
Device Driver Manual

TCP/UDP IP Driver

Access to Hilscher Devices via TCP/IP and UDP/IP

Hilscher Gesellschaft für Systemautomation mbH
Rheinstraße 15

D-65795 Hattersheim
Germany

Tel. +49 (6190) 9907 - 0
Fax. +49 (6190) 9907 - 50

Sales: +49 (6190) 9907 - 0
Hotline and Support: +49 (6190) 9907 - 99

Sales Email: sales@hilscher.com
Hotline and Support Email: hotline@hilscher.com

Web: http://www.hilscher.com

List of revisions 2

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

Index Date Version Chapter Revision

1 19.03.02 1.000 all Drawn up

Although this program has been developed with great care and intensively tested, Hilscher
Gesellschaft für Systemautomation mbH cannot guarantee the suitability of this program for
any purpose not confirmed by us in writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any
damages which may have arisen from the use of this program or its documentation shall be
limited to cases of intent.

We reserve the right to modify our products and their specifications at any time in as far as
this contributes to technical progress. The version of the manual supplied with the program
applies.

Table of Contents 3

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

1 INTRODUCTION.. 4

1.1 Terms for this Manual ... 4

1.2 Overview... 5

1.3 Message Structure... 6

2 USING SYSTEM SPECIFIC TCP/UDP IP API... 7

2.1 Parameters ... 7

2.2 Open Connection Endpoints .. 7

2.3 Establishing of a Connection (Device = Server)... 7

2.4 Waiting for Incoming Connection (Device = Client)... 7

2.5 Sending and Receiving Data .. 8
2.5.1 Examples ... 9

2.6 Avoiding TCP Send Delay... 12
2.6.1 Acknowledge Message Format ... 12

3 USING TCP/UDP IP DRIVER .. 13

3.1 General ... 13

3.2 Operating systems .. 13

3.3 Function Overview... 13

3.4 Contents for Windows 9x, Windows NT and Windows 2000.. 14

3.5 Installation of the Device Driver... 15
3.5.1 Standard Registry Entries Windows 9x, Windows NT and Windows 2000....................... 16
3.5.2 Driver File Installation .. 18
3.5.3 Driver Utilities... 18

3.6 Configure the Windows 9x/2000/NT Driver ... 19

3.7 Programming Instructions.. 20
3.7.1 Include the Interface API in your Application... 20
3.7.2 The Application Programming Interface .. 20
3.7.3 Hints... 21

4 ERROR CODES... 22

4.1 List of Error Numbers.. 22
4.1.1 Error Codes ... 22
4.1.2 Hints... 23

Introduction 4

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

1 Introduction

This manual describes the way of accessing Hilscher devices with IP interfaces via
TCP/IP or UDP/IP and the application programming interface (API) to our devices. In
the following DEVICE stands for communication interface, the communication module,
NetNode, NetLink or any other device from Hilscher with IP interface.

The general mechanism of data transfer is protocol independent and for each hardware
the same procedure and is described therefore in the Toolkit Manual ‘General
Definitions’

All parameter and data have basically the description LSB/MSB. This corresponds to
the convention of the Microsoft C compiler. The storage format of word oriented send
and receive process data of the handled I/O DEVICES is configurable.

Values with a following ‘h’ are in hexadecimal notation such as 1Eh = 30. Values
without any following letter are in decimal notation.

Supplementary information is contained in the following Manuals:

• Toolkit Manual ‘General Definitions’ (Tk:TKIT),

• Protocol Interface Manuals of used protocols

• Device Driver Manual ‘Device Driver’ (Dd:DevDrv).

1.1 Terms for this Manual

DPM Dual-Port Memory this is the physical interface to all
communication board (DPM is also used for PROFIBUS-DP
Master).

CIF Communication InterFace

COM Communication Module

HOST Application on the PC or a similar device

DEVICE Synonym for communication interfaces or communication
modules

RCS Realtime Communicating System, this is the name of the
operating system that runs on the communication boards

DLL Dynamic Link Library

Introduction 5

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

1.2 Overview

There are two ways of accessing Hilscher devices via IP protocol.

• Using the IP Driver

• Using the system specific IP stack Application Programming Interface (like
Windows or Berkley sockets) on the system directly

In both cases communication is made by sending and receiving messages over the
TCP/IP or UDP/IP protocol. The format and the meaning of these messages are
described in the Toolkit Manual ‘General Definitions’ (Tk:TKIT) and in Protocol
Interface manuals of the given protocol on the device. For Example: Using a NetLink
with PROFIBUS Master interface, the description is made in Protocol Interface manual
of PROFIBUS–DP Master (Pi:DPM).

