IS
—

A
hilscher

COMPETENCE IN
COMMUNICATION

Device Driver Manual

TCP/UDP IP Driver

Access to Hilscher Devices via TCP/IP and UDP/IP

Hilscher Gesellschaft fir Systemautomation mbH
Rheinstralte 15

D-65795 Hattersheim

Germany

Tel. +49 (6190) 9907 - 0
Fax. +49 (6190) 9907 - 50

Sales: +49 (6190) 9907 - 0
Hotline and Support: +49 (6190) 9907 - 99
Sales Email: sales@hilscher.com

Hotline and Support Email: hotline@philscher.com

Web: http://www.hilscher.com

List of revisions 2

Index |Date Version Chapter | Revision

1 19.03.02 | 1.000 all Drawn up

Although this program has been developed with great care and intensively tested, Hilscher
Gesellschaft fiir Systemautomation mbH cannot guarantee the suitability of this program for
any purpose not confirmed by us in writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any
damages which may have arisen from the use of this program or its documentation shall be
limited to cases of intent.

We reserve the right to modify our products and their specifications at any time in as far as
this contributes to technical progress. The version of the manual supplied with the program
applies.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Table of Contents

[1 INTRODUCGCTION. ... cciiitiiiteiiseeiisneissseiasneiassesassesasnssassesssnssssnssssssssssesssnesssnesssnssssnes 4|
.1 Terms fOr thiS MANUALccceeeirereieeeriieneeieseeiseneesessessensesessesssnsesessesssnssssanesssnsessssesssnsesssssssnsens 4|
O T 2o 5|
.3 MeSSAQE SErUCLUIE.cceeeieceeiesecceeeesuceeesssacsceeasses s sasseseasasasenessasanssasasaseneasasanessasasanensssasanans 6|

2 USING SYSTEM SPECIFIC TCP/UDP IP APl.......cccocicuiiiuiiiaiiisnisssiessssssessnessnesas 7|
R.1 PArametersceisseeeessssssssssssssssesssasssssasasssesasasasss sasas s sasasasan s sasasas sasasasansssasssssanasasassesasanans 7]
R.2 Open CoNNECHION ENUPOINESc..ccceuerireeeriisreieseerssneeseseesssneessssesssssesessesssasessssesssnsesssnesssnsessssens 7|
R.3 Establishing of a Connection (Device = SErver)........c.cuuuisrsumsmssnsssassssssssssssssessssnsssssssssssasnns 7|
R.4 Waiting for Incoming Connection (Device = Client).........cccecceeeererseeesesssssesesssseessssss s sasaseens 7]
R.5 Sending and ReCeiVING Dataccrcoceereruccee s s s 8

R.5.1 EXBMPIES ..ottt 9
.6 Avoiding TCP Send Delay...........ccceririiiiieiiiiiii it e e 12
.6.1 Acknowledge Message FOrmMatouuiiieiiiiiiiiiiieee e e eeecie e e e e e e sseeeeaaaesssnaneeeeeeeaaaeeanns 12

B USING TCP/UDP IP DRIVERcccceotieieuierieuneesasnneressseesssnsessssnsesassnsssssnsesssnnenss 13|
T T=Y T I 13|
B.2 Operating SYStEMSccccceerseeeeseeerserassesssssesssssssassssessassssasssssssssssensssasssssssssassssssessnssasssssassasas 13|
B.3 FUNCHION OVEIVIEW.ccueeieeeresneeresserssnsessssesssseessssesssnsesassesssnsessasesssnsessssesasnsessssesssnsessanessnesssnne 13|
B.4 Contents for Windows 9x, Windows NT and Windows 2000.............cccceevererreseccnccccecees 14/
B.5 Installation of the DeViCe DIiVer................cccceeuieieeeieieeee sttt 15

B.5.1 §tanda_rd Registry Entries Windows 9x, Windows NT and Windows 2000....................... 16
3.5.2 Driver File INSTallationccuuiiiiiiiiiiiiie e 18
B.5.3 DIV Ut ..o te it iiiiti ittt ettt ettt et e st e et e et e sneensesneeneeenesnseasesneensesnesneanneans 18
B.6 Configure the Windows 9Xx/2000/NT DIiVerccocsusesssucssssessssmsssssssnsssssssssssssssssssssassssassssanas 19|

