000FUL)]) << 4 |
((UINT32)abBitReverseTable16 [(lCrc & 0x0000000FUL)]) << 4 |
((UINT32)abBitReverseTable16 [(lCrc & 0x0000F000UL) >> 12] << 8)|
((UINT32)abBitReverseTable16 [(lCrc & 0x00000F00UL) >> 8] << 12)|
((UINT32)abBitReverseTable16 [(lCrc & 0x00F00000UL) >> 20]<< 16)|
((UINT32)abBitReverseTable16 [(lCrc & 0x000F0000UL) >> 16]<< 20)|
((UINT32)abBitReverseTable16 [(lCrc & 0xF0000000UL) >> 28]<< 24) |
((UINT32)abBitReverseTable16 [(lCrc & 0x0F000000UL) >> 24]<< 28);

return lCrc;
}

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix I: Timing & Performance 161 (164)

I Timing & Performance
I.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for
each member of the Anybus CompactCom 40 family.

The following timing aspects, further described below, are measured:

Category Paremeters
Startup Delay T1, T2
NW_INIT Handling T100
Event Based WrMsg Busy Time T103
Event Based Process Delay T101, T102

At the time of writing, network specific timing specifications for all networks has not
yet been publicly released. This information will be added continuously to all
network guides when available.

I.2 Internal Timing
I.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is re-
leased to the point where the specified event occurs.

Parameter Description Max. Unit.
T1 Anybus generates the first application

interrupt (parallel mode)
1.5 s

T2 The Anybus is able to receive and
handle the first application telegram
(serial mode)

1.5 s

I.2.2 NW_INIT Handling
The time required by the Anybus module to perform the necessary actions in the NW_INIT-state
is highly network specific. Furthermore, the number of commands issued towards the host ap-
plication in this state may vary, not only between different networks, but also between different
implementations (e.g. depending on the actual Process Data implementation etc.). This, in turn,
means that the response time of the host application has a major impact on this parameter as
well. It is therefore only possible to specify a maximum value that any Anybus version, together
with a typical host application implementation, can fulfill.

Specifying this parameter does not, in any way, imply that the host application is required, or
even expected, to supervise that it is met - the fact that the protocol is running and the correct
state is indicated should be a sufficient indication of the healthiness of the Anybus module. If,
however, the Anybus concept is not trusted in this respect, the host application may wait for a
timeout before a no-go situation is indicated to the end user. It should then be satisfactory to
use a rather long timeout value since this is, after all, during the start-up phase.

Parameter Conditions
No. of network specific commands Max.
No. of ADIs (single UINT8) mapped to Proc-
ess Data in each direction

32 or maximum amount in case the network specific maxi-
mum is less.

Event based application message response
time

> 1 ms

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

Appendix I: Timing & Performance 162 (164)

Parameter Conditions
Ping-pong application response time > 10 ms
No. of simultaneously outstanding Anybus
commands that the application can handle

1

Parameter Description Communication Max. Unit.
T100 NW_INIT handling All event based

modes
Required for "quick
connect" modules
Recommended for
all other modules

100 ms

Serial 19.2kbps 30 s

(all other modes) 10 s

I.2.3 Event Based WrMsg Busy Time
The Event based WrMsg busy time is defined as the time it takes for the module to return the
H_WRMSG area to the application after the application has posted a message.

Parameter Description Max. Unit.
T103 H_WRMSG area busy time 500 μs

I.2.4 Event Based Process Data Delay
“Read process data delay” is defined as the time from when the last bit of the network frame en-
ters the module, to when the RDPDI interrupt is asserted to the application.

“Write process data delay” is defined in two different ways, depending on network type.

• For software stack based cyclic/polled networks, it is defined as the time from when the
module exchanges write process data buffers, to when the first bit of the new process
data frame is sent out on the network.

• For COS (Change Of State) networks, it is defined as the time from when the applica-
tion exchanges write process data buffers, to when the first bit of the new process data
frame is sent out on the network.