Introduction 6

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

1.3 Message Structure

A message consists of an 8 byte message header, and optional 8 byte telegram
header and up to 247 bytes of user data.

• Message Header Used by the DEVICE operating system for transporting and
address the message. This structure is fixed and constant.

• Telegram Header Defines the action for the protocol task.

• User data Send/received data.

Parameter Type Meaning
Msg.Rx byte Receiving Task
Msg.Tx byte Sending Task
Msg.Ln byte Data length
Msg.Nr byte Identification Code
Msg.A byte Response Code
Msg.F byte Error Code
Msg.B byte Command Code
Msg.E byte Extension Code

Message Header

Msg.DeviceAdr byte Communication Reference
Msg.DataArea byte Data Block
Msg.DataAdr word Object Index
Msg.DataIdx byte Object Subindex
Msg.DataCnt byte Data Quantity
Msg.DataType byte Data Type
Msg.Fnc byte Service

Telegram Header

Msg.D[0-246] byte

...

byte

User Data Telegram User Data

General structure of message

This is an example for a PROFIBUS-FMS command message. For other protocols the
structure is the same, but the containing parameters must be changed when Modbus
Plus is used for example, from communication reference to slave address, object index
to register address, or service to function code.

Using System specific TCP/IP API 7

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

2 Using System specific TCP/UDP IP API

It is very simple to access a device from own applications via TCP/IP or UDP/IP. The
application just has to establish a IP connection and to send specified messages.

If the device works as TCP/IP or UDP/IP server, an application has to work as TCP/IP
or UDP/IP client and has to open the connection. If the device works as TCP/IP or
UDP/IP client, the device will establish the connection and the application has to wait
for incoming connections.

The following section will describe the way of communication with the well known BSD
socket or Winsock model. Most IP Application Programming Interfaces (API) are based
on these model.

2.1 Parameters

Standard IP communication with Hilscher devices is handled over TCP/IP Port 1099,
device is server. Other communication modes have to be configured on the devices, if
possible.

Standard transmitter number (MESSAGE.tx) in messages is 255 (0xff).

2.2 Open Connection Endpoints

Open a socket with a the function call:

SOCKET socket(int af, int type, int protocol);

On Windows systems, call WSAStartup() before opening a socket.

Bind the successfully opened socket to local IP address with function:

int bind(SOCKET s, const struct sockaddr FAR *name, int
namelen);

2.3 Establishing of a Connection (Device = Server)

Connect the bound socket to the server with function call:
int connect(SOCKET s, const struct sockaddr FAR *name, int
namelen);

2.4 Waiting for Incoming Connection (Device = Client)

Set socket in listen state

int listen(SOCKET s, int backlog);

Wait for incoming connection on socket in listen state:

SOCKET accept(SOCKET s, struct sockaddr FAR *addr, int FAR
*addrlen);

Using System specific TCP/IP API 8

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

2.5 Sending and Receiving Data

After a successful connect you can send and receive messages with the function calls:

int send(SOCKET s, const char FAR *buf, int len, int flags);

int recv(SOCKET s, char FAR *buf, int len, int flags);

Please see your system specific development documentation for further details.

Using System specific TCP/IP API 9

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

2.5.1 Examples

2.5.1.1 Application in client mode

The following shows a simple example to establish a TCP/IP connection (device =
server) and sending and receiving a message with Windows sockets.
.....

#include “winsock.h”

#define FIXED_PORT 1099

typedef struct MESSAGETELEGRAMtag {

unsigned char rx; /* receiver */

unsigned char tx; /* transmitter */

unsigned char ln; /* length */

unsigned char nr; /* number */

unsigned char a; /* answer */

unsigned char f; /* fault */

unsigned char b; /* command */

unsigned char e; /* extension */

unsigned char device_adr; /* device address */

unsigned char data_area; /* data area */

unsigned short data_adr; /* data address */

unsigned char data_idx; /* data index */

unsigned char data_cnt; /* data count */

unsigned char data_type; /* data type */

unsigned char function; /* function */

unsigned char d[247];

} MESSAGETELEGRAM;

.....

int err;

WORD wVersionRequired;

WSADATA wsaData;

SOCKET soc;

wVersionRequired = MAKEWORD(1,1);

// initialize WinSock library

err = WSAStartup(wVersionRequired, &wsaData);

if (err != 0)

exit(1);