.7.1 Include the Interface API in your Application...............cccccciiiiiiiiiiiie
3.7.2 The Application Programming INterfaceuuuuuuuuuuuiiiiiiiiiiiiiiceeeeeeeeeeeeeeeeeeee. 20
OO T 170 21
e) s oo o] T —— 22|
.1 List of Error NUMDETS.........cciceiiciiciiiee st se s s st es e st s e ssnesene s sae e sanesnessnessasessnnsnnens 22
A.1.1 EITON COUBS ..ottt ettt e e e e e e ettt eeeeeeeeeaastsseeeeeaeeesanssbeeeeeeeeesaaseeneess 22
4.71.2 HINES . ittt e e e e e e et e eeeeeeeaaathb——eeeaeeeaaabtbeeeeeeeaannrrreeeas 23

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Introduction 4

1 Introduction

This manual describes the way of accessing Hilscher devices with IP interfaces via
TCP/IP or UDP/IP and the application programming interface (API) to our devices. In
the following DEVICE stands for communication interface, the communication module,
NetNode, NetLink or any other device from Hilscher with IP interface.

The general mechanism of data transfer is protocol independent and for each hardware
the same procedure and is described therefore in the Toolkit Manual ‘General
Definitions’

All parameter and data have basically the description LSB/MSB. This corresponds to
the convention of the Microsoft C compiler. The storage format of word oriented send
and receive process data of the handled I/O DEVICES is configurable.

Values with a following ‘h’ are in hexadecimal notation such as 1Eh = 30. Values
without any following letter are in decimal notation.

Supplementary information is contained in the following Manuals:
e Toolkit Manual ‘General Definitions’ (Tk:TKIT),
e Protocol Interface Manuals of used protocols

e Device Driver Manual ‘Device Driver’ (Dd:DevDrv).

1.1 Terms for this Manual

DPM Dual-Port Memory this is the physical interface to all
communication board (DPM is also used for PROFIBUS-DP
Master).

CIF Communication InterFace

COM Communication Module

HOST Application on the PC or a similar device

DEVICE Synonym for communication interfaces or communication
modules

RCS Realtime Communicating System, this is the name of the

operating system that runs on the communication boards

DLL Dynamic Link Library

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Introduction 5

1.2 Overview

There are two ways of accessing Hilscher devices via IP protocol.
e Using the IP Driver

e Using the system specific IP stack Application Programming Interface (like
Windows or Berkley sockets) on the system directly

In both cases communication is made by sending and receiving messages over the
TCP/IP or UDP/IP protocol. The format and the meaning of these messages are
described in the Toolkit Manual ‘General Definitions’ (Tk:TKIT) and in Protocol
Interface manuals of the given protocol on the device. For Example: Using a NetLink
with PROFIBUS Master interface, the description is made in Protocol Interface manual
of PROFIBUS-DP Master (Pi:DPM).

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Introduction 6

1.3 Message Structure

A message consists of an 8 byte message header, and optional 8 byte telegram
header and up to 247 bytes of user data.

e Message Header Used by the DEVICE operating system for transporting and
address the message. This structure is fixed and constant.

e Telegram Header Defines the action for the protocol task.

e Userdata Send/received data.

Parameter Type Meaning

Msg.Rx byte Receiving Task Message Header

Msg.Tx byte Sending Task

Msg.Ln byte Data length

Msg.Nr byte Identification Code

Msg.A byte Response Code

Msg.F byte Error Code

Msg.B byte Command Code

Msg.E byte Extension Code

Msg.DeviceAdr byte Communication Reference Telegram Header

Msg.DataArea byte Data Block

Msg.DataAdr word Object Index

Msg.Dataldx byte Object Subindex

Msg.DataCnt byte Data Quantity

Msg.DataType byte Data Type

Msg.Fnc byte Service

Msg.D[0-246] byte User Data Telegram User Data
byte

General structure of message

This is an example for a PROFIBUS-FMS command message. For other protocols the
structure is the same, but the containing parameters must be changed when Modbus
Plus is used for example, from communication reference to slave address, object index
to register address, or service to function code.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API 7

2 Using System specific TCP/UDP IP API
It is very simple to access a device from own applications via TCP/IP or UDP/IP. The
application just has to establish a IP connection and to send specified messages.