A maximum delay of 500 µs for 32 byte process data is defined for compatibility with old ping-
pong performance requirements, but high performance synchronous event based modules will
never have a delay of more than 15 µs for 32 byte process data.

Parameter Description Recommended max
for 32 byte process
data

Absolute max
for 32 byte
process data

Unit

T101 Read process data
delay

15 500 μs

T102 Write process data
delay

15 500 μs

At the time of writing, network specific timing specifications for all networks has not
yet been publicly released. This information will be added continuously to all
network guides when available.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216–125 3.0

This page intentionally left blank

last page

HMSI-216–125 3.0.1845 / 2016-09-01 14:32 © 2016 HMS Industrial Networks AB

	1 Preface
	1.1 About this Document
	1.2 Related Documents
	1.3 Document History
	1.4 Conventions
	1.5 Document Specific Conventions
	1.6 Network Trademark Information

	2 About the Anybus CompactCom 40
	2.1 General Information
	2.2 Features

	3 Software Introduction
	3.1 Background
	3.2 The Object Model
	3.2.1 Basics
	3.2.2 Addressing Scheme
	3.2.3 Object Categories
	3.2.4 Standard Object Implementation

	3.3 Network Data Exchange
	3.4 Diagnostics
	3.5 File System
	3.6 Modular Device
	3.7 SYNC
	3.7.1 General Information
	3.7.2 Functionality
	3.7.3 Synchronization Lock
	3.7.4 SYNC Pulse
	3.7.5 Network Translation
	3.7.6 Anybus CompactCom 40 SYNC Implementation

	3.8 Multilingual Support
	3.9 Firmware Download
	3.9.1 Important
	3.9.2 Using Firmware Manager II
	3.9.3 Using the Internal File System
	3.9.4 Using FTP

	4 Host Communication Layer
	4.1 General Information
	4.1.1 Communication Basics

	4.2 Memory Map
	4.3 Communications Registers
	4.3.1 Module Capability Register
	4.3.2 LED Status Register
	4.3.3 Application Status Register
	4.3.4 Anybus CompactCom Module Status Register
	4.3.5 Buffer Control Register
	4.3.6 Interrupt Mask Register
	4.3.7 Interrupt Status Register
	4.3.8 Control Register (Read/Write)
	4.3.9 Status Register (Read Only)
	4.3.10 Supervised Bit (SUP)
	4.3.11 Auxiliary Bit (STAT_AUX, CTRL_AUX)

	5 Parallel Host Communication
	5.1 Flow Control
	5.1.1 Communication Basics

	5.2 Anybus Event Driven Watchdog
	5.3 Application Event Driven Watchdog

	6 SPI Host Communication
	6.1 General Information
	6.2 SPI Frame Format
	6.2.1 Data Definitions for the MOSI (Master Output, Slave Input) Frame
	6.2.2 Data Definitions for the MISO (Master Input, Slave Output) Frame

	6.3 Message Fragmentation
	6.4 SPI Error Handling
	6.5 Application Event Driven Watchdog

	7 Shift Register Host Communication
	7.1 General Information
	7.2 Reset

	8 Serial Host Communication (UART)
	8.1 General Information

	9 The Anybus State Machine
	9.1 General Information
	9.2 State Dependent Actions

	10 Object Messaging
	10.1 General Information
	10.1.1 Basic Principles
	10.1.2 Source ID
	10.1.3 Error Handling

	10.2 Message Layout
	10.3 Message Segmentation
	10.3.1 Command Segmentation Procedure
	10.3.2 Response Segmentation Procedure

	10.4 Data Format
	10.4.1 Available Data Types
	10.4.2 Bit Fields
	10.4.3 Handling of Array of Char (Strings)
	10.4.4 OCTET
	10.4.5 PADx

	10.5 Command Specification
	10.5.1 General Information
	10.5.2 Command Codes
	10.5.3 Error Codes
	10.5.4 Get_Attribute
	10.5.5 Set_Attribute
	10.5.6 Create
	10.5.7 Delete
	10.5.8 Reset
	10.5.9 Get_Enum_String
	10.5.10 Get_Indexed_Attribute
	10.5.11 Set_Indexed_Attribute