// create a TCP/IP socket

soc = socket (AF_INET, SOCK_STREAM, 0);

if (soc != INVALID_SOCKET)

{

struct sockaddr_in LocalAddr;

LocalAddr.sin_family = AF_INET;

LocalAddr.sin_addr.s_addr = htonl(INADDR_ANY);

LocalAddr.sin_port = 0;

// bind the socket to local address

if(bind(soc, (struct sockaddr *)&LocalAddr, sizeof(LocalAddr)) != SOCKET_ERROR)

{

struct sockaddr_in RemoteAddr;

char szAddress[] = {“192.168.10.161”};

unsigned long IpAddress = inet_addr(szAddress);

RemoteAddr.sin_family = AF_INET;

Using System specific TCP/IP API 10

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

RemoteAddr.sin_addr.s_addr = IpAddress;

RemoteAddr.sin_port = htons(FIXED_PORT);

//connect to server with IP address 192.168.10.161 on port 1099

if(connect(soc, (struct sockaddr *)&RemoteAddr, sizeof(RemoteAddr)) == 0)

{

MESSAGETELEGRAM SendMessage;

MESSAGETELEGRAM ReceiveMessage;

int SendLen, ReceiveLen;

// build message to read data block with MPI protocol, see Protocol Interface

// manual of PROFIBUS-DP Master (Pi:DPM)

SendMessage.rx = 3;

SendMessage.tx = 255;

SendMessage.ln = 8;

SendMessage.nr = 0;

SendMessage.a = 0;

SendMessage.f = 0;

SendMessage.b = 0x31;

SendMessage.e = 0;

SendMessage.device_adr = 0;

SendMessage.data_area = 0;

SendMessage.data_adr = 0;

SendMessage.data_idx = 0;

SendMessage.data_cnt = 1;

SendMessage.data_type = 5;

SendMessage.function = 1;

// Send data over TCP/IP connection to device

SendLen = send(soc, (char*)&SendMessage, sizeof(SendMessage), 0);

if(SendLen == sizeof(SendMessage))

{

// receive answer message

ReceiveLen = recv(soc, (char*)&ReceiveMessage, sizeof(ReceiveMessage), 0);

// .. do something with answer

}

}

}

}

// close socket

closesocket (soc);

// Cleanup and return

WSACleanup();

.....

Using System specific TCP/IP API 11

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

2.5.1.2 Application in server mode
.....

#include “winsock.h”

.....

int err;

WORD wVersionRequired;

WSADATA wsaData;

SOCKET soc, AcceptedSocket;

wVersionRequired = MAKEWORD(1,1);

// initialize WinSock library

err = WSAStartup(wVersionRequired, &wsaData);

if (err != 0)

exit(1);

// create a TCP/IP socket

soc = socket (AF_INET, SOCK_STREAM, 0);

if (soc != INVALID_SOCKET)

{

struct sockaddr_in LocalAddr;

LocalAddr.sin_family = AF_INET;

LocalAddr.sin_addr.s_addr = htonl(INADDR_ANY);

LocalAddr.sin_port = htons(FIXED_PORT);

// bind the socket to local address

if(bind(soc, (struct sockaddr *)&LocalAddr, sizeof(LocalAddr)) != SOCKET_ERROR)

{

char szAddress[MAX_PATH];

int AddressLen = sizeof(szAddress);

// set socket in listen state
if(listen(soc, SOMAXCONN) == NO_ERROR)
{

//accept incoming connection

if((AcceptedSocket = accept(soc, (struct sockaddr FAR*)&szAddress,

&AddressLen)) != INVALID_SOCKET)

{

MESSAGETELEGRAM SendMessage;

MESSAGETELEGRAM ReceiveMessage;

int SendLen, ReceiveLen;

ReceiveLen = recv(AcceptedSocket, (char*)&ReceiveMessage,

sizeof(ReceiveMessage), 0);

.............

// see example below

Note:

The example shows the use of sockets in blocking mode. Every function call on a
socket is blocking until the command was successfully done or if any error occurred.
You can use the ioctlsocket() or the select() function to handle sockets in non-blocking
mode. Another way to handle blocking sockets in a Windows environment is to use
threads for sending and receiving data.

Using System specific TCP/IP API 12

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

2.6 Avoiding TCP Send Delay

On some circumstances it is possible that TCP/IP messages send from Hilscher
devices will block on the device until an answer from the TCP/IP stack of the host
application is available, also if no answer from application is required. This is, because
by default Windows TCP/IP stack is waiting about 200ms until a TCP/IP acknowledge
is sent to the communication partner. The device is not able to send a new TCP/IP
message until this acknowledge, so new messages will block on the device. To avoid
this, the application can send an own acknowledge. This is done by sending an defined
message (see below) over TCP/IP to the device. This message causes automatically
an TCP/IP acknowledge and the device is able to send new messages to the
application.