If the device works as TCP/IP or UDP/IP server, an application has to work as TCP/IP
or UDP/IP client and has to open the connection. If the device works as TCP/IP or
UDP/IP client, the device will establish the connection and the application has to wait
for incoming connections.

The following section will describe the way of communication with the well known BSD
socket or Winsock model. Most IP Application Programming Interfaces (API) are based
on these model.

21 Parameters

Standard IP communication with Hilscher devices is handled over TCP/IP Port 1099,
device is server. Other communication modes have to be configured on the devices, if
possible.

Standard transmitter number (MESSAGE.tx) in messages is 255 (0xff).

2.2 Open Connection Endpoints

Open a socket with a the function call:

SOCKET socket(int af, int type, int protocol);

On Windows systems, call WSAStartup() before opening a socket.
Bind the successfully opened socket to local IP address with function:

int bind(SOCKET s, const struct sockaddr FAR *name, int
nanel en) ;

2.3 Establishing of a Connection (Device = Server)

Connect the bound socket to the server with function call:

int connect(SOCKET s, const struct sockaddr FAR *nane, int
nanel en);

2.4 Waiting for Incoming Connection (Device = Client)

Set socket in listen state
int listen(SOCKET s, int backlog);
Wait for incoming connection on socket in listen state:

SOCKET accept(SOCKET s, struct sockaddr FAR *addr, int FAR
*addr | en);

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API 8

2.5 Sending and Receiving Data

After a successful connect you can send and receive messages with the function calls:

int send(SOCKET s, const char FAR *buf, int len, int flags);

int recv(SOCKET s, char FAR *buf, int len, int flags);

Please see your system specific development documentation for further details.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API 9

2.5.1 Examples

2.5.1.1 Application in client mode

The following shows a simple example to establish a TCP/IP connection (device =
server) and sending and receiving a message with Windows sockets.

#i ncl ude “wi nsock. h”

#defi ne FI XED_PORT 1099

typedef struct MESSAGETELECRAM ag {

unsi gned char rx; /* receiver */
unsi gned char tx; /* transmitter */
unsi gned char I n; /* length */
unsi gned char nr; /* nunber */
unsi gned char a; /* answer */
unsi gned char f; /* fault */
unsi gned char b; /* commrand */
unsi gned char e; /* extension */
unsi gned char device_adr; /* device address */
unsi gned char data_area; /* data area */
unsi gned short data_adr; /* data address */
unsi gned char data_i dx; /* data index */
unsi gned char data_cnt; /* data count */
unsi gned char data_type; /* data type */
unsi gned char function; /* function */

unsi gned char d[247]
} MESSAGETELEGRAM

i nt err;

WORD w\Ver si onRequi r ed
WSADATA wsabDat a;

SOCKET soc;

wVer si onRequi red = MAKEWORD(1, 1) ;
[/ initialize WnSock library
err = WBASt ar t up(w\Ver si onRequi red, &wsaDat a) ;
if (err 1=0)
exit(1l);

Il create a TCP/IP socket
soc = socket (AF_I NET, SOCK_STREAM 0);
if (soc != | NVALI D_SOCKET)
{
struct sockaddr _in Local Addr
Local Addr.sin_fam |y = AF_I NET
Local Addr. si n_addr.s_addr = htonl (| NADDR_ANY)
Local Addr.sin_port =0
// bind the socket to |ocal address
if(bind(soc, (struct sockaddr *)&Local Addr, sizeof(Local Addr)) != SOCKET_ERROR)
{
struct sockaddr _i n Renot eAddr
char szAddress[] = {“192.168.10.161"};
unsi gned | ong | pAddress = inet_addr(szAddress);
Renot eAddr . sin_fam |y = AF_I NET;

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API 10

Renot eAddr . si n_addr. s_addr = | pAddress;
Renot eAddr . sin_port = htons(FI XED_PORT) ;

//connect to server with |IP address 192.168. 10. 161 on port 1099
if(connect(soc, (struct sockaddr *)&RenoteAddr, sizeof(RenoteAddr)) == 0)

{

MESSAGETELEGRAM SendMessage;

MESSAGETELEGRAM Recei veMessage;

i nt SendLen, Receivelen;