	11 Initialization and Startup
	11.1 General Information
	11.2 Startup Procedure
	11.2.1 Suggested Startup Procedure when Upgrading from Network

	11.3 Anybus Setup (SETUP State)
	11.4 Network Initialization (NW_INIT State)

	12 Anybus Module Objects
	12.1 General Information
	12.2 Object Revisions
	12.3 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Virtual Attributes
	Black List / White List
	Anybus IP license
	Exception Codes
	Object Specific Error Codes

	12.4 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Severity
	Event Codes
	Command Details: Create
	Command Details: Delete

	12.5 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Map_ADI_Write_Area
	Command Details: Map_ADI_Read_Area
	Command Details: Map_ADI_Write_Ext_Area
	Command Details: Map_ADI_Read_Ext_Area

	12.6 Network Configuration Object Name (04h)
	Category
	Object Description
	Differentiation of Input Devices
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... n)

	12.7 Anybus File System Interface Object (0Ah)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... 4)
	File System Errors
	Command Details: File Open
	Command Details: File Close
	Command Details: File Delete
	Command Details: File Copy
	Command Details: File Rename
	Command Details: File Read
	Command Details: File Write
	Command Details: Directory Open
	Command Details: Directory Close
	Command Details: Directory Delete
	Command Details: Directory Read
	Command Details: Directory Create
	Command Details: Directory Change
	Command Details: Format Disc
	Examples

	12.8 Functional Safety Module Object (11h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Error_Confirmation
	Object Specific Error Codes

	13 Host Application Objects
	13.1 General Information
	13.2 Implementation Guidelines
	13.3 Energy Reporting Object (E7h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.4 Functional Safety Object (E8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.5 Application Data Object (FEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... n)
	Notes on Parameter Access
	Command Details: Get_Instance_Number_By_Order
	Command Details: Remap_ADI_Write_Area
	Command Details: Remap_ADI_Read_Area
	Command Details: Get_Instance_Numbers

	13.6 Application Object (FFh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Reset
	Command Details: Reset_Request
	Command Details: Change_Language_Request
	Command Details: Reset_Diagnostic

	13.7 Application File System Interface Object (EAh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... 20
	File System Errors

	13.8 Assembly Mapping Object (EBh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1 ... n)
	Command Details: Write_Assembly_Data
	Command Details: Read_Assembly_Data

	13.9 Modular Device Object (ECh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Command Details: Get_List
	List Types

	13.10 Sync Object (EEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.11 Energy Control Object (F0h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: StartPause
	Command Details: EndPause

	13.12 Host Application Specific Object (80h)
	Category
	Object Description

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Network Comparison
	C Industrial Ethernet Network Comparison
	D Object Overview
	D.1 Anybus Module Objects
	D.2 Host Application Objects

	E Conformance Test Information, Stand-Alone Mode
	E.1 EtherCAT
	E.1.1 Mandatory Implementations
	E.1.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.2 CC-Link
	E.2.1 Mandatory Implementations
	E.2.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.3 Ethernet POWERLINK
	E.3.1 Mandatory Implementations
	E.3.2 Optionally – Improved Functionality, Customization and Identification of the Product

	F Runtime Remapping of Process Data
	F.1 SPI Mode
	F.1.1 Read Process Data
	F.1.2 Write Process Data

	F.2 Parallel Mode, 8/26 Bits, Event Driven
	F.2.1 Read Process Data
	F.2.2 Write Process Data

	F.3 Backwards Compatible Modes
	F.3.1 Parallel mode
	F.3.2 Serial Mode

	F.4 Example: Remap_ADI_Write_Area

	G CRC Calculation (16–bit)
	G.1 General
	G.2 Example
	G.3 Code Example

	H CRC Calculation (32–bit)
	H.1 Example
	H.2 Code Example

	I Timing & Performance
	I.1 General Information
	I.2 Internal Timing
	I.2.1 Startup Delay
	I.2.2 NW_INIT Handling
	I.2.3 Event Based WrMsg Busy Time
	I.2.4 Event Based Process Data Delay