Example: A Hilscher device, like a NetNode or NetLink, has to send TCP/IP messages
with user data to the remote application in high speed. If no answer from the
application is required, the device can send max. 5 messages per second, because
Windows TCP/IP stack is waiting about 200ms until an acknowledge is sent to the
device. The device is not able to send new data until this acknowledge is received. If
the application sends the defined acknowledge message right after receiving the user
data, the device is able to send new user data right after this.

The defined acknowledge message has no further effects on the device.

2.6.1 Acknowledge Message Format

Command Message

Parameter Type Value Description

msg.rx USIGN8
0

Identification of Receiver
Operating system

msg.tx USIGN8
255

Identification of Transmitter
User application

msg.ln USIGN8
0

Message Length
Length

msg.nr USIGN8
0 .. 255

Message Identification
Unique number

msg.a USIGN8
255

Reply Identification
Acknowledge Reply

msg.f USIGN8
0

Error Number
No error

Msg.b USIGN8
0

Command Identification
no command

Msg.e USIGN8
0

Extension
No answer message

Message format of acknowledge message

Using TCP/UDP IP Driver 13

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3 Using TCP/UDP IP Driver

3.1 General

The API of the TCP/UDP IP Driver is the same like the API of Device Driver for our CIF
cards and COM modules. The driver provides the same functionality like Device Driver,
please see Device Driver manual (Dd:DevDrv) for further information. If someone has
already an application running with the Device Driver it is very easy to use TCP/UDP/IP
Driver instead.

3.2 Operating systems

For Windows 9x, Windows NT and Windows 2000 we are using IP driver. The
communication between the application and the driver is done by a DLL. This DLL can
be statically or dynamically linked to the application.

Winsock API of
Operating System

Connection 0

User - Application

TCP/UDP/IP Interface
(HIL32IP.DLL)

Connection 1 Connection 2 Connection 3

Application

TCP/IP Network

TCP/UDP/IP Driver
(IP32DRV.DLL)

TCP/UDP IP Driver components

3.3 Function Overview

The IP drivers for Windows 9x, Windows NT and Windows 2000 can handle up to four
connections.

On each connection only one command can be active at the same time, because there
is no command queuing in the driver implemented.

Using TCP/UDP IP Driver 14

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.4 Contents for Windows 9x, Windows NT and Windows 2000

Directory Subdirectory Description

API Application Programming Interface, libraries and header files to
access the 32 Bit driver DLL (the DLL is installed by the driver
installation)

Simple Message and IO data transfer source code example
(IODemo.cpp)

Demo

IpDrvTest: Complete TCP/UDP/IP driver test program written in C++,
created with Microsoft Visual C/C++ 6.0

<INSTALL>

MANUALS TCP/UDP/IP driver manual

CD content

Windows 9x, Windows NT and Windows 2000 driver files:

HILIP32.DLL Dynamic link library of the driver interface, created for use with
Windows 9x, Windows NT and Windows 2000

HILIP32.LIB Definition file with the exported function of the HILIP32.DLL.

IPDRVUSR.H Definition header file for the user interface.

IP32DRV.DLL TCP/UDP IP driver DLL

Applications:

IpDrvSetup.EXE Driver Setup program for registry entries

IpDrvTest.EXE Driver Test program to run the various device driver functions

Development platform:

Windows 9x Microsoft Visual C++, V 6.x

Windows NT 4.0 Microsoft Visual C++, V 6.x

Windows 2000 Microsoft Visual C++, V 6.x

ATTENTION:

The TCP/UDP IP Interface DLL and the driver files are installed during the driver
installation and not included in the development directories.