/1 build message to read data block with MPI protocol, see Protocol Interface

/1 manual of PROFIBUS-DP Master (Pi:DPM

SendMessage. rx = 3;

SendMessage. tx = 255;

SendMessage. |l n = 8§;

SendMessage. nr = 0;

SendMessage. a = O;

SendMessage. f = O;

SendMessage. b = 0x31;

SendMessage. e = O;

SendMessage. devi ce_adr = 0;

SendMessage. data_area = 0;

SendMessage. data_adr = 0

SendMessage. data_i dx = O;

SendMessage. data_cnt = 1;

SendMessage. data_type = 5;

SendMessage. function = 1;

/1 Send data over TCP/IP connection to device

SendLen = send(soc, (char*)&SendMessage, sizeof (SendMessage), 0);

i f(SendLen == sizeof (SendMessage))

{
/'l receive answer nessage
Recei veLen = recv(soc, (char*)&Recei veMessage, sizeof (ReceiveMessage), 0);
/1 .. do something with answer

}

}

}

/1 cl ose socket

cl osesocket (soc);
/1 Cleanup and return
WSACI eanup() ;

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API

11

2.5.1.2 Application in server mode

int err;
WORD w\Ver si onRequi r ed;
WBADATA wsaDat a;
SOCKET soc, Accept edSocket;
wWVer si onRequi red = MAKEWORD(1, 1) ;
// initialize WnSock library
err = WBASt art up(wMer si onRequi red, &wsaDat a) ;
if (err '=0)
exit(1l);

Il create a TCP/IP socket
soc = socket (AF_INET, SOCK_STREAM 0);
if (soc != I NVALI D_SOCKET)
{
struct sockaddr_in Local Addr;
Local Addr.sin_famly = AF_I NET;
Local Addr. si n_addr.s_addr = htonl (| NADDR_ANY);
Local Addr. si n_port = htons(FI XED_PORT) ;
/1 bind the socket to |ocal address

if(bind(soc, (struct sockaddr *)&Local Addr, sizeof(Local Addr)) != SOCKET_ERROR)

{
char szAddress[MAX_PATH] ;

int AddresslLen = sizeof (szAddress);

/] set socket in listen state
if(listen(soc, SOVAXCONN) == NO_ERROR)

//accept incom ng connection

i f((AcceptedSocket = accept(soc, (struct sockaddr FAR*)&szAddress,
&Addr essLen)) != | NVALI D_SOCKET)

MESSAGETELEGRAM SendMessage;
MESSAGETELEGRAM Recei veMessage;
int SendLen, Receivelen;

Recei veLen = recv(Accept edSocket, (char*)&Recei veMessage,
si zeof (Recei veMessage), 0);

/1 see exanpl e bel ow

Note:

The example shows the use of sockets in blocking mode. Every function call on a
socket is blocking until the command was successfully done or if any error occurred.
You can use the ioctlsocket() or the select() function to handle sockets in non-blocking
mode. Another way to handle blocking sockets in a Windows environment is to use
threads for sending and receiving data.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using System specific TCP/IP API 12

2.6 Avoiding TCP Send Delay

On some circumstances it is possible that TCP/IP messages send from Hilscher
devices will block on the device until an answer from the TCP/IP stack of the host
application is available, also if no answer from application is required. This is, because
by default Windows TCP/IP stack is waiting about 200ms until a TCP/IP acknowledge
is sent to the communication partner. The device is not able to send a new TCP/IP
message until this acknowledge, so new messages will block on the device. To avoid
this, the application can send an own acknowledge. This is done by sending an defined
message (see below) over TCP/IP to the device. This message causes automatically
an TCP/IP acknowledge and the device is able to send new messages to the
application.

Example: A Hilscher device, like a NetNode or NetlLink, has to send TCP/IP messages
with user data to the remote application in high speed. If no answer from the
application is required, the device can send max. 5 messages per second, because
Windows TCP/IP stack is waiting about 200ms until an acknowledge is sent to the
device. The device is not able to send new data until this acknowledge is received. If
the application sends the defined acknowledge message right after receiving the user
data, the device is able to send new user data right after this.

The defined acknowledge message has no further effects on the device.