Using TCP/UDP IP Driver 15

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.5 Installation of the Device Driver

The driver will be installed by an installation program. This will guide you to the
installation process. The installation program will run the following steps:

• Creating the standard registry entries for the TCP/UDP IP Driver

• Copying the device driver / interface DLL files

• Copying the device driver setup and test program

Using TCP/UDP IP Driver 16

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.5.1 Standard Registry Entries Windows 9x, Windows NT and Windows
2000

Registry Path:

\HKEY_LOCAL_MACHINE\Software\Hilscher GmbH\

TCP/UDP IP Driver Entry:

IP Driver - Company // Hilscher GmbH

- CurrentFolder // Installation folder of driver

- CurrentVersion // Current version of driver

- Directory // Installation directory of driver

- Name // Name of driver

\Connection0

\Connection1

\Connection2

\Connection3

Using TCP/UDP IP Driver 17

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

The default entries are

Connection0 - IpAddress 0x00000000 // TCP/IP Address of connection 0

- PortNumber 0x0000044B // Port Number of TC/IP connection

- Mode Client // Client Mode

- Protocol ‘TCP’ // TCP protocol is used

- ConnectTimeout 0x00002710 // Timeout for connection in msec.

Connection1 - IpAddress 0x00000000 // TCP/IP Address of connection 1

- PortNumber 0x0000044B // Port Number of TC/IP connection

- ClientMode TRUE // Client Mode = TRUE

- Protocol ‘TCP’ // TCP protocol is used

- ConnectTimeout 0x00002710 // Timeout for connection in msec.

Connection2 - IpAddress 0x00000000 // TCP/IP Address of connection 2

- PortNumber 0x0000044B // Port Number of TC/IP connection

- ClientMode TRUE // Client Mode = TRUE

- Protocol ‘TCP’ // TCP protocol is used

- ConnectTimeout 0x00002710 // Timeout for connection in msec.

Connection3 - IpAddress 0x00000000 // TCP/IP Address of connection 3

- PortNumber 0x0000044B // Port Number of TC/IP connection

- ClientMode TRUE // Client Mode = TRUE

- Protocol ‘TCP’ // TCP protocol is used

- ConnectTimeout 0x00002710 // Timeout for connection in msec.

Using TCP/UDP IP Driver 18

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.5.2 Driver File Installation

TCP/UDP IP Interface DLLs:

Windows 9x The interface DLL HILIP32.DLL is copied to the
%System Root%\System directory.

Windows NT The interface DLL HILIP32.DLL is copied to the
%System Root%\System32 directory.

Windows 2000 The interface DLL HILIP32.DLL is copied to the
%System Root%\System32 directory.

TCP/UDP IP Driver DLLs:

Windows 9x The driver DLL IP32DRV.DLL is copied to the
%System Root%\System directory.

Windows NT The driver DLL IP32DRV.DLL is copied to the
%System Root%\System32 directory.

Windows 2000 The driver DLL IP32DRV.DLL is copied to the
%System Root%\System32 directory.

Device Driver Utilities:

Installation path <System>\Program Files\HILSCHER GmbH\IP Driver

IpDrvSetup Driver setup programm

IpDrvTest Driver test programm

3.5.3 Driver Utilities

The driver includes a driver setup (IPDRVSETUP.EXE) and a driver test
(IPDRVTEST.EXE) program. These files are also installed during the installation
procedure. Therefore, the installation program creates a HILSCHER GmbH\ IP Driver
directory below the standard PROGRAM directory where the files are copied.

Using TCP/UDP IP Driver 19

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.6 Configure the Windows 9x/2000/NT Driver

The user must configure the IP address, the port number, the kind of connection and
the used protocol of each connection. All these informations are written to the registry
data base of the operating system.

To get an easy access to this data the device driver gets its own setup program
IPDRVSETUP.EXE. This program will help you to change the registry entries without
using REGEDIT.EXE.

Parameter Description

IP address IP address of device to which the connection should be
established, maybe 0 if application works in server mode

Port Number Port Number on which the IP connection should be
established

Client / Server Mode Determines if application should work as client or server

Protocol Determines which protocol (TCP or UDP) is used

Connect Timeout Determines how long the driver should try to establish a
connection on DevInitBoard() function call

Driver parameters

Using TCP/UDP IP Driver 20

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

3.7 Programming Instructions

3.7.1 Include the Interface API in your Application

For the user API there is only one include file IPDRVUSR.H which contains all the
necessary information like structure, constant and prototype definitions. A complete
function description is given in the Device Driver manual (Dd:DevDrv). Link the device
API-DLL (HILIP32.LIB) to your program. Make sure you have installed the driver if this
one is used.

Further programming instructions can be found in the Device Driver Manual
(Dd:DevDrv), since the API is same.

3.7.2 The Application Programming Interface

Since the TCP/UDP/IP driver has the same API as the Device Driver, please refer to
Device Driver manual for further information.