2.6.1 Acknowledge Message Format

Command Message

Parameter Type Value Description
msg.rx USIGN8 Identification of Receiver
0 | Operating system
msg.tx USIGN8 Identification of Transmitter
255 | User application
msg.In USIGN8 Message Length
0| Length
msg.nr USIGN8 Message Identification
0 .. 255 | Unique number
msg.a USIGN8 Reply Identification
255 | Acknowledge Reply
msg.f USIGN8 Error Number
0 | No error
Msg.b USIGN8 Command Identification
0 | no command
Msg.e USIGN8 Extension

0 | No answer message

Message format of acknowledge message

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 13

3 Using TCP/UDP IP Driver

31 General

The API of the TCP/UDP IP Driver is the same like the API of Device Driver for our CIF
cards and COM modules. The driver provides the same functionality like Device Driver,
please see Device Driver manual (Dd:DevDrv) for further information. If someone has
already an application running with the Device Driver it is very easy to use TCP/UDP/IP
Driver instead.

3.2 Operating systems

For Windows 9x, Windows NT and Windows 2000 we are using IP driver. The
communication between the application and the driver is done by a DLL. This DLL can
be statically or dynamically linked to the application.

User - Application

v

TCP/UDP/IP Interface
(HIL32IP.DLL)

Application | ——————F————————————
y
TCP/UDP/IP Driver
(IP32DRV.DLL)
Winsock API of
Operating System
TCPAP Network At At R

Connection 0 Connection 1| | Connection 2| |Connection 3

TCP/UDP IP Driver components

3.3 Function Overview

The IP drivers for Windows 9x, Windows NT and Windows 2000 can handle up to four
connections.

On each connection only one command can be active at the same time, because there
is no command queuing in the driver implemented.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 14

3.4 Contents for Windows 9x, Windows NT and Windows 2000

Directory Subdirectory Description
<INSTALL> API Application Programming Interface, libraries and header files to
access the 32 Bit driver DLL (the DLL is installed by the driver
installation)
Demo Simple Message and 10 data transfer source code example

(lIODemo.cpp)

IpDrvTest: Complete TCP/UDP/IP driver test program written in C++,
created with Microsoft Visual C/C++ 6.0

MANUALS TCP/UDP/IP driver manual

CD content

Windows 9x, Windows NT and Windows 2000 driver files:

HILIP32.DLL Dynamic link library of the driver interface, created for use with
Windows 9x, Windows NT and Windows 2000
HILIP32.LIB Definition file with the exported function of the HILIP32.DLL.
IPDRVUSR.H Definition header file for the user interface.
IP32DRV.DLL TCP/UDP IP driver DLL
Applications:
IpDrvSetup.EXE Driver Setup program for registry entries
IpDrvTest.EXE Driver Test program to run the various device driver functions

Development platform:

Windows 9x Microsoft Visual C++, V 6.x
Windows NT 4.0 Microsoft Visual C++, V 6.x
Windows 2000 Microsoft Visual C++, V 6.x
ATTENTION:

The TCP/UDP IP Interface DLL and the driver files are installed during the driver
installation and not included in the development directories.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 15

3.5 Installation of the Device Driver

The driver will be installed by an installation program. This will guide you to the
installation process. The installation program will run the following steps:

e Creating the standard registry entries for the TCP/UDP IP Driver
e Copying the device driver / interface DLL files

e Copying the device driver setup and test program

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver

16

3.5.1 Standard Registry Entries Windows 9x, Windows NT and Windows

2000

Registry Path:

\HKEY_LOCAL_MACHINE\Software\Hilscher GmbH\

TCP/UDP IP Driver Entry:

IP Driver - Company
- CurrentFolder
- CurrentVersion
- Directory
- Name
\Connection0
\Connection1
\Connection2

\Connection3

Il Hilscher GmbH

Il Installation folder of driver

Il Current version of driver

Il Installation directory of driver

/I Name of driver

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver

17

The default entries are

Connection0 - IpAddress

Connection1

- PortNumber
- Mode

- Protocol

- ConnectTimeout

- IpAddress
- PortNumber
- ClientMode

- Protocol

- ConnectTimeout

Connection2 - IpAddress

- PortNumber
- ClientMode

- Protocol

- ConnectTimeout

Connection3 - IpAddress

- PortNumber
- ClientMode

- Protocol

- ConnectTimeout

0x00000000
0x0000044B
Client

‘TCP’
0x00002710
0x00000000
0x0000044B
TRUE

‘TCP’
0x00002710
0x00000000
0x0000044B
TRUE

‘TCP’
0x00002710
0x00000000
0x0000044B
TRUE

‘TCP’
0x00002710

/ TCP/IP Address of connection 0
/I Port Number of TC/IP connection
/I Client Mode

/Il TCP protocol is used

/l Timeout for connection in msec.
/ TCP/IP Address of connection 1
// Port Number of TC/IP connection
/l Client Mode = TRUE

/I TCP protocol is used

/I Timeout for connection in msec.
/I TCP/IP Address of connection 2
/I Port Number of TC/IP connection
Il Client Mode = TRUE

/Il TCP protocol is used

/l Timeout for connection in msec.
/ TCP/IP Address of connection 3
// Port Number of TC/IP connection
I/ Client Mode = TRUE

/Il TCP protocol is used

/I Timeout for connection in msec.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 18

3.5.2 Driver File Installation

TCP/UDP IP Interface DLLs:

Windows 9x The interface DLL HILIP32.DLL is copied to the
%System Root%\System directory.

Windows NT The interface DLL HILIP32.DLL is copied to the
%System Root%\System32 directory.

Windows 2000 The interface DLL HILIP32.DLL is copied to the
%System Root%\System32 directory.

TCP/UDP IP Driver DLLs:

Windows 9x The driver DLL IP32DRV.DLL is copied to the
%System Root%\System directory.

Windows NT The driver DLL IP32DRV.DLL is copied to the
%System Root%\System32 directory.

Windows 2000 The driver DLL IP32DRV.DLL is copied to the
%System Root%\System32 directory.

Device Driver Utilities:

Installation path <System>\Program Files\HILSCHER GmbH\IP Driver
IpDrvSetup Driver setup programm
IpDrvTest Driver test programm

3.5.3 Driver Utilities

The driver includes a driver setup (IPDRVSETUP.EXE) and a driver test
(IPDRVTEST.EXE) program. These files are also installed during the installation
procedure. Therefore, the installation program creates a HILSCHER GmbH\ IP Driver
directory below the standard PROGRAM directory where the files are copied.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 19

3.6 Configure the Windows 9x/2000/NT Driver

The user must configure the IP address, the port number, the kind of connection and
the used protocol of each connection. All these informations are written to the registry
data base of the operating system.

To get an easy access to this data the device driver gets its own setup program
IPDRVSETUP.EXE. This program will help you to change the registry entries without
using REGEDIT.EXE.

Parameter Description

IP address IP address of device to which the connection should be
established, maybe 0 if application works in server mode

Port Number Port Number on which the IP connection should be
established

Client / Server Mode Determines if application should work as client or server

Protocol Determines which protocol (TCP or UDP) is used

Connect Timeout Determines how long the driver should try to establish a

connection on DevInitBoard() function call

Driver parameters

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver 20

3.7 Programming Instructions

3.7.1 Include the Interface API in your Application

For the user API there is only one include file IPDRVUSR.H which contains all the
necessary information like structure, constant and prototype definitions. A complete
function description is given in the Device Driver manual (Dd:DevDrv). Link the device
API-DLL (HILIP32.LIB) to your program. Make sure you have installed the driver if this
one is used.

Further programming instructions can be found in the Device Driver Manual
(Dd:DevDrv), since the API is same.

3.7.2 The Application Programming Interface

Since the TCP/UDP/IP driver has the same API as the Device Driver, please refer to
Device Driver manual for further information.