3.7.2.1 Differences

• The meaning of the parameter usDevNumber is changed from board number to
connection number

• DevGetBoardInfo delivers IRQ number always as 0, Physical Address is changed
to IP address
typedef struct tagBOARD_INFO{

unsigned char abDriverVersion[16]; // DRV version information

struct {

unsigned short usBoardNumber; // DRV connection number

unsigned short usAvailable; // DRV board is available

unsigned long ulIpAddress; // DRV IP address

unsigned short usIrqNumber; // DRV irq number, alsways 0

} tBoard [MAX_DEV_BOARDS];

} BOARD_INFO;

• DevGetBoardInfo may need a long time to return, if an configured device is not
available (TCP/IP Timeout)

• DevGetBoardInfo returns always usBoardAvailable = TRUE on UDP connections

• Function DevInitBoard tries to establish an IP connection to the configured device,
no further testing actions are done

• DevGetMBXState delivers the state, if sending or receiving data over the
configured IP connection is possible.

• DevGetInfo(), Info Area GET_DRIVER_INFO: Parameters IRQCnt, bHostFlags,
bMyDevFlags, bExIOFlag are not supported, set to zero

• DevGetInfo(); Info Area GET_RCS_INFO: Parameters: bRcsError,
bHostWatchdogState, bDevWatchdogState, bSegmentCount, bDeviceAddress,
bDriverType are not supported, set to zero

• DevGetInfo(); Info Area GET_DEV_INFO: not supported, set to zero

• DevGetInfo(); Info Area GET_IO_INFO: not supported, set to zero

Using TCP/UDP IP Driver 21

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

• DevExchangeIOEx(); not supported

• DevReadSendData(); not supported

• DevReadWriteDPMRaw(); not supported

• DevExtendedData(); not supported

• DevGetMbxData(); not supported

• DevSpecialControl(); not supported

• DevDownload(); not supported

• DevReadWriteDPMData(); not supported

3.7.3 Hints

Timeouts with TCP/UDP IP driver may be much longer than under device driver.

Error Codes 22

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

4 Error Codes

4.1 List of Error Numbers

Error numbers are compatible with error numbers from device driver. Please see
device driver manual for further details.

Some new error codes are defined for TCP/UDP IP use.

4.1.1 Error Codes

Error Number Description

-1000 Function not implemented

-1001 Error by getting resources from Host PC

-1100 Internal NULL pointer exception

-1101 Error by accessing registry

-1102 Error reading key in registry

-1103 Unknown mode (not Client or Server)

-1104 Unknown protocol (not TCP or UDP)

-1105 Connection number is invalid

-1200 Wrong answer for sent command received

10000 Windows socket error number start

Error Codes

Error Codes 23

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:TCPUDPIP#1EN

4.1.2 Hints

Error numbers 10000 and higher are Windows socket system specific error numbers.
You will find detailed information in the documentation of your operating system.

Important Windows socket error numbers:

Error Number Description

10036 Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single
blocking operation—per- task or thread—to be outstanding

10051 Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means
the local software knows no route to reach the remote host

10054 Connection reset by peer.
An existing connection was forcibly closed by the remote host.

10057 Socket is not connected.
A request to send or receive data was disallowed because the socket is not
connected

10058 Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already
been shut down

10060 Connection timed out.
A connection attempt failed because the connected party did not properly respond
after a period of time, or the established connection failed because the connected
host has failed to respond

10061 Connection refused.
No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service that is inactive on the foreign
host—that is, one with no server application running.

10091 Network subsystem is unavailable.
This error is returned by WSAStartup if the Windows Sockets implementation cannot
function at this time because the underlying system it uses to provide network
services is currently unavailable

10092 Winsock.dll version out of range.
The current Windows Sockets implementation does not support the Windows
Sockets specification version requested by the application.

	Introduction
	Terms for this Manual
	Overview
	Message Structure

	Using System specific TCP/UDP IP API
	Parameters
	Open Connection Endpoints
	Establishing of a Connection (Device = Server)
	Waiting for Incoming Connection (Device = Client)
	Sending and Receiving Data
	Examples

	Avoiding TCP Send Delay
	Acknowledge Message Format

	Using TCP/UDP IP Driver
	General
	Operating systems
	Function Overview
	Contents for Windows 9x, Windows NT and Windows 2000
	Installation of the Device Driver
	Standard Registry Entries Windows 9x, Windows NT and Windows 2000
	Driver File Installation
	Driver Utilities

	Configure the Windows 9x/2000/NT Driver
	Programming Instructions
	Include the Interface API in your Application
	The Application Programming Interface
	Hints

	Error Codes
	List of Error Numbers
	Error Codes
	Hints