3.7.2.1 Differences

e The meaning of the parameter usDevNumber is changed from board number to
connection number

o DevGetBoardInfo delivers IRQ number always as 0, Physical Address is changed
to IP address
typedef struct tagBOARD | NFO{
unsi gned char abDriverVersion[16]; // DRV version infornation
struct {
unsi gned short usBoardNunber; // DRV connection nunber
unsi gned short usAvailable; // DRV board is avail able
unsi gned | ong ul | pAddress; // DRV | P address
unsi gned short uslrgNunber; // DRV irq nunber, alsways O
} tBoard [MAX_DEV_BQOARDS] ;
} BOARD | NFQ,

o DevGetBoardinfo may need a long time to return, if an configured device is not
available (TCP/IP Timeout)

o DevGetBoardInfo returns always usBoardAvailable = TRUE on UDP connections

¢ Function DevlnitBoard tries to establish an IP connection to the configured device,
no further testing actions are done

e DevGetMBXState delivers the state, if sending or receiving data over the
configured IP connection is possible.

e DevGetinfo(), Info Area GET_DRIVER_INFO: Parameters IRQCnt, bHostFlags,
bMyDevFlags, bExIOFlag are not supported, set to zero

e DevGetinfo(); Info Area GET_RCS_INFO: Parameters: bRcsError,
bHostWatchdogState, bDevWatchdogState, bSegmentCount, bDeviceAddress,
bDriverType are not supported, set to zero

o DevGetinfo(); Info Area GET_DEV_INFO: not supported, set to zero
e DevGetinfo(); Info Area GET_IO_INFO: not supported, set to zero

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Using TCP/UDP IP Driver

e DevExchangelOEXx(); not supported

e DevReadSendData(); not supported

e DevReadWriteDPMRaw(); not supported
e DevExtendedData(); not supported

o DevGetMbxData(); not supported

e DevSpecialControl(); not supported

e DevDownload(); not supported

e DevReadWriteDPMData(); not supported

3.7.3 Hints

Timeouts with TCP/UDP IP driver may be much longer than under device driver.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Error Codes 22
4 Error Codes
41 List of Error Numbers
Error numbers are compatible with error numbers from device driver. Please see

device driver manual for further details.

Some new error codes are defined for TCP/UDP IP use.

4.1.1 Error Codes

Error Number Description

-1000 Function not implemented

-1001 Error by getting resources from Host PC
-1100 Internal NULL pointer exception

-1101 Error by accessing registry

-1102 Error reading key in registry

-1103 Unknown mode (not Client or Server)
-1104 Unknown protocol (not TCP or UDP)
-1105 Connection number is invalid

-1200 Wrong answer for sent command received
10000 Windows socket error number start

Error Codes

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

Error Codes 23

4.1.2 Hints

Error numbers 10000 and higher are Windows socket system specific error numbers.
You will find detailed information in the documentation of your operating system.

Important Windows socket error numbers:

Error Number Description

10036 Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single
blocking operation—per- task or thread—to be outstanding

10051 Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means
the local software knows no route to reach the remote host

10054 Connection reset by peer.
An existing connection was forcibly closed by the remote host.

10057 Socket is not connected.
A request to send or receive data was disallowed because the socket is not
connected

10058 Cannot send after socket shutdown.

A request to send or receive data was disallowed because the socket had already
been shut down

10060 Connection timed out.

A connection attempt failed because the connected party did not properly respond
after a period of time, or the established connection failed because the connected
host has failed to respond

10061 Connection refused.

No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service that is inactive on the foreign
host—that is, one with no server application running.

10091 Network subsystem is unavailable.

This error is returned by WSAStartup if the Windows Sockets implementation cannot
function at this time because the underlying system it uses to provide network
services is currently unavailable

10092 Winsock.dll version out of range.
The current Windows Sockets implementation does not support the Windows
Sockets specification version requested by the application.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd: TCPUDPIP#1EN

	Introduction
	Terms for this Manual
	Overview
	Message Structure

	Using System specific TCP/UDP IP API
	Parameters
	Open Connection Endpoints
	Establishing of a Connection (Device = Server)
	Waiting for Incoming Connection (Device = Client)
	Sending and Receiving Data
	Examples

	Avoiding TCP Send Delay
	Acknowledge Message Format

	Using TCP/UDP IP Driver
	General
	Operating systems
	Function Overview
	Contents for Windows 9x, Windows NT and Windows 2000
	Installation of the Device Driver
	Standard Registry Entries Windows 9x, Windows NT and Windows 2000
	Driver File Installation
	Driver Utilities

	Configure the Windows 9x/2000/NT Driver
	Programming Instructions
	Include the Interface API in your Application
	The Application Programming Interface
	Hints

	Error Codes
	List of Error Numbers
	Error Codes
	Hints

